complementarias,

INDICE PRIMERA SECCION PODER EJECUTIVO

SECRETARIA DE SEGURIDAD PUBLICA

Convenio de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Nayarit, para la realización de acciones en materia de seguridad pública en el año 2002
Convenio de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Oaxaca, para la realización de acciones en materia de seguridad pública en el año 2002
Convenio de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Puebla, para la realización de acciones en materia de seguridad pública en el año 2002
Convenio de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Quintana Roo, para la realización de acciones en materia de seguridad pública en el año 2002
SECRETARIA DE HACIENDA Y CREDITO PUBLICO
Decreto por el que se otorga un estímulo fiscal en el Impuesto al Valor Agregado a las personas dedicadas a la enajenación de libros, periódicos y revistas
Resolución por la que se modifican los artículos cuarto y décimo de la autorización otorgada a GE Capital Grupo Financiero, S.A. de C.V., para constituirse y funcionar como grupo financiero
Acuerdo mediante el cual se modifica la fracción II del artículo segundo de la autorización otorgada a Arrendadora Citibank, S.A. de C.V., Organización Auxiliar del Crédito, Grupo Financiero Citibank, por aumento de capital
Circular CONSAR 15-7, mediante la cual se dan a conocer las modificaciones a las reglas generales que establecen el régimen de inversión al que deberán sujetarse las sociedades de inversión especializadas de fondos para el retiro
SECRETARIA DE ENERGIA
Decreto por el que se declara de utilidad pública la conservación, operación y

mantenimiento de la Subestación Eléctrica Malpaso Uno, y demás instalaciones

У

se

expropia

DIARIO OFICIAL DE LA FEDERACIÓN
ALEJANDRO LÓPEZ GONZÁLEZ, Director.

Abraham González No. 48, Col. Juárez, C.P. 06600, México, D.F., Secretaría de Gobernación

Tel. 5728-7300 extensiones: Dirección 33721, Producción 33743 y 34744,

Inserciones 34741, 34743, 34745 y 34746

Suscripciones y quejas: 5592-7919 y 5535-4583

Correo electrónico: dof@rtn.net.mx. Dirección electrónica: www.gobernacion.gob.mx

Impreso en Talleres Gráficos de México-México

Esta edición consta de dos secciones

DIARIO OFICIAL DE LA FEDERACION

Tomo DLXXXV No. 18

México, D. F., Miércoles 26 de junio de 2002

CONTENIDO

SECRETARIA DE SEGURIDAD PUBLICA SECRETARIA DE HACIENDA Y CREDITO PUBLICO SECRETARIA DE ENERGIA SECRETARIA DE ECONOMIA SECRETARIA DE TURISMO COMISION REGULADORA DE ENERGIA **BANCO DE MEXICO AVISOS**

PODER EJECUTIVO SECRETARIA DE SEGURIDAD PUBLICA

CONVENIO de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Nayarit, para la realización de acciones en materia de seguridad pública en el año 2002.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Seguridad Pública.- Sistema Nacional de Seguridad Pública.

CONVENIO DE COORDINACION QUE CELEBRAN EN EL MARCO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA POR UNA PARTE, EL GOBIERNO FEDERAL, POR CONDUCTO DE LA SECRETARIA DE SEGURIDAD PUBLICA, REPRESENTADA POR SU TITULAR, Y PRESIDENTE DEL CONSEJO NACIONAL DE SEGURIDAD PUBLICA, EL DR. ALEJANDRO GERTZ MANERO: ASISTIDO POR LA C. GLORIA BRASDEFER HERNANDEZ. EN SU CARACTER DE TITULAR DEL SECRETARIADO EJECUTIVO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "LA SECRETARIA", Y POR LA OTRA PARTE, EL GOBIERNO DEL ESTADO DE NAYARIT POR CONDUCTO DEL GOBERNADOR DEL ESTADO, EL C. ANTONIO ECHEVARRIA DOMINGUEZ, ASISTIDO POR EL SECRETARIO GENERAL DE GOBIERNO DEL ESTADO, EL C. ADAN MEZA BARAJAS, EL SECRETARIO DE FINANZAS DEL ESTADO, EL C. ANTONIO SIMANCAS ROBLES, LA SECRETARIA DE LA CONTRALORIA GENERAL DEL ESTADO, LA C. BEATRIZ EUGENIA MARISELA MUNGUIA MACIAS, EL PROCURADOR GENERAL DE JUSTICIA DEL ESTADO, EL C. JORGE ARMANDO BAÑUELOS AHUMADA, ASI COMO EL DIRECTOR GENERAL DE SEGURIDAD PUBLICA DEL ESTADO, EL C. FRANCISCO AULIO PAREDES DAVALOS Y EL SECRETARIO EJECUTIVO DEL CONSEJO ESTATAL DE SEGURIDAD PUBLICA, EL C. HECTOR NAZARIO MEZA BARAJAS, TODOS FUNCIONARIOS DEL ESTADO DE NAYARIT, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "EL GOBIERNO DEL ESTADO"; PARA LA REALIZACION DE ACCIONES EN MATERIA DE SEGURIDAD PUBLICA EN EL AÑO 2002, AL TENOR DE LOS SIGUIENTES ANTECEDENTES, DECLARACIONES Y CLAUSULAS:

ANTECEDENTES

La Constitución Política de los Estados Unidos Mexicanos, dispone en su artículo 21, párrafos quinto y sexto, que la seguridad pública es una función a cargo de la Federación, el Distrito Federal, los estados y los municipios en las respectivas competencias que la propia Constitución prevé y que se coordinarán

los términos que la ley señale, para establecer un Sistema Nacional de Seguridad Pública.

La Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, reglamentaria de la disposición Constitucional aludida, prevé en los artículos 2o. y 4o., que el Sistema Nacional de Seguridad Pública, se integra con las instancias, instrumentos, políticas, servicios y acciones previstos en la propia ley, tendientes a cumplir con los objetivos y fines de la seguridad pública; y que, cuando sus disposiciones comprendan materias y acciones que incidan en diversos ámbitos de competencia de la Federación, los estados, el Distrito Federal o los municipios, se aplicarán y ejecutarán mediante convenios generales y específicos entre las partes componentes del Sistema Nacional de Seguridad Pública. Asimismo, de conformidad con el artículo 11 de la ley de la materia, las políticas, lineamientos y acciones de coordinación se llevarán a cabo mediante la suscripción de los convenios respectivos o con base en los acuerdos y resoluciones que se tomen en el Consejo Nacional de Seguridad Pública y en las demás instancias de coordinación.

El Consejo Nacional de Seguridad Pública, en su Décima Primera Sesión realizada el 29 de enero de 2002, aprobó el desarrollo de los proyectos comprendidos en los ejes que a continuación se relacionan:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.
- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.
- 8.- Infraestructura para la Seguridad Pública.

Con fecha 18 de julio 1998, el Gobierno Federal y "EL GOBIERNO DEL ESTADO", suscribieron el Convenio de Coordinación para la realización de acciones en el año de 1998, en torno al Programa Nacional de Seguridad Pública 1995-2000, en el cual se acordó la constitución de un Fideicomiso Estatal para la Distribución de Fondos (FOSEG), el cual quedó formalizado el 4 de septiembre de 1998.

De igual forma, con fechas 12 de abril de 1999, 3 de febrero del año 2000, y 1 de febrero de 2001, se formalizaron los convenios de coordinación para la realización de acciones correspondientes a los citados años, en el marco del Sistema Nacional de Seguridad Pública, entre el Gobierno Federal y "EL GOBIERNO DEL ESTADO", en los que se pactó que la administración de los recursos provenientes del Fondo denominado "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", así como los aportados por "EL GOBIERNO DEL ESTADO" se continuaran administrando, a través del Fideicomiso Estatal para la Distribución de Fondos, a que se refiere el párrafo anterior, el cual fue constituido para tal fin.

La Ley de Coordinación Fiscal, en los artículos 25 fracción VII, 44 y 45, establece la existencia y destino del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", el cual se constituye con cargo a recursos federales, mismos que son determinados anualmente en el Presupuesto de Egresos de la Federación (Ramo General 33).

Conforme al artículo 44 de la Ley de Coordinación Fiscal, los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", se entregarán a las entidades federativas por el Ejecutivo Federal, a través de la Secretaría de Hacienda y Crédito Público y se distribuirán de acuerdo a los criterios que establezca el Consejo Nacional de Seguridad Pública, a propuesta de "LA SECRETARIA", utilizando para la distribución de los recursos los siguientes criterios: el número de habitantes de los estados y del Distrito Federal, el índice de ocupación penitenciaria; la tasa de crecimiento anual de indiciados y sentenciados, así como el avance de aplicación del Programa Nacional de Seguridad Pública en materia de profesionalización, equipamiento, modernización tecnológica e infraestructura, de acuerdo con el precepto legal antes citado.

El Consejo Nacional de Seguridad Pública en su Décima Primera Sesión, celebrada el 29 de enero de 2002, tomó el Acuerdo, por el que se aprobaron los criterios de asignación y la fórmula de distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", determinado en el Decreto de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002, mismo que se publicó el 1 de enero de 2002 en el **Diario Oficial de la Federación**.

En la citada sesión celebrada el 29 de enero de 2002, el Consejo Nacional de Seguridad Pública aprobó

y ratificó, conforme lo determinan la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y la Ley de Coordinación Fiscal, la suscripción de Convenios de Coordinación y sus respectivos anexos técnicos para el Ejercicio Fiscal de 2002, así como continuar con la figura de los fideicomisos locales de distribución de fondos constituidos.

Con fecha 31 de enero del año 2002, se publicaron en el **Diario Oficial de la Federación**, los criterios de asignación, la fórmula de distribución y el monto correspondiente a cada estado y al Distrito Federal

del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal".

DECLARACIONES

De "LA SECRETARIA":

Que el C. Alejandro Gertz Manero, fue designado Secretario de Seguridad Pública, mediante nombramiento de fecha 1 de diciembre de 2000, expedido por el C. Presidente Constitucional de los Estados Unidos Mexicanos.

Que el Secretario de Seguridad Pública, de acuerdo con los artículos 12 fracción I de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, 30 bis fracción III

Ley Orgánica de la Administración Pública Federal y 6o. fracción III del Reglamento Interior de la Secretaría de Seguridad Pública, preside el Consejo Nacional de Seguridad Pública.

Que conforme a los artículos 30 bis fracción XX de la Ley Orgánica de la Administración Pública Federal; artículo 16 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y, 6o. fracción IX del Reglamento Interior de "LA SECRETARIA", el Secretario de Seguridad Pública está facultado para suscribir el presente instrumento.

Que el 16 de octubre de 2001 el Consejo Nacional de Seguridad Pública, designó a la C. Gloria Brasdefer Hernández, Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública.

Que la Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública, tiene entre otras funciones, el ejecutar y dar seguimiento a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública.

de conformidad a lo dispuesto en el artículo 17 fracción III de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública.

De "EL GOBIERNO DEL ESTADO":

Que el titular del Poder Ejecutivo, el C. Antonio Echevarría Domínguez, asumió el cargo el día 19 de septiembre del año 1999; previa la protesta formal rendida ante el H. Congreso del Estado.

Que conforme al artículo 12 fracción II de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, es integrante del Consejo Nacional de Seguridad Pública.

Que el Estado de Nayarit, es parte integrante de la Federación; y adopta para su régimen interior, la forma de Gobierno Republicano, Representativo y Popular; y se ejerce por medio de los tres poderes; Ejecutivo, Legislativo y Judicial, depositándose el poder ejecutivo, en el Gobernador Constitucional del Estado, de acuerdo a los artículos 41, 42, 115 y 116 de la Constitución Política de los Estados Unidos Mexicanos; 1o., 2o. y 22 de la Constitución Política del Estado Libre y Soberano de Nayarit.

Que el Gobernador Constitucional del Estado, así como los Secretarios y el Procurador que lo asisten, están facultados para suscribir el presente Convenio de conformidad con los artículos 61 y 69 fracciones IV y XIII y 72 de la Constitución Política del Estado de Nayarit; 2, 4, 15, 26, 30 fracción X, 31 fracciones I, II, VI, y X, 32, 33, 37 y 41 de la Ley Orgánica del Poder Ejecutivo del Estado de Nayarit.

Que para los efectos del presente Convenio de Coordinación señala como domicilio el de Palacio de Gobierno, ubicado en avenida México, entre las calles Javier Mina y Mariano Abasolo, Zona Centro de la ciudad de Tepic, Nayarit.

De ambas partes:

Que es necesario continuar con la ejecución de los ejes, estrategias y acciones aprobadas por el Consejo Nacional de Seguridad Pública, así como la realización de acciones orientadas a cumplir con los fines y objetivos de la seguridad pública; por lo que convienen coordinarse en los términos de las siguientes:

CLAUSULAS

PRIMERA.- El presente Convenio tiene por objeto coordinar políticas y estrategias entre las partes, para el desarrollo y ejecución de acciones en el marco del Sistema Nacional de Seguridad Pública, conforme

a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública, aplicando al efecto los recursos convenidos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", con cargo al Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002, así como los recursos que para tal fin aporte "EL GOBIERNO DEL ESTADO", conforme a lo establecido en la Ley de Ingresos y Presupuesto de Egresos del Estado, tal como lo prevé el artículo 9 del Presupuesto de Egresos del Federación.

SEGUNDA.- De conformidad con los acuerdos emanados del Consejo Nacional de Seguridad Pública, los ejes que sustentan las estrategias y acciones, materia del presente Convenio son:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.

- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.
- 8.- Infraestructura para la Seguridad Pública.

Dichos ejes fueron ratificados por el Consejo Nacional de Seguridad Pública en la sesión celebrada con fecha 29 de enero de 2002.

TERCERA.- Los objetivos, líneas de acción, metas e indicadores de seguimiento de los programas que se deriven de cada eje, se establecerán conjuntamente por "LA SECRETARIA" a través del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública y "EL GOBIERNO DEL ESTADO", de conformidad con los acuerdos del Consejo Nacional de Seguridad Pública y se incluirán en los anexos técnicos respectivos, los cuales formarán parte de este Convenio.

CUARTA.- La suscripción de los anexos técnicos a que se refiere la cláusula anterior, se sujetará al procedimiento que a continuación se expresa:

"EL GOBIERNO DEL ESTADO" proporcionará al área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, la información necesaria para definir conjuntamente las metas, montos y calendarización del ejercicio de los recursos que se asignen al proyecto o programa respectivo, en atención a la naturaleza de cada uno de los mismos, de conformidad con los requisitos que adelante se relacionan de manera enunciativa mas no limitativa:

A).- Por lo que hace a los programas correspondientes al Eje de Profesionalización:

- Las metas anuales de los programas de prevención del delito a saber; el estado de fuerza, capacidad instalada, el nombre y el número de personas a evaluar, capacitar y certificar, así como el perfil de los mismos, tipo de evento, monto, duración y lugar en que se desarrollará éste, el número de becas para aspirantes y el monto de dichas becas; el número y el nombre de elementos propuestos al pago de dotaciones complementarias y el monto de éstas, respetando los lineamientos establecidos por la Ley de Coordinación Fiscal y la Ley General Establece
 - las Bases de Coordinación del Sistema Nacional de Seguridad Pública.
- B).- Por lo que se refiere a los programas relativos al Eje Cobertura y Capacidad de Respuesta:
- Los programas de trabajo que incorporen metas de resultados y de impacto para la prevención y reducción del delito y para la realización de operativos policíacos, el tipo de operativo, las corporaciones que intervendrán en los mismos y la coordinación con los estados vecinos, incluyendo el presupuesto detallado que demanden estos proyectos. El número total de averiguaciones previas y órdenes de aprehensión, así como las pendientes de cumplimentar; asimismo, los programas de trabajo que permitan abatir el rezago existente en aquéllas.
- C).- Por lo que corresponde a los programas del Sistema Nacional de Información sobre Seguridad Pública y de la Red Nacional de Telecomunicaciones y Servicio Telefónico de Emergencia, correspondientes a los Ejes del Sistema Nacional de Información y el de la Red Nacional de Telecomunicaciones, respectivamente, lo siguiente:
 - Información financiera respecto del costo de adquisición y operación de los equipos, la incorporación de los equipos en uso, así como los elementos que permitan definir los criterios técnicos de compatibilidad e interoperabilidad, a fin de abrir la participación a diversos proveedores de servicios de telecomunicaciones y software de operación, en los procesos de adquisición de estos equipos, en un programa permanente de migración hacia un sistema encriptado.
- D).- Por lo que hace a los programas correspondientes al Eje de Equipamiento, las metas a alcanzar con respecto a:
 - 1.- Adquisición de Equipos de Laboratorio para la Investigación Criminalística:

Los recursos humanos especializados en la materia, laboratorios fijos y móviles con que se cuenta, estado de su equipamiento y de las instalaciones, incluyendo el correspondiente presupuesto tanto para las instalaciones nuevas, como para la dignificación, ampliación y/o equipamiento de las existentes, incluidos consumibles y reactivos, además de incluir los resultados antes y después de este equipamiento.

2.- Equipamiento de Corporaciones.

2.1.- Armamento.

Licencias oficiales colectivas, cantidad, tipo y características del armamento existente y del solicitado por corporación, indicando la cantidad y tipo de arma con que se dotará a cada corporación y elemento asignado a las zonas urbana y rural, ubicándolo por región o municipio.

2.2.- Vehículos.

El parque vehicular existente por corporación policiaca y su ubicación geográfica y el programa anual de adquisición de vehículos terrestres, marítimos y aéreos, definiendo sus características, equipo adicional y especificaciones técnicas y su costo. Para el caso concreto de transportes marítimos y aéreos, se detallarán las funciones específicas de destino (localización, persecución, traslado de personal, etc.), así como el impacto esperado con estos bienes.

2.3.- Vestuario.

- Cantidad y tipo de vestuario (uniformes) que se pretenda ministrar a los elementos de las diferentes instituciones y periodicidad de dotación.
- E).- Por lo que hace a los programas correspondientes al Eje de Infraestructura para la Seguridad Pública lo siguiente:
 - Las metas, los estudios de preinversión, presupuesto y programa de obra, proyecto ejecutivo de obra pública, así como los costos de operación de la obra.
 - Acreditar la propiedad o la posesión a título de dueño del terreno en donde se vaya ejecutar la obra, en su caso.

Para llevar a cabo las acciones de preinversión, presupuesto, programa de obra o proyecto ejecutivo, a solicitud de "EL GOBIERNO DEL ESTADO" se podrá suscribir un anexo técnico que determine una primera asignación de recursos económicos.

- F).- Por lo que hace a los programas correspondientes al Eje de Participación de la Comunidad, lo siguiente:
 - Las metas y número de Comités de Consulta y Participación de la Comunidad instalados a nivel estatal y municipal principalmente; las actas de sus sesiones y el informe detallado de sus actividades mensuales, así como su programa de trabajo anual, incluyendo los proyectos a desarrollar en el Programa Ojo Ciudadano con su correspondiente presupuesto.

QUINTA.- De conformidad con el artículo 44 de la Ley de Coordinación Fiscal, la distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", se realiza con base en los criterios determinados por el Consejo Nacional de Seguridad Pública, razón por la cual los recursos asignados a "EL GOBIERNO DEL ESTADO", se enterarán mensualmente por la Secretaría de Hacienda y Crédito Público a "EL GOBIERNO DEL ESTADO", de manera ágil y directa sin más limitaciones ni restricciones que las que se establecen en las disposiciones legales aplicables.

SEXTA.- "EL GOBIERNO DEL ESTADO" de conformidad con el artículo 45 de la Ley de Coordinación Fiscal, destinará las aportaciones que reciba con cargo al "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", al apoyo de las siguientes acciones: reclutamiento, selección, depuración, evaluación y formación de los recursos humanos vinculados con tareas de seguridad pública; a complementar las dotaciones de los agentes del Ministerio Público, los peritos, los policías judiciales o sus equivalentes de la Procuraduría de Justicia del Estado, de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al equipamiento de las policías judiciales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al establecimiento y operación de la red nacional de telecomunicaciones e informática (IRIS) para la seguridad pública y el servicio telefónico nacional

de emergencia (066); a la construcción, mejoramiento y ampliación de las instalaciones para la procuración e impartición de justicia, de los centros de readaptación social y de menores infractores, así como de las instalaciones de los cuerpos de seguridad pública y sus centros de capacitación, y al seguimiento

y evaluación de los programas señalados.

En los anexos técnicos derivados del presente Convenio, se definirán los montos y proporciones de asignación de recursos con sus respectivos conceptos de gasto y de inversión, así como las metas a alcanzar y los indicadores que permitan el seguimiento y evaluación de las acciones a que se refiere la presente cláusula.

SEPTIMA.- "EL GOBIERNO DEL ESTADO" conforme a las disposiciones legales aplicables, se compromete a asegurar la intervención de su órgano de control interno, a fin de ejercer las facultades de control y supervisión del ejercicio de los recursos materia de este Convenio, conforme con el artículo 46 de la Ley de Coordinación Fiscal. Con tal propósito se destinará a dicho órgano de control interno el dos al millar (0.002) del monto total de los recursos ejercidos que se deberán obtener de los productos financieros generados por el patrimonio fideicomitido.

"LA SECRETARIA" y "EL GOBIERNO DEL ESTADO" en cumplimiento a lo dispuesto en las fracciones

y V del artículo 9o. fracción III del artículo 15 y fracción III del artículo 17 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como el artículo 45 de la Ley de Coordinación Fiscal y a los Acuerdos y Resoluciones emanados del Consejo Nacional de Seguridad Pública, convienen en aplicar recursos para realizar acciones específicas en materia de seguimiento y evaluación respecto de los programas y acciones instrumentadas en el marco de este Convenio. Para tal efecto, las partes suscribirán el anexo técnico correspondiente, mismo que formará parte de este instrumento.

OCTAVA.- Las partes acuerdan mantener la administración de los recursos provenientes del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", y los que aporte

"EL GOBIERNO DEL ESTADO", a través del Fideicomiso Estatal constituido para tal fin.

NOVENA.- Para salvaguardar el cumplimiento de las metas, los ejes, estrategias y acciones de alcance

y vinculación nacional de los tres órdenes de gobierno, en cumplimiento a las disposiciones de la Ley General

que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y en concordancia con los acuerdos aprobados por el Consejo Nacional de Seguridad Pública, los recursos asignados a los programas que se deriven de los ejes mencionados en la cláusula segunda del presente Convenio y sus anexos técnicos, deberán destinarse a los fines previstos en los citados programas y anexos.

Los recursos a que se refiere el párrafo anterior, podrán aplicarse en otros programas pertenecientes a un mismo eje, siempre y cuando el Consejo Estatal de Seguridad Pública o, en su caso, el Comité Técnico del Fideicomiso de Administración del Fondo de Seguridad Pública (FOSEG) aprueben la transferencia correspondiente, en cuyo caso se informará al Secretario Ejecutivo del Sistema Nacional de Seguridad Pública.

Las reprogramaciones que comprendan dos o más ejes deberán concertarse con el Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, a solicitud escrita de "EL GOBIERNO DEL ESTADO", en el transcurso de la operación de los programas.

El Secretariado en un plazo máximo de treinta días, contados a partir de la fecha en que reciba totalmente la documentación necesaria para las reprogramaciones, aprobará la addenda respectiva.

Los recursos no ejercidos de años anteriores se tomarán en cuenta para aplicarse en los programas autorizados, previa aprobación que realice el Comité Técnico del Fideicomiso de Administración del Fondo

de Seguridad Pública (FOSEG) y con la opinión favorable del área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.

La aplicación de los recursos a que se refiere esta cláusula invariablemente se ajustará a lo dispuesto en el artículo 45 de la Ley de Coordinación Fiscal.

DECIMA.- De conformidad con la Ley de Coordinación Fiscal; el Decreto de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002 y de acuerdo a los criterios de asignación y

de distribución aprobadas por el Consejo Nacional de Seguridad Pública en su sesión celebrada el 29 de enero del año 2002, se destinan del "Fondo de Aportaciones para la Seguridad Pública de los

del Distrito Federal", a favor de "EL GOBIERNO DEL ESTADO", recursos por un monto de \$53,479,595.00, (cincuenta y tres millones cuatrocientos setenta y nueve mil quinientos noventa y cinco pesos 00/100 moneda nacional).

Los recursos serán enterados a "EL GOBIERNO DEL ESTADO", conforme al procedimiento señalado en la cláusula quinta de este instrumento. Dichos recursos serán depositados por el Gobierno Federal a la institución fiduciaria y ambas partes expedirán el recibo más eficaz que en proceda derecho la Tesorería de la Federación, por cada ministración federal que se realice.

"EL GOBIERNO DEL ESTADO" por su parte aportará al Fideicomiso Estatal, recursos con cargo a su propio presupuesto por un monto de \$22,919,826.00 (veintidós millones novecientos diecinueve mil ochocientos veintiséis pesos 00/100 moneda nacional), conforme al calendario y términos que se especifiquen en cada anexo técnico.

Estas aportaciones se podrán incrementar con las que, en su oportunidad, hagan los gobiernos federal, estatal y municipal para fortalecer los ejes, estrategias y acciones en el marco del Sistema Nacional de Seguridad Pública. Dichas aportaciones serán con cargo a sus propios presupuestos, o bien, de los que reciban del "Fondo de Aportaciones para el Fortalecimiento de los Municipios y de las Demarcaciones Territoriales del Distrito Federal".

lqualmente, el patrimonio fideicomitido se podrá incrementar, con aquellas aportaciones que, en su oportunidad, efectúen personas físicas o morales para el fortalecimiento de las acciones materia de este Convenio, previa aceptación de "EL GOBIERNO DEL ESTADO".

DECIMA PRIMERA.- El Comité Técnico del Fideicomiso Estatal de Distribución de Fondos acordará el destino de los productos financieros generados por el patrimonio fideicomitido, teniendo siempre en cuenta los siguientes conceptos: para cubrir los servicios del fiduciario, para los servicios de control y supervisión prestados por el órgano de control interno; para la difusión de resultados de los programas previstos en la cláusula sexta, así como para alcanzar y/o ampliar las metas programadas acciones materia de este Convenio.

DECIMA SEGUNDA.- De acuerdo con lo dispuesto en el artículo 9o. fracción VI de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, "EL GOBIERNO DEL ESTADO", se compromete a tomar las medidas necesarias para la realización de acciones y operativos, en su caso, de manera conjunta con las autoridades de seguridad pública federales y municipales, que redunden en una mayor seguridad de los habitantes del Estado de Nayarit. Por lo que, dará cobertura preferentemente al equipamiento y operación de los policías ministeriales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al equipamiento y operación de las instalaciones procuración de justicia, de los centros de readaptación social y de menores infractores, así como de las instalaciones de las instancias de seguridad pública y sus centros de capacitación.

En las acciones y operativos conjuntos, a que alude esta cláusula el Secretario Ejecutivo, tendrá la participación que le corresponda, en los términos del artículo 17 fracción XI de la citada Ley General y en lo establecido en el anexo técnico correspondiente.

En todos los casos, la problemática de seguridad pública se abordará de manera integral, atendiendo las interrelaciones que se generan entre la prevención, la procuración y administración de justicia, la readaptación y la reinserción social de mayores delincuentes y menores infractores.

En los supuestos en que sea necesario atender factores que incidan en la seguridad pública, distintos a los atribuidos al Poder Ejecutivo y, en los casos en que se involucren otros poderes y diversas autoridades de "EL GOBIERNO DEL ESTADO", o bien de otra entidad, se firmarán los convenios a que se refiere el artículo 4o. de la Ley General en mención.

DECIMA TERCERA.- A fin de consolidar la operación y funcionamiento del Sistema Nacional de Información sobre Seguridad Pública, "EL GOBIERNO DEL ESTADO", proporcionará a "LA SECRETARIA" en la forma y términos solicitados por ésta, la información que requiera para mantener actualizados los registros y bases de datos nacionales a que se refiere el capítulo IV del título segundo, el artículo Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como, los registros de información que hayan sido acordados por el Consejo Nacional de Seguridad Pública y la Conferencia Nacional de Procuración de Justicia.

Para los efectos a que se refiere el párrafo anterior, las partes se comprometen a realizar en esta materia, las siguientes acciones:

		STATUS 28 Feb. 2002		UNIDAD DE MEDIDA	META
1.	Gobierno Digital AMPLIAR LA RED NACIONAL DE TELECOMUNICACIONES				
1.1	RED DE RADIOCOMUNICACION	1	•	REPETIDORES INSTALADOS	6
		15%	•	COBERTURA GEOGRAFICA DE RADIOS MATRA	54%
1.2	INTEROPERABILIDAD DE REDES EXISTENTES	-	•	MUNICIPIOS PRIORITARIOS INTEROPERANDO	Теріс
1.3	RED DE TELEFONIA ¹	12	•	PUNTOS DE PRESENCIA INSTITUCIONAL	Academia Estatal Policía Municipal de Tepic
		18%	•	USO DE CAPACIDAD INSTALADA	70%
2.	Gobierno Digital				
	ACTUALIZAR EL REGISTRO NACIONAL DE PERSONAL DE SEGURIDAD PUBLICA CON FOTOS Y HUELLAS				
2.1	PERSONAL EN ACTIVO	32	•	PERSONAL EN ACTIVO INCLUYENDO FOTOS Y HUELLAS	2728
3.	Gobierno Digital				
	ACTUALIZAR EL REGISTRO NACIONAL DE IDENTIFICACION Y HUELLAS DIGITALES DE INTERNOS EN CERESOS Y CEFERESOS				
3.1	INTERNOS ACTUALES	2000	•	IDENTIFICACION Y HUELLAS DE INTERNOS	2165

Miércoles 26 de junio	o de 2002 D	IARIO O	FICIAL	(Primera Sección)	12
3.2 HISTORICO	553	•	HUELLAS EN ARCHIVO		
			HISTORICO DE INTERNOS	Sin meta a	ıún

¹Las metas de la RED de TELEFONIA son puntos de presencia institucional adicionales a los ya establecidos.

DECIMA CUARTA.- "EL GOBIERNO DEL ESTADO" se compromete a instrumentar de manera conjunta y coordinada con las autoridades federales y municipales, acciones tendientes a consolidar el Servicio Nacional de Apoyo a la Carrera del Personal de Seguridad Pública, homologando procedimientos de reclutamiento y selección, así como la equivalencia de los contenidos mínimos de planes y programas para la formación de los integrantes de las instituciones de seguridad pública, en términos establezca la Academia Nacional de Seguridad Pública, por conducto de su consejo técnico.

Para los efectos a que se refiere el párrafo anterior, las partes se comprometen a realizar en esta materia, las siguientes acciones:

METAS A ALCANZAR EN EL EJERCICIO 2002, CON RECURSOS DE SALDOS DE EJERCICIOS 2000 Y 2001

	ACCIONES	UNIDAD DE MEDIDA	META
1.	Programa de Capacitación Básica	Personas a capacitar	1,200
2.	Programa de Capacitación Especializada	Personas a capacitar	255
3.	Programa Nacional de Evaluación	Personas a evaluar	1,050

DECIMA QUINTA.- "LA SECRETARIA", por conducto del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública, y "EL GOBIERNO DEL ESTADO", promoverán y adoptarán las medidas complementarias que se requieran para el cumplimiento del presente Convenio.

DECIMA SEXTA.- "LA SECRETARIA" y "EL GOBIERNO DEL ESTADO", tendrán la prerrogativa para ocurrir ante las autoridades correspondientes, en caso de incumplimiento de cualesquiera de las obligaciones pactadas en el presente Convenio o en sus anexos técnicos.

DECIMA SEPTIMA.- Este Convenio se publicará en el Diario Oficial de la Federación y en el Periódico Oficial de "EL GOBIERNO DEL ESTADO", y entrará en vigor a partir de la fecha de su suscripción.

El presente Convenio de Coordinación 2002 se firma, por triplicado, en la ciudad de Tepic, Nayarit, a los siete días del mes de mayo de dos mil dos.- Por la Secretaría: el Secretario de Seguridad Pública y Presidente del Consejo Nacional de Seguridad Pública, Alejandro Gertz Manero.- Rúbrica.- La Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública, Gloria Brasdefer Hernández.-Rúbrica.- Por el Gobierno del Estado: el Gobernador Constitucional del Estado, Antonio Echevarría Domínguez.- Rúbrica.- El Secretario General de Gobierno, Adán Meza Barajas.- Rúbrica.- El Secretario de Finanzas, Antonio Simancas Robles.- Rúbrica.- La Secretaria de la Contraloría General del Estado, Beatriz Eugenia Marisela Munguía Macías.- Rúbrica.- El Procurador General de Justicia del Estado, Jorge Armando Bañuelos Ahumada.- Rúbrica.- El Director General de Seguridad Pública, Francisco Aulio Paredes Dávalos.- Rúbrica.- El Secretario Ejecutivo del Consejo Estatal de Seguridad Pública, Héctor Nazario Meza Barajas.- Rúbrica.

CONVENIO de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Oaxaca, para la realización de acciones en materia de seguridad pública en el año 2002.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Seguridad Pública.- Sistema Nacional de Seguridad Pública.

CONVENIO DE COORDINACION QUE CELEBRAN EN EL MARCO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA POR UNA PARTE, EL GOBIERNO FEDERAL, POR CONDUCTO DE LA SECRETARIA DE SEGURIDAD PUBLICA, REPRESENTADA POR SU TITULAR, Y PRESIDENTE DEL CONSEJO NACIONAL DE SEGURIDAD PUBLICA, EL DR. ALEJANDRO GERTZ MANERO; ASISTIDO POR LA C. GLORIA BRASDEFER HERNANDEZ, EN SU CARACTER DE TITULAR DEL SECRETARIADO EJECUTIVO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "LA SECRETARIA", Y POR LA OTRA PARTE, EL GOBIERNO DEL ESTADO DE

OAXACA POR CONDUCTO DEL C. LIC. JOSE MURAT, GOBERNADOR CONSTITUCIONAL DEL ESTADO, ASISTIDO POR EL SECRETARIO DE GOBIERNO, EL C. LIC. HECTOR ANUAR MAFUD MAFUD, EL C. C.P. GUILLERMO MEGCHUN VELASQUEZ, SECRETARIO DE FINANZAS, EL C. LIC. SERGIO H. SANTIBAÑEZ FRANCO, PROCURADOR GENERAL DE JUSTICIA, EL C. LIC. HELIODORO DIAZ ESCARRAGA, SECRETARIO EJECUTIVO DEL CONSEJO ESTATAL DE SEGURIDAD PUBLICA Y SECRETARIO DE PROTECCION CIUDADANA, TODOS FUNCIONARIOS DEL ESTADO DE OAXACA, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "EL GOBIERNO DEL ESTADO"; PARA LA REALIZACION DE ACCIONES EN MATERIA DE SEGURIDAD PUBLICA EN EL AÑO 2002, AL TENOR DE LOS SIGUIENTES ANTECEDENTES, DECLARACIONES Y CLAUSULAS:

ANTECEDENTES

La Constitución Política de los Estados Unidos Mexicanos, dispone en su artículo 21, párrafos quinto y sexto, que la seguridad pública es una función a cargo de la Federación, el Distrito Federal, los estados y los municipios en las respectivas competencias que la propia Constitución prevé y que se coordinarán

los términos que la ley señale, para establecer un Sistema Nacional de Seguridad Pública.

La Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, reglamentaria de la disposición Constitucional aludida, prevé en los artículos 2o. y 4o., que el Sistema Nacional de Seguridad Pública, se integra con las instancias, instrumentos, políticas, servicios y acciones previstos en la propia ley, tendientes a cumplir con los objetivos y fines de la seguridad pública; y que, cuando sus disposiciones comprendan materias y acciones que incidan en diversos ámbitos de competencia de la Federación, los estados, el Distrito Federal o los municipios, se aplicarán y ejecutarán mediante convenios generales y específicos entre las partes componentes del Sistema Nacional de Seguridad Pública. Asimismo, de conformidad con el artículo 11 de la ley de la materia, las políticas, lineamientos y acciones de coordinación se llevarán a cabo mediante la suscripción de los convenios respectivos o con base en los acuerdos y resoluciones que se tomen en el Consejo Nacional de Seguridad Pública y en las demás instancias de coordinación.

El Consejo Nacional de Seguridad Pública, en su Décima Primera Sesión realizada el 29 de enero de 2002, aprobó el desarrollo de los proyectos comprendidos en los ejes que a continuación se relacionan:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.
- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.
- 8.- Infraestructura para la Seguridad Pública.

Con fecha 4 de julio de 1998, el Gobierno Federal y "EL GOBIERNO DEL ESTADO", suscribieron el Convenio de Coordinación para la realización de acciones en el año de 1998, en torno al Programa Nacional de Seguridad Pública 1995-2000, en el cual se acordó la constitución de un Fideicomiso Estatal para la Distribución de Fondos (FOSEG), el cual quedó formalizado el cuatro de septiembre del mismo año.

De igual forma, con fechas 27 de marzo 1999, 23 de marzo del año 2000, y 19 de febrero de 2001, se formalizaron los convenios de coordinación para la realización de acciones correspondientes a los citados años, en el marco del Sistema Nacional de Seguridad Pública, entre el Gobierno Federal y "EL GOBIERNO DEL ESTADO", en los que se pactó que la administración de los recursos provenientes del Fondo denominado "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", así como los aportados por "EL GOBIERNO DEL ESTADO" se continuaran administrando, a través del Fideicomiso Estatal para la Distribución de Fondos, a que se refiere el párrafo anterior, el cual fue constituido para tal fin.

La Ley de Coordinación Fiscal, en los artículos 25 fracción VII, 44 y 45, establece la existencia y destino del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", el cual se constituye con cargo a recursos federales, mismos que son determinados anualmente en el Presupuesto de Egresos de la Federación (Ramo General 33).

Conforme al artículo 44 de la Ley de Coordinación Fiscal, los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", se entregarán a las entidades federativas por el Ejecutivo Federal, a través de la Secretaría de Hacienda y Crédito Público y se distribuirán de acuerdo a los criterios que establezca el Consejo Nacional de Seguridad Pública, a propuesta de "LA SECRETARIA", utilizando para la distribución de los recursos los siguientes criterios: el número de habitantes de los estados y del Distrito Federal, el índice de ocupación penitenciaria; la tasa de crecimiento anual de indiciados y sentenciados, así como el avance de aplicación del Programa Nacional de Seguridad Pública en materia de profesionalización, equipamiento, modernización tecnológica e infraestructura, de acuerdo con el precepto legal antes citado.

El Consejo Nacional de Seguridad Pública en su Décima Primera Sesión, celebrada el 29 de enero de 2002, aprobó los criterios de asignación y la fórmula de distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", determinado en el Decreto

de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002, mismo que se publicó el 1 de enero de 2002 en el **Diario Oficial de la Federación**.

En la citada sesión celebrada el 29 de enero de 2002, el Consejo Nacional de Seguridad Pública aprobó

y ratificó, conforme lo determinan la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y la Ley de Coordinación Fiscal, la suscripción de Convenios de Coordinación y sus respectivos anexos técnicos para el Ejercicio Fiscal del 2002, así como continuar con la figura de los fideicomisos locales de distribución de fondos constituidos.

Con fecha 31 de enero del año 2002, se publicaron en el **Diario Oficial de la Federación**, los criterios de asignación, la fórmula de distribución y el monto correspondiente a cada estado y al Distrito Federal del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal".

DECLARACIONES

De "LA SECRETARIA":

Que el C. Alejandro Gertz Manero, fue designado Secretario de Seguridad Pública, mediante nombramiento de fecha 1 de diciembre de 2000, expedido por el C. Presidente Constitucional de los Estados Unidos Mexicanos.

Que el Secretario de Seguridad Pública, de acuerdo con los artículos 12 fracción I de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, 30 bis fracción de

Ley Orgánica de la Administración Pública Federal y 60. fracción III del Reglamento Interior de la Secretaría de Seguridad Pública, preside el Consejo Nacional de Seguridad Pública.

Que conforme a los artículos 30 bis fracción XX de la Ley Orgánica de la Administración Pública Federal; 16 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad

y, 6o. fracción IX del Reglamento Interior de "LA SECRETARIA", el Secretario de Seguridad Pública está facultado para suscribir el presente instrumento.

Que el 16 de octubre de 2001 el Consejo Nacional de Seguridad Pública, designó a la C. Gloria Brasdefer Hernández, Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública.

Que la Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública, tiene entre otras funciones, el ejecutar y dar seguimiento a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública, de conformidad a lo dispuesto en el artículo 17 fracción III de la Ley General que Establece las

de Coordinación del Sistema Nacional de Seguridad Pública.

De "EL GOBIERNO DEL ESTADO":

Que el titular del Poder Ejecutivo, C. Lic. José Murat, asumió el cargo el día 1 de diciembre del año 1998; previa la protesta formal rendida ante el H. Congreso del Estado.

Que conforme al artículo 12 fracción II de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, es integrante del Consejo Nacional de Seguridad Pública.

Que de conformidad con lo dispuesto por los artículos 79 fracción XIX de la Constitución Política del Estado de Oaxaca; 7 de la Ley Orgánica del Poder Ejecutivo y 13 fracción I de la Ley de Seguridad Pública del Estado de Oaxaca, el Titular del Poder Ejecutivo se encuentra plenamente facultado para suscribir el presente instrumento de coordinación.

Que el Lic. Héctor Anuar Mafud Mafud, fue designado Secretario General de Gobierno, con fecha 1 de diciembre de 1998, mediante nombramiento otorgado a su favor por el C. Gobernador Constitucional del Estado y cuenta con facultades para suscribir este Convenio, de conformidad con lo dispuesto por el artículo 84 de la Constitución Política del Estado.

Que el Lic. Sergio H. Santibáñez Franco, fue designado Procurador General de Justicia mediante nombramiento otorgado a su favor por el C. Gobernador Constitucional del Estado, con fecha 14 de julio de 1999 y se encuentra facultado para la celebración de este Convenio en términos del artículo 21 fracción

de la Ley Orgánica del Poder Ejecutivo del Estado.

Que el Lic. Heliodoro Díaz Escárraga, fue designado Secretario de Protección Ciudadana y Secretario Ejecutivo del Consejo Estatal de Seguridad Pública, mediante nombramientos otorgados a su favor

C. Gobernador Constitucional del Estado, con fecha 14 de julio de 1999 y cuenta con atribuciones para suscribir de este Convenio de conformidad con lo dispuesto por los artículos 84 de la Constitución Política del Estado, 20 bis fracciones I y XI de la Ley Orgánica del Poder Ejecutivo del Estado y 14 fracción I de la Ley de Seguridad Pública para el Estado de Oaxaca.

Que el C.P. Guillermo Megchún Velásquez, en su carácter de Secretario de Finanzas del Estado, se encuentra facultado para celebrar este Convenio de conformidad con lo dispuesto por los artículos 84 de la Constitución Política del Estado y 22 fracción I de la Ley Orgánica del Poder Ejecutivo de Estado.

De ambas partes:

Que es necesario continuar con la ejecución de los ejes, estrategias y acciones aprobadas por el Consejo Nacional de Seguridad Pública, así como la realización de acciones orientadas a cumplir con los fines y objetivos de la seguridad pública; por lo que convienen coordinarse en los términos de las siguientes:

PRIMERA.- El presente Convenio tiene por objeto coordinar políticas y estrategias entre las partes, para el desarrollo y ejecución de acciones en el marco del Sistema Nacional de Seguridad Pública, conforme a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública, aplicando al efecto los recursos convenidos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y

con cargo al Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002, así como los recursos que para tal fin aporte "EL GOBIERNO DEL ESTADO", conforme a lo establecido en la Ley de Ingresos y Presupuesto de Egresos del Estado, tal como lo prevé el artículo 9 del Presupuesto de Earesos

de la Federación.

SEGUNDA.- De conformidad con los acuerdos emanados del Consejo Nacional de Seguridad Pública, los ejes que sustentan las estrategias y acciones, materia del presente Convenio son:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.
- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.

8.- Infraestructura para la Seguridad Pública.

Dichos ejes fueron ratificados por el Consejo Nacional de Seguridad Pública en la sesión celebrada con fecha 29 de enero de 2002.

TERCERA.- Los objetivos, líneas de acción, metas e indicadores de seguimiento de los programas que se deriven de cada eje, se establecerán conjuntamente por "LA SECRETARIA" a través del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública y "EL GOBIERNO DEL ESTADO", de conformidad con los acuerdos del Consejo Nacional de Seguridad Pública y se incluirán en los anexos técnicos respectivos, los cuales formarán parte de este Convenio.

CUARTA.- La suscripción de los anexos técnicos a que se refiere la cláusula anterior, se sujetará al procedimiento que a continuación se expresa:

"EL GOBIERNO DEL ESTADO" proporcionará al área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, la información necesaria para definir conjuntamente las metas, montos y calendarización del ejercicio de los recursos que se asignen al proyecto o programa respectivo, en atención a la naturaleza de cada uno de los mismos, de conformidad con los requisitos que adelante se relacionan de manera enunciativa mas no limitativa:

A).- Por lo que hace a los programas correspondientes al Eje de Profesionalización:

- Las metas anuales de los programas de prevención del delito a saber: el estado de fuerza, la capacidad instalada, el nombre y el número de personas a evaluar, capacitar y certificar, así como el perfil de los mismos, tipo de evento, monto, duración y lugar en que se desarrollará éste, el número de becas para aspirantes y el monto de dichas becas; el número y el nombre de elementos propuestos al pago de dotaciones complementarias y el monto de éstas, respetando los lineamientos establecidos por la Ley de Coordinación Fiscal y la Ley General
 - las Bases de Coordinación del Sistema Nacional de Seguridad Pública.
- B).- Por lo que se refiere a los programas relativos al Eje de Cobertura y Capacidad de Respuesta:
- Los programas de trabajo que incorporen metas de resultados y de impacto para la prevención y reducción del delito y para la realización de operativos policiacos, el tipo de operativo, las corporaciones que intervendrán en los mismos y la coordinación con los estados vecinos, incluyendo el presupuesto detallado que demanden estos proyectos. El número total de averiguaciones previas y órdenes de aprehensión, así como las pendientes de cumplimentar; asimismo, los programas de trabajo que permitan abatir el rezago existente en aquéllas.
- C).- Por lo que corresponde a los programas del Sistema Nacional de Información sobre Seguridad Pública y de la Red Nacional de Telecomunicaciones y Servicio Telefónico de Emergencia, correspondientes a los ejes del Sistema Nacional de Información y el de la Red Nacional de Telecomunicaciones, respectivamente, lo siguiente:
 - Información financiera respecto del costo de adquisición y operación de los equipos, la incorporación de los equipos en uso, así como los elementos que permitan definir los criterios técnicos de compatibilidad e interoperabilidad, a fin de abrir la participación a diversos proveedores de servicios de telecomunicaciones y software de operación, en los procesos de adquisición de estos equipos, en un programa permanente de migración hacia un sistema encriptado.
- D).- Por lo que hace a los programas correspondientes al Eje de Equipamiento, las metas a alcanzar con respecto a:
 - 1.- Adquisición de Equipos de Laboratorio para la Investigación Criminalística:
 - Los recursos humanos especializados en la materia, laboratorios fijos y móviles con que se cuenta, estado de su equipamiento y de las instalaciones, incluyendo el correspondiente presupuesto tanto para las instalaciones nuevas, como para la dignificación, ampliación y/o equipamiento de las existentes, incluidos consumibles y reactivos, además de incluir los resultados antes y después de este equipamiento.
 - 2.- Equipamiento de Corporaciones.
 - 2.1.- Armamento.

Licencias oficiales colectivas, cantidad, tipo y características del armamento existente y del solicitado por corporación, indicando la cantidad y tipo de arma con que se dotará a cada corporación y elemento asignado a las zonas urbana y rural, ubicándolo por región o municipio.

2.2.- Vehículos.

El parque vehicular existente por corporación policiaca y su ubicación geográfica y el programa anual de adquisición de vehículos terrestres, marítimos y aéreos, definiendo sus características, equipo adicional y especificaciones técnicas y su costo. Para el caso concreto de transportes marítimos y aéreos, se detallarán las funciones específicas de destino (localización, persecución, traslado de personal, etc.), así como el impacto esperado con estos bienes.

2.3.- Vestuario.

- Cantidad y tipo de vestuario (uniformes) que se pretenda ministrar a los elementos de las diferentes instituciones y periodicidad de dotación.
- E).- Por lo que hace a los programas correspondientes al Eje de Infraestructura para la Seguridad Pública, lo siguiente:
 - Las metas, los estudios de preinversión, presupuesto y programa de obra, proyecto ejecutivo de obra pública, así como los costos de operación de la obra.
 - Acreditar la propiedad o la posesión a título de dueño del terreno en donde se vaya ejecutar la obra, en su caso.

Para llevar a cabo las acciones de preinversión, presupuesto, programa de obra o proyecto ejecutivo, a solicitud de "EL GOBIERNO DEL ESTADO" se podrá suscribir un anexo técnico que determine una primera asignación de recursos económicos.

- F).- Por lo que hace a los programas correspondientes al Eje de Participación de la Comunidad, lo siguiente:
 - Las metas y número de Comités de Consulta y Participación de la Comunidad instalados a nivel estatal y municipal principalmente; las actas de sus sesiones y el informe detallado de sus actividades mensuales, así como su programa de trabajo anual, incluyendo los proyectos a desarrollar en el Programa Ojo Ciudadano con su correspondiente presupuesto.

QUINTA.- De conformidad con el artículo 44 de la Ley de Coordinación Fiscal, la distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", se realiza con base en los criterios determinados por el Consejo Nacional de Seguridad Pública, razón por la cual los recursos asignados a "EL GOBIERNO DEL ESTADO", se enterarán mensualmente por la Secretaría de Hacienda y Crédito Público a "EL GOBIERNO DEL ESTADO", de manera ágil y directa sin más limitaciones ni restricciones que las que se establecen en las disposiciones legales aplicables.

SEXTA.- "EL GOBIERNO DEL ESTADO" de conformidad con el artículo 45 de la Ley de Coordinación Fiscal, destinará las aportaciones que reciba con cargo al "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", al apoyo de las siguientes acciones: reclutamiento, selección, depuración, evaluación y formación de los recursos humanos vinculados con tareas de seguridad pública; a complementar las dotaciones de los agentes del Ministerio Público, los peritos, los policías judiciales o sus equivalentes de la Procuraduría de Justicia del Estado, de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al equipamiento de las policías judiciales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al establecimiento y de telecomunicaciones e informática (IRIS) para la seguridad pública y el servicio telefónico nacional de emergencia (066); a la construcción, mejoramiento y ampliación de las instalaciones para la procuración e impartición de justicia, de los centros de readaptación social y de menores infractores,

así como de las instalaciones de los cuerpos de seguridad pública y sus centros de capacitación, y al seguimiento y evaluación de los programas señalados.

En los anexos técnicos derivados del presente Convenio, se definirán los montos y proporciones de asignación de recursos con sus respectivos conceptos de gasto y de inversión, así como las metas a alcanzar y los indicadores que permitan el seguimiento y evaluación de las acciones a que se refiere la presente cláusula.

SEPTIMA.- "EL GOBIERNO DEL ESTADO" conforme a las disposiciones legales aplicables, se compromete a asegurar la intervención de su órgano de control Interno, a fin de ejercer las facultades de control y supervisión del ejercicio de los recursos materia de este Convenio, conforme con el artículo 46 de la Ley de Coordinación Fiscal. Con tal propósito se destinará a dicho órgano de control interno el dos al millar (0.002) del monto total de los recursos ejercidos que se deberán obtener de los productos financieros generados por el patrimonio fideicomitido.

"LA SECRETARIA" y "EL GOBIERNO DEL ESTADO" en cumplimiento a b dispuesto en las fracciones II y V del artículo 90. fracción III, del artículo 15 y fracción III, del artículo 17 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como el artículo 45 de la Ley de Coordinación Fiscal y a los Acuerdos y Resoluciones emanados del Consejo Nacional de Seguridad Pública, convienen en aplicar recursos para realizar acciones específicas en materia de seguimiento y evaluación respecto de los programas y acciones instrumentadas en el marco de este Convenio. Para tal efecto, las partes suscribirán el anexo técnico correspondiente, mismo que formará parte de este instrumento.

OCTAVA.- Las partes acuerdan mantener la administración de los recursos provenientes del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", y los que aporte

"EL GOBIERNO DEL ESTADO", a través del Fideicomiso Estatal constituido para tal fin.

NOVENA.- Para salvaguardar el cumplimiento de las metas, los ejes, estrategias y acciones de alcance y vinculación nacional de los tres órdenes de gobierno, en cumplimiento a las disposiciones de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y en concordancia con los acuerdos aprobados por el Consejo Nacional de Seguridad Pública, los recursos asignados a los programas que se deriven de los ejes mencionados en la cláusula segunda del presente Convenio y sus anexos técnicos, deberán destinarse a los fines previstos en los citados programas y anexos.

Los recursos a que se refiere el párrafo anterior, podrán aplicarse en otros programas pertenecientes a un mismo eje, siempre y cuando el Consejo Estatal de Seguridad Pública o, en su caso, el Comité Técnico del Fideicomiso de Administración del Fondo de Seguridad Pública (FOSEG) aprueben la transferencia correspondiente, en cuyo caso se informará al Secretario Ejecutivo del Sistema Nacional de Seguridad Pública.

Las reprogramaciones que comprendan dos o más ejes deberán concertarse con el Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, a solicitud escrita de "EL GOBIERNO DEL ESTADO", en el transcurso de la operación de los programas.

El secretariado en un plazo máximo de treinta días, contado a partir de la fecha en que reciba totalmente la documentación necesaria para las reprogramaciones, aprobará la addenda respectiva.

Los recursos no ejercidos de años anteriores se tomarán en cuenta para aplicarse en los programas autorizados, previa aprobación que realice el Comité Técnico del Fideicomiso de Administración del Fondo de Seguridad Pública (FOSEG) y con la opinión favorable del área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.

La aplicación de los recursos a que se refiere esta cláusula invariablemente se ajustará a lo dispuesto en el artículo 45 de la Ley de Coordinación Fiscal.

DECIMA.- De conformidad con la Ley de Coordinación Fiscal; el Decreto de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002 y de acuerdo a los criterios de asignación y fórmula

de distribución aprobadas por el Consejo Nacional de Seguridad Pública en su sesión celebrada el 29 de enero del año 2002, se destinan del "Fondo de Aportaciones para la Seguridad Pública de los Estados

del Distrito Federal", a favor de "EL GOBIERNO DEL ESTADO", recursos por un monto de \$95,786,866.00, (noventa y cinco millones setecientos ochenta y seis mil ochocientos sesenta y seis pesos 00/100 moneda nacional).

Los recursos serán enterados a "EL GOBIERNO DEL ESTADO", conforme al procedimiento señalado en la cláusula quinta de este instrumento. Dichos recursos serán depositados por el Gobierno Federal en la cuenta bancaria que la Secretaría de Finanzas del Estado señale previamente por escrito, a fin de que tales aportaciones se registren como ingresos propios, procediéndose de inmediato a depositarlos en la institución fiduciaria del FOSEG, y ambas partes expedirán el recibo más eficaz que en derecho proceda a favor de la Tesorería de la Federación, por cada ministración federal que se realice.

"EL GOBIERNO DEL ESTADO" por su parte aportará al Fideicomiso Estatal, recursos con cargo a su propio presupuesto por un monto de \$36,391,413.00 (treinta y seis millones trescientos noventa y un mil cuatrocientos trece pesos 00/100 moneda nacional), conforme al calendario y términos que se especifiquen en cada anexo técnico.

Estas aportaciones se podrán incrementar con las que, en su oportunidad, hagan los gobiernos Federal, Estatal y Municipal para fortalecer los ejes, estrategias y acciones en el marco del Sistema Nacional de Seguridad Pública. Dichas aportaciones serán con cargo a sus propios presupuestos, o bien, de los que reciban del "Fondo de Aportaciones para el Fortalecimiento de los Municipios y de las Demarcaciones Territoriales del Distrito Federal".

Igualmente, el patrimonio fideicomitido se podrá incrementar, con aquellas aportaciones que, en su oportunidad, efectúen personas físicas o morales para el fortalecimiento de las acciones materia de este Convenio, previa aceptación de "EL GOBIERNO DEL ESTADO".

DECIMA PRIMERA.- El Comité Técnico del Fideicomiso Estatal de Distribución de Fondos acordará el destino de los productos financieros generados por el patrimonio fideicomitido, teniendo siempre en cuenta los siguientes conceptos: para cubrir los servicios del fiduciario, para los servicios de control y supervisión prestados por el órgano de control interno; para la difusión de resultados de los programas previstos en la cláusula sexta, así como para alcanzar y/o ampliar las metas programadas y acciones materia de este Convenio.

DECIMA SEGUNDA.- De acuerdo con lo dispuesto en el artículo 90. fracción VI de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, "EL GOBIERNO DEL ESTADO", se compromete a tomar las medidas necesarias para la realización de acciones y operativos, en su caso, de manera conjunta con las autoridades de seguridad pública federales y municipales, que redunden en una mayor seguridad de los habitantes del Estado de Oaxaca. Por lo que, dará cobertura preferentemente al equipamiento y operación de los policías ministeriales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al equipamiento y operación de las instalaciones para la procuración e impartición de justicia, de los centros de readaptación social y de menores infractores, así como de las instalaciones de las instancias de seguridad pública y sus centros de capacitación.

En las acciones y operativos conjuntos, a que alude esta cláusula el Secretario Ejecutivo, tendrá la participación que le corresponda, en los términos del artículo 17 fracción XI de la citada Ley General y en

lo establecido en el anexo técnico correspondiente.

En todos los casos, la problemática de seguridad pública se abordará de manera integral, atendiendo las interrelaciones que se generan entre la prevención, la procuración y administración de justicia, la readaptación y la reinserción social de mayores delincuentes y menores infractores.

En los supuestos en que sea necesario atender factores que incidan en la seguridad pública, distintos a los atribuidos al Poder Ejecutivo y, en los casos en que se involucren otros poderes y

diversas autoridades de "EL GOBIERNO DEL ESTADO", o bien de otra entidad, se firmarán los convenios a que se refiere el artículo 4o. de la Ley General en mención.

DECIMA TERCERA.- A fin de consolidar la operación y funcionamiento del Sistema Nacional de Información sobre Seguridad Pública, "EL GOBIERNO DEL ESTADO", proporcionará a "LA SECRETARIA" en la forma y términos solicitados por ésta, la información que requiera para mantener actualizados los registros y bases de datos nacionales a que se refiere el capítulo IV del título segundo y el artículo 54 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como los registros de información que hayan sido acordados por el Consejo Nacional de Seguridad Pública y la Conferencia Nacional de Procuración de Justicia.

DECIMA CUARTA.- "EL GOBIERNO DEL ESTADO" se compromete a instrumentar de manera conjunta y coordinada con las autoridades federales y municipales, acciones tendientes a consolidar el Servicio Nacional de Apoyo a la Carrera del Personal de Seguridad Pública, homologando procedimientos de reclutamiento y selección, así como la equivalencia de los contenidos mínimos de planes y programas para la formación de los integrantes de las instituciones de seguridad pública, en los términos que establezca la Academia Nacional de Seguridad Pública, por conducto de su consejo técnico.

DECIMA QUINTA.- "LA SECRETARIA", por conducto del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública, y "EL GOBIERNO DEL ESTADO", promoverán y adoptarán las medidas complementarias que se requieran para el cumplimiento del presente Convenio.

DECIMA SEXTA.- "LA SECRETARIA" y "EL GOBIERNO DEL ESTADO", tendrán la prerrogativa para ocurrir ante las autoridades correspondientes, en caso de incumplimiento de cualesquiera de las obligaciones pactadas en el presente Convenio o en sus anexos técnicos.

DECIMA SEPTIMA.- Este Convenio se publicará en el **Diario Oficial de la Federación** y en el Periódico Oficial de "EL GOBIERNO DEL ESTADO", y entrará en vigor a partir de la fecha de su suscripción.

El presente Convenio de Coordinación 2002 se firma, por triplicado, en la ciudad de Oaxaca de Juárez, Oaxaca, a los nueve días del mes de mayo de dos mil dos.- Por la Secretaría: el Secretario de Seguridad Pública y Presidente del Consejo Nacional de Seguridad Pública, Alejandro Gertz Manero.-Rúbrica.- La Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública, Gloria Brasdefer Hernández.- Rúbrica.- Por el gobierno del Estado: el Gobernador Constitucional del Estado de Oaxaca, José Murat.- Rúbrica.- El Secretario General de Gobierno, Héctor Anuar Mafud Mafud.- Rúbrica.- El Secretario de Finanzas, Guillermo Megchún Velásquez.- Rúbrica.- El Procurador General de Justicia, Sergio H. Santibáñez Franco.- Rúbrica.- El Secretario Ejecutivo del Consejo Estatal de Seguridad Pública y Secretario de Protección Ciudadana, Heliodoro Díaz Escárraga.- Rúbrica.

CONVENIO de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Puebla, para la realización de acciones en materia de seguridad pública en el año 2002.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Seguridad Pública.- Sistema Nacional de Seguridad Pública.

CONVENIO DE COORDINACION QUE CELEBRAN EN EL MARCO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA POR UNA PARTE, EL GOBIERNO FEDERAL, POR CONDUCTO DE LA SECRETARIA DE SEGURIDAD PUBLICA, REPRESENTADA POR SU TITULAR, Y PRESIDENTE DEL CONSEJO NACIONAL DE SEGURIDAD PUBLICA, EL DOCTOR ALEJANDRO GERTZ MANERO; ASISTIDO POR LA C. GLORIA BRASDEFER HERNANDEZ, EN SU CARACTER DE TITULAR DEL SECRETARIADO EJECUTIVO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "LA SECRETARIA", Y POR LA OTRA PARTE, EL GOBIERNO DEL ESTADO DE PUEBLA POR CONDUCTO DEL C. LICENCIADO MELQUIADES MORALES FLORES, GOBERNADOR CONSTITUCIONAL DEL ESTADO, ASISTIDO POR EL SECRETARIO DE GOBERNACION, EL C. MAESTRO CARLOS ARREDONDO CONTRERAS, EL SECRETARIO DE FINANZAS Y DESARROLLO SOCIAL, C. RAFAEL MORENO VALLE ROSAS, EL

SECRETARIO DE DESARROLLO, EVALUACION Y CONTROL DE LA ADMINISTRACION PUBLICA, C. LICENCIADO HECTOR JIMENEZ Y MENESES; EL PROCURADOR GENERAL DE JUSTICIA DEL ESTADO, C. LICENCIADO HECTOR MALDONADO VILLAGOMEZ, Y EL SECRETARIO EJECUTIVO DEL CONSEJO ESTATAL DE COORDINACION DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA, EL C. LICENCIADO LUIS CUAUHTEMOC HIDALGO MARTINEZ, TODOS FUNCIONARIOS DEL ESTADO DE LIBRE Y SOBERANO DE PUEBLA, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "EL GOBIERNO DEL ESTADO"; PARA LA REALIZACION DE ACCIONES EN MATERIA DE SEGURIDAD PUBLICA EN EL AÑO 2002, AL TENOR DE LOS SIGUIENTES ANTECEDENTES, DECLARACIONES Y CLAUSULAS:

ANTECEDENTES

La Constitución Política de los Estados Unidos Mexicanos, dispone en su artículo 21 párrafos quinto y sexto, que la seguridad pública es una función a cargo de la Federación, el Distrito Federal, los estados y los municipios en las respectivas competencias que la propia Constitución prevé y que se coordinarán en los términos que la ley señale, para establecer un Sistema Nacional de Seguridad Pública.

La Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, reglamentaria de la disposición Constitucional aludida, prevé en los artículos 2o. y 4o., que el Sistema Nacional de Seguridad Pública, se integra con las instancias, instrumentos, políticas, servicios y acciones previstos en la propia ley, tendientes a cumplir con los objetivos y fines de la seguridad pública; y que, cuando sus disposiciones comprendan materias y acciones que incidan en diversos ámbitos de competencia de la Federación, los estados, el Distrito Federal o los municipios, se aplicarán y ejecutarán mediante convenios generales y específicos entre las partes componentes del Sistema Nacional de Seguridad Pública. Asimismo, de conformidad con el artículo 11 de la ley de la materia, las políticas, lineamientos y acciones de coordinación se llevarán a cabo mediante la suscripción de los convenios respectivos o con base en los acuerdos y resoluciones que se tomen en el Consejo Nacional de Seguridad Pública y en las demás instancias de coordinación.

El Consejo Nacional de Seguridad Pública, en su XI sesión realizada el veintinueve de enero del año dos mil dos, aprobó el desarrollo de los proyectos comprendidos en los ejes que a continuación se relacionan:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.
- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.
- 8.- Infraestructura para la Seguridad Pública.

Con fecha veintidós de julio de mil novecientos noventa y ocho, el Gobierno Federal y "EL GOBIERNO DEL ESTADO", suscribieron el Convenio de Coordinación para la realización de acciones en el año de 1998, en torno al Programa Nacional de Seguridad Pública 1995-2000, en el cual se acordó la constitución de un Fideicomiso Estatal para la Distribución de Fondos (FOSEG), el cual quedó formalizado el cuatro de septiembre de mil novecientos noventa y ocho.

De igual forma, con fechas veintiocho de abril de mil novecientos noventa y nueve, cuatro de febrero de dos mil, y catorce de febrero de dos mil uno, se formalizaron los convenios de coordinación para la realización de acciones correspondientes a los citados años, en el marco del Sistema Nacional de Seguridad Pública, entre el Gobierno Federal y "EL GOBIERNO DEL ESTADO", en los que se pactó que la administración de los recursos provenientes del fondo denominado "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal" (Ramo 33 Fondo VII), así como los aportados por "EL GOBIERNO DEL ESTADO" se continuaran administrando, a través del Fideicomiso Estatal para la Distribución de Fondos, a que se refiere el párrafo anterior, el cual fue constituido para tal fin.

La Ley de Coordinación Fiscal, en los artículos 25 fracción VII, 44 y 45, establece la existencia y destino del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", el cual se constituye con cargo a recursos federales, mismos que son determinados anualmente en el Presupuesto de Egresos de la Federación (Ramo General 33 Fondo VII).

Conforme al artículo 44 de la Ley de Coordinación Fiscal, los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", se entregarán a las entidades federativas por el Ejecutivo Federal, a través de la Secretaría de Hacienda y Crédito Público y se distribuirán de acuerdo a los criterios que establezca el Consejo Nacional de Seguridad Pública, a propuesta de "LA SECRETARIA", utilizando para la distribución de los recursos los siguientes criterios: el número de habitantes de los estados y del Distrito Federal, el índice de ocupación penitenciaria; la tasa de crecimiento anual de indiciados y sentenciados, así como el avance de aplicación del Programa Nacional de Seguridad Pública en materia de profesionalización, equipamiento, modernización tecnológica e infraestructura, de acuerdo con el precepto legal antes citado.

El Consejo Nacional de Seguridad Pública en su sesión XI celebrada el veintinueve de enero de dos mil dos, aprobó los criterios de asignación y la fórmula de distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", determinado en el Decreto

de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002, mismo que se publicó el primero de enero de dos mil dos en el **Diario Oficial de la Federación**.

En la citada sesión celebrada el veintinueve de enero de dos mil dos, el Consejo Nacional de Seguridad Pública aprobó y ratificó, conforme lo determinan la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y la Ley de Coordinación Fiscal, la suscripción de Convenios de Coordinación y sus respectivos anexos técnicos para el Ejercicio Fiscal de 2002, así como continuar con la figura de los fideicomisos locales de distribución de fondos constituidos.

Con fecha treinta y uno de enero de dos mil dos, se publicaron en el **Diario Oficial de la Federación**, los criterios de asignación, la fórmula de distribución y el monto correspondiente a cada Estado y al Distrito Federal del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal".

DECLARACIONES

I.- De "LA SECRETARIA":

Que el C. Alejandro Gertz Manero, fue designado Secretario de Seguridad Pública, mediante nombramiento de fecha primero de diciembre del dos mil, expedido por el C. Presidente Constitucional de los Estados Unidos Mexicanos.

Que el Secretario de Seguridad Pública, de acuerdo con los artículos 12 fracción I de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, 30 bis fracción III de la Ley Orgánica de la Administración Pública Federal y 6o. fracción III del Reglamento Interior de la Secretaría de Seguridad Pública, preside el Consejo Nacional de Seguridad Pública.

Que conforme a los artículos 30 bis fracción XX de la Ley Orgánica de la Administración Pública Federal; 16 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y 60. fracción IX del Reglamento Interior de "LA SECRETARIA", el Secretario de Seguridad Pública está facultado para suscribir el presente instrumento.

Que el dieciséis de octubre de dos mil uno el Consejo Nacional de Seguridad Pública, designó a la C. Gloria Brasdefer Hernández, Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública.

Que la Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública, tiene entre otras funciones, el ejecutar y dar seguimiento a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública, de conformidad a lo dispuesto en el artículo 17 fracción III de la Ley General que Establece las Bases

de Coordinación del Sistema Nacional de Seguridad Pública.

II.- De "EL GOBIERNO DEL ESTADO":

Que conforme al artículo 1o. de la Constitución Política Local el Estado es una entidad jurídica organizada de acuerdo a los principios establecidos por la Constitución Política de los Estados Unidos Mexicanos.

Que el titular del Poder Ejecutivo, C. licenciado Melquiades Morales Flores, asumió el cargo el día primero de febrero de mil novecientos noventa y nueve; previa la protesta formal rendida ante el H. Congreso del Estado.

Que su representante tiene la personalidad jurídica suficiente para celebrar el presente Convenio, en términos de lo que señala el artículo 79 fracciones II y XVI de la Constitución Local; así como en los artículos 2, 8 y 10 de la Ley Orgánica de la Administración Pública del Estado.

Que conforme al artículo 12 fracción II de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, es integrante del Consejo Nacional de Seguridad Pública.

Que por disposición expresa de la fracción XXXVIII del artículo 29 de la Ley Orgánica de la Administración Pública del Estado, le corresponde al Secretario de Gobernación, vigilar el orden público y la seguridad de los habitantes del Estado; así como la prevención de los delitos, dirigiendo, organizando,

y coordinando las acciones de los cuerpos de seguridad pública que se requieran.

Que por disposición expresa de la fracción IV del artículo 30 de la Ley Orgánica de la Administración Pública del Estado, es facultad del Secretario de Finanzas y Desarrollo Social, administrar los ingresos y recursos financieros transferidos al Estado mediante convenios celebrados con la Federación y otras entidades federativas de conformidad con la normatividad vigente, así como los municipios del Estado.

Que por disposición expresa de la fracción XII del artículo 31 de la Ley Orgánica de la Administración Pública del Estado, corresponde a la Secretaría de Desarrollo Evaluación y Control de la

Administración Pública Estatal, revisar, auditar o evaluar a las dependencias o entidades de la Administración Pública Estatal, por acuerdo del Gobernador, por si o a solicitud de éstas, con el objeto de revisar o evaluar periódicamente el avance físico financiero de los programas de inversión y obra pública, que se realicen con recursos estatales, federales y de participación social así como con recursos convenidos

Que por disposición expresa del artículo 1o. del Decreto por el que se crea el Consejo Estatal de Coordinación del Sistema Nacional de Seguridad Pública, publicado en el Periódico Oficial del Estado el veintiséis de marzo de mil novecientos noventa y seis, se establece que es un organismo normativo, técnico, de consulta y de colaboración ciudadana, a cuya responsabilidad se confía la coordinación, planeación y supervisión del Sistema Nacional en el ámbito estatal así como la evaluación, control y seguimiento de los programas correspondientes.

Que por disposición expresa del artículo 9 fracción IX del Decreto por el que se crea el Consejo Estatal de Coordinación del Sistema Nacional de Seguridad Pública, es atribución del Secretariado Ejecutivo del mencionado Consejo Estatal la de representar oficialmente al Consejo.

Que por disposición expresa del artículo 11 de la Ley de Seguridad Pública del Estado de Puebla, el Consejo Estatal de Coordinación del Sistema Nacional de Seguridad Pública, en su respectivo ámbito de competencia, será enlace de coordinación entre el Estado y la Federación u otras entidades federativas,

de acuerdo a lo que señala la Ley General que Establece las Bases de Coordinación del Sistema Nacional

de Seguridad Pública.

con la Federación.

III.- De ambas partes:

Que es necesario continuar con la ejecución de los ejes, estrategias y acciones aprobadas por el Consejo Nacional de Seguridad Pública, así como la realización de acciones orientadas a cumplir con los fines y objetivos de la seguridad pública; por lo que convienen coordinarse en los términos de las siguientes:

CLAUSULAS

PRIMERA.- El presente Convenio tiene por objeto coordinar políticas y estrategias entre las partes, para el desarrollo y ejecución de acciones en el marco del Sistema Nacional de Seguridad Pública,

conforme a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública, aplicando al efecto los recursos convenidos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal" (Ramo 33 Fondo VII), con cargo al Presupuesto de Egresos de la Federación para el ejercicio fiscal del 2002, así como los recursos que para tal fin aporte "EL GOBIERNO DEL ESTADO", conforme a lo establecido en la Ley de Ingresos y Presupuesto de la Ley de Egresos del Estado para el ejercicio fiscal 2002, tal como lo prevé el artículo 9 del Presupuesto de Egresos de la Federación.

SEGUNDA.- De conformidad con los acuerdos emanados del Consejo Nacional de Seguridad Pública, los ejes que sustentan las estrategias y acciones, materia del presente Convenio son:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.
- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.
- 8.- Infraestructura para la Seguridad Pública.

Dichos ejes fueron ratificados por el Consejo Nacional de Seguridad Pública en la sesión celebrada con fecha veintinueve de enero de dos mil dos.

TERCERA.- Los objetivos, líneas de acción, metas e indicadores de seguimiento de los programas que se deriven de cada Eje, se establecerán conjuntamente por "LA SECRETARIA" a través del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública y "EL GOBIERNO DEL ESTADO", de conformidad con los acuerdos del Consejo Nacional de Seguridad Pública y se incluirán en los anexos técnicos respectivos, los cuales formarán parte de este Convenio.

CUARTA.- La suscripción de los anexos técnicos a que se refiere la cláusula anterior, se sujetará al procedimiento que a continuación se expresa:

"EL GOBIERNO DEL ESTADO" proporcionará al área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, la información necesaria para definir conjuntamente las metas, montos y calendarización del ejercicio de los recursos que se asignen al proyecto o programa respectivo, en atención a la naturaleza de cada uno de los mismos, de conformidad con los requisitos que adelante se relacionan de manera enunciativa mas no limitativa:

- A).- Por lo que hace a los programas correspondientes al Eje de Profesionalización:
- Las metas anuales de los programas de prevención del delito a saber: el estado de fuerza, capacidad instalada, el nombre y el número de personas a evaluar, capacitar y certificar, así como, el perfil de los mismos, tipo de evento, monto, duración y lugar en que se desarrollará éste, el número de becas para aspirantes y el monto de dichas becas; el número y el nombre de elementos propuestos al pago de dotaciones complementarias y el monto de éstas, respetando los lineamientos establecidos por la Ley de Coordinación Fiscal y la Ley General que
 - las Bases de Coordinación del Sistema Nacional de Seguridad Pública.
- B).- Por lo que se refiere a los programas relativos al Eje de Cobertura y Capacidad de Respuesta:
- Los programas de trabajo que incorporen metas de resultados y de impacto para la prevención y reducción del delito y para la realización de operativos policiacos, el tipo de operativo, las corporaciones que intervendrán en los mismos y la coordinación con los estados vecinos, incluyendo el presupuesto detallado que demanden estos proyectos. El número total de averiguaciones previas y órdenes de aprehensión, así como las pendientes de cumplimentar; asimismo, los programas de trabajo que permitan abatir el rezago existente en aquéllas.
- **C).-** Por lo que corresponde a los programas del Sistema Nacional de Información sobre Seguridad Pública y de la Red Nacional de Telecomunicaciones y Servicio Telefónico de Emergencia,

correspondientes a los ejes del Sistema Nacional de Información y el de la Red Nacional de Telecomunicaciones, respectivamente, lo siguiente:

- Información financiera respecto del costo de adquisición y operación de los equipos, la incorporación de los equipos en uso, así como los elementos que permitan definir los criterios técnicos de compatibilidad e interoperabilidad, a fin de abrir la participación a diversos proveedores de servicios de telecomunicaciones y software de operación, en los procesos de adquisición de estos equipos, en un programa permanente de migración hacia un sistema encriptado.
- D).- Por lo que hace a los programas correspondientes al Eje de Equipamiento, las metas a alcanzar con respecto a:
 - 1.- Adquisición de Equipos de Laboratorio para la Investigación Criminalística.
 - Los recursos humanos especializados en la materia, laboratorios fijos y móviles con que se cuenta, estado de su equipamiento y de las instalaciones, incluyendo el correspondiente presupuesto tanto para las instalaciones nuevas, como para la dignificación, ampliación y/o equipamiento de las existentes, incluidos consumibles y reactivos, además de incluir los resultados antes y después de este equipamiento.

2.- Equipamiento de Corporaciones

2.1.- Armamento.

Licencias oficiales colectivas, cantidad, tipo y características del armamento existente y del solicitado por corporación, indicando la cantidad y tipo de arma con que se dotará a cada corporación y elemento asignado a las zonas urbana y rural, ubicándolo por región o municipio.

2.2.- Vehículos.

El parque vehicular existente por corporación policiaca y su ubicación geográfica y el programa anual de adquisición de vehículos terrestres, marítimos y aéreos, definiendo sus características, equipo adicional y especificaciones técnicas y su costo. Para el caso concreto de transportes marítimos y aéreos, se detallarán las funciones específicas de destino (localización, persecución, traslado de personal, etc.), así como el impacto esperado con estos bienes.

2.3.- Vestuario.

- Cantidad y tipo de vestuario (uniformes) que se pretenda ministrar a los elementos de las diferentes instituciones y periodicidad de dotación.
- E).- Por lo que hace a los programas correspondientes al Eje de Infraestructura para la Seguridad Pública, lo siguiente:
 - Las metas, los estudios de preinversión, presupuesto y programa de obra, proyecto ejecutivo de obra pública, así como los costos de operación de la obra.
 - Acreditar la propiedad o la posesión a título de dueño del terreno en donde se vaya ejecutar la obra, en su caso.

Para llevar a cabo las acciones de preinversión, presupuesto, programa de obra o proyecto ejecutivo, a solicitud de "EL GOBIERNO DEL ESTADO" se podrá suscribir un anexo técnico que determine una primera asignación de recursos económicos.

F).- Por lo que hace a los programas correspondientes al Eje de Participación de la Comunidad, lo siguiente:

Las metas y número de comités de Consulta y Participación de la Comunidad instalados a nivel estatal y municipal, colonia, barrio, etc. principalmente; las actas de sus sesiones y el informe detallado de sus actividades mensuales, así como su programa de trabajo anual, incluyendo los proyectos a desarrollar en el Programa Ojo Ciudadano con su correspondiente presupuesto.

QUINTA.- De conformidad con el artículo 44 de la Ley de Coordinación Fiscal, la distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal",

se realiza con base en los criterios determinados por el Consejo Nacional de Seguridad Pública, razón por la cual los recursos asignados a "EL GOBIERNO DEL ESTADO", se enterarán mensualmente por la Secretaría de Hacienda y Crédito Público a "EL GOBIERNO DEL ESTADO", de manera ágil y directa sin más limitaciones ni restricciones que las que se establecen en las disposiciones legales aplicables.

DIARIO OFICIAL

SEXTA.- "EL GOBIERNO DEL ESTADO", de conformidad con el artículo 45 de la Ley de Coordinación Fiscal, destinará las aportaciones que reciba con cargo al "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", al apoyo de las siguientes acciones: reclutamiento, selección, depuración, evaluación y formación de los recursos humanos vinculados con tareas de seguridad pública; a complementar las dotaciones de los agentes del Ministerio Público, los peritos, los policías judiciales o sus equivalentes de la Procuraduría de Justicia del Estado, de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al equipamiento de las policías judiciales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al establecimiento y operación de la red nacional de telecomunicaciones e informática (IRIS) para la pública seguridad servicio telefónico el nacional de emergencia (066); a la construcción, mejoramiento y ampliación de las instalaciones para la procuración e impartición de justicia, de los centros de readaptación social y de menores infractores, así como de las instalaciones de los cuerpos de seguridad pública y sus centros de capacitación, y al seguimiento y evaluación de los programas señalados.

En los anexos técnicos derivados del presente Convenio, se definirán los montos y proporciones de asignación de recursos con sus respectivos conceptos de gasto y de inversión, así como las metas a alcanzar y los indicadores que permitan el seguimiento y evaluación de las acciones a que se refiere la presente cláusula.

SEPTIMA.- "EL GOBIERNO DEL ESTADO" conforme a las disposiciones legales aplicables, se compromete a asegurar la intervención de su órgano de control interno, a fin de ejercer las facultades de control y supervisión del ejercicio de los recursos materia de este Convenio, conforme con el artículo 46 de la Ley de Coordinación Fiscal. Con tal propósito se destinará a dicho órgano de control interno el dos al millar (0.002) del monto total de los recursos ejercidos que se deberán obtener de los productos financieros generados por el patrimonio fideicomitido.

"LA SECRETARIA" y "EL GOBIERNO DEL ESTADO" en cumplimiento a lo dispuesto en las fracciones II y V del artículo 9o. fracción III del artículo 15 y fracción III del artículo 17 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como el artículo 45 de la Ley de Coordinación Fiscal y a los Acuerdos y Resoluciones emanados del Consejo Nacional de Seguridad Pública, convienen en aplicar recursos para realizar acciones específicas en materia de seguimiento y evaluación respecto de los programas y acciones instrumentadas en el marco de este Convenio. Para tal efecto, las partes suscribirán el anexo técnico correspondiente, mismo que formará parte de este instrumento.

OCTAVA.- Las partes acuerdan mantener la administración de los recursos provenientes del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", y los que

"EL GOBIERNO DEL ESTADO", a través del Fideicomiso Estatal constituido para tal fin.

NOVENA.- Para salvaguardar el cumplimiento de las metas, los ejes, estrategias y acciones de alcance y vinculación nacional de los tres órdenes de gobierno, en cumplimiento a las disposiciones de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y en concordancia con los acuerdos aprobados por el Consejo Nacional de Seguridad Pública, los recursos asignados a los programas que se deriven de los ejes mencionados en la cláusula segunda del presente Convenio y sus anexos técnicos, deberán destinarse a los fines previstos en los citados programas y anexos.

Los recursos a que se refiere el párrafo anterior, podrán aplicarse en otros programas pertenecientes

a un mismo Eje, siempre y cuando el Consejo Estatal de Seguridad Pública o, en su caso, el Comité Técnico del Fideicomiso de Administración del Fondo de Seguridad Pública (FOSEG) aprueben la transferencia correspondiente, en cuyo caso se informará al Secretario Ejecutivo del Sistema Nacional de

Seguridad Pública.

Las reprogramaciones que correspondan de un Eje a otro Eje deberán concertarse con el Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, a solicitud escrita de "EL GOBIERNO DEL ESTADO", en el transcurso de la operación de los programas.

El Secretariado en un plazo máximo de treinta días, contados a partir de la fecha en que reciba totalmente la documentación necesaria para las reprogramaciones, aprobará la addenda respectiva.

Los recursos no ejercidos de años anteriores se tomarán en cuenta para aplicarse en los programas autorizados, previa aprobación que realice el Comité Técnico del Fideicomiso de Administración del Fondo de Seguridad Pública (FOSEG) y con la opinión favorable del área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.

La aplicación de los recursos a que se refiere esta cláusula invariablemente se ajustará a lo dispuesto en el artículo 45 de la Ley de Coordinación Fiscal.

DECIMA.- De conformidad con la Ley de Coordinación Fiscal; el Decreto de Presupuesto de Egresos de la Federación para el ejercicio fiscal del 2002 y de acuerdo a los criterios de asignación y fórmula de distribución aprobadas por el Consejo Nacional de Seguridad Pública en su sesión celebrada el veintinueve de enero del año dos mil dos, se destinan del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", a favor de "EL GOBIERNO DEL ESTADO", recursos por un monto de \$115'701,314.00 (ciento quince millones setecientos un mil trescientos catorce pesos 00/100 M.N.).

Los recursos serán enterados a "EL GOBIERNO DEL ESTADO", conforme al procedimiento señalado en la cláusula quinta de este instrumento. Dichos recursos serán depositados por el Gobierno Federal a la cuenta que la Secretaría de Finanzas y Desarrollo Social señale previamente por escrito, quien a su vez los depositará a la institución fiduciaria en un término de veinticuatro horas y ambas partes expedirán el recibo más eficaz que en derecho proceda a favor de la Tesorería de la Federación, por cada ministración federal que se realice.

"EL GOBIERNO DEL ESTADO" por su parte aportará al fideicomiso estatal, recursos con cargo a su propio presupuesto por un monto de \$45'775,400.00 (cuarenta y cinco millones setecientos setenta y cinco mil cuatrocientos pesos 00/100 M.N.), conforme al calendario y términos que se especifiquen en cada

anexo técnico.

Estas aportaciones se podrán incrementar con las que, en su oportunidad, hagan los gobiernos Federal, Estatal y Municipal para fortalecer los ejes, estrategias y acciones en el marco del Sistema Nacional de Seguridad Pública. Dichas aportaciones serán con cargo a sus propios presupuestos, o bien, de los que reciban del "Fondo de Aportaciones para el Fortalecimiento de los Municipios y de las Demarcaciones Territoriales del Distrito Federal".

Igualmente, el patrimonio fideicomitido se podrá incrementar, con aquellas aportaciones que, en su oportunidad, efectúen personas físicas o jurídicas para el fortalecimiento de las acciones materia de este Convenio, previa aceptación de "EL GOBIERNO DEL ESTADO".

DECIMA PRIMERA.- El Comité Técnico del Fideicomiso Estatal de Distribución de Fondos acordará el destino de los productos financieros generados por el patrimonio fideicomitido, teniendo siempre en cuenta los siguientes conceptos: para cubrir los servicios del fiduciario, para los servicios de control y supervisión prestados por el órgano de control interno; para la difusión de resultados de los programas previstos en la cláusula sexta, así como para alcanzar y/o ampliar las metas programadas y acciones materia de este Convenio.

DECIMA SEGUNDA.- De acuerdo con lo dispuesto en el artículo 9o. fracción VI de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, "EL GOBIERNO DEL ESTADO", se compromete a tomar las medidas necesarias para la realización de acciones y operativos, en su caso, de manera conjunta con las autoridades de seguridad pública federales y municipales, que redunden en una mayor seguridad de los habitantes del Estado de Puebla. Por lo que, dará cobertura preferentemente al equipamiento y operación de los policías ministeriales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de

los centros penitenciarios y de menores infractores; al equipamiento y operación de las instalaciones para la procuración e impartición de justicia, de los centros de readaptación social y de menores infractores, así como de las instalaciones de las instancias de seguridad pública y sus centros de capacitación.

En las acciones y operativos conjuntos, a que alude esta cláusula el Secretario Ejecutivo, tendrá la participación que le corresponda, en los términos del artículo 17 fracción XI de la citada Ley General y en lo establecido en el anexo técnico correspondiente.

En todos los casos, la problemática de seguridad pública se abordará de manera integral, atendiendo las interrelaciones que se generan entre la prevención, la procuración y administración de justicia, la readaptación y la reinserción social de mayores delincuentes y menores infractores.

En los supuestos en que sea necesario atender factores que incidan en la seguridad pública, distintos a los atribuidos al Poder Ejecutivo y, en los casos en que se involucren otros poderes y diversas autoridades de "EL GOBIERNO DEL ESTADO", o bien de otra entidad, se firmarán los convenios a que se refiere el artículo 4o. de la ley general en mención.

DECIMA TERCERA.- A fin de consolidar la operación y funcionamiento del Sistema Nacional de Información sobre Seguridad Pública, "EL GOBIERNO DEL ESTADO", proporcionará a "LA SECRETARIA" en la forma y términos solicitados por ésta, la información que requiera para mantener actualizados los registros y bases de datos nacionales a que se refiere el capítulo IV del título segundo y el artículo 54 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como los registros de información que hayan sido acordados por el Consejo Nacional de Seguridad Pública y la Conferencia Nacional de Procuración de Justicia.

Para los efectos a que se refiere el párrafo anterior, las partes se comprometen a realizar en esta materia, las siguientes acciones:

		STATUS	UNIDAD DE MEDIDA	META
		28 Feb. 2002		
1.	Gobierno Digital			
	AMPLIAR LA RED NACIONAL DE TELECOMUNICACIONES			
1.1	RED DE RADIOCOMUNICACION	4	REPETIDORES INSTALADOS	12
		15%	• % DE RADIOS MATRA EN OPERACION	80%
		26%	 COBERTURA GEOGRAFICA DE RADIOS MATRA 	66%
1.2	INTEROPERABILIDAD DE REDES EXISTENTES	-	 MUNICIPIOS PRIORITARIOS INTEROPERANDO 	Puebla Tehuacán
1.3	RED DE TELEFONIA ¹	9	PUNTOS DE PRESENCIA INSTITUCIONA	L 13%
		13%	USO DE CAPACIDAD INSTALADA	70%
2.	Gobierno Digital			
	ACTUALIZAR EL REGISTRO NACIONAL DE PERSONAL DE SEGURIDAD PUBLICA CON FOTOS Y HUELLAS			
2.1	PERSONAL EN ACTIVO	2579	 PERSONAL EN ACTIVO INCLUYENDO FOTOS Y HUELLAS 	10959
3.	Gobierno Digital			
	ACTUALIZAR EL REGISTRO NACIONAL DE IDENTIFICACION Y HUELLAS DIGITALES DE INTERNOS EN CERESOS Y CEFERESOS			

3.1 I	INTERNOS ACTUALES		•	IDENTIFICACION Y HUELLAS	5585
		0		DE INTERNOS	
3.2 H	HISTORICO	0	•	HUELLAS EN ARCHIVO HISTORICO DE INTERNOS	2300

¹ Las metas de la RED de TELEFONIA son punto de presencia institucional adicionales a los ya establecidos.

DECIMA CUARTA.- "EL GOBIERNO DEL ESTADO" se compromete a instrumentar de manera conjunta y coordinada con las autoridades federales y municipales, acciones tendientes a consolidar el Servicio Nacional de Apoyo a la Carrera del Personal de Seguridad Pública, homologando procedimientos de reclutamiento y selección, así como la equivalencia de los contenidos mínimos de planes y programas para la formación de los integrantes de las instituciones de seguridad pública, en los términos que establezca la Academia Nacional de Seguridad Pública, por conducto de su consejo técnico.

Para los efectos a que se refiere el párrafo anterior, las partes se comprometen a realizar en esta materia, las siguientes acciones:

	ACCIONES	UNIDAD DE MEDIDA	META
1.	Programa Nacional de Evaluación	Exámenes	Personas
a)	Policías Preventivos Nuevos	Exámenes 500	125
b)	Policías Judiciales Nuevos	Exámenes 400	100

DECIMA QUINTA.- "LA SECRETARIA", por conducto del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública, y "EL GOBIERNO DEL ESTADO", promoverán y adoptarán las medidas complementarias que se requieran para el cumplimiento del presente Convenio.

DECIMA SEXTA.- "LA SECRETARIA" y "EL GOBIERNO DEL ESTADO" tendrán la prerrogativa para ocurrir ante las autoridades correspondientes, en caso de incumplimiento de cualesquiera de las obligaciones pactadas en el presente Convenio o en sus anexos técnicos.

DECIMA SEPTIMA.- Este Convenio se publicará en el **Diario Oficial de la Federación** y en el Periódico Oficial de "EL GOBIERNO DEL ESTADO", y entrará en vigor a partir de la fecha de su suscripción.

El presente Convenio de Coordinación 2002 se firma, por triplicado, en la ciudad de Puebla, Puebla, a los diecisiete días del mes de mayo de dos mil dos.- Por la Secretaría: el Secretario de Seguridad

y Presidente del Consejo Nacional de Seguridad Pública, Alejandro Gertz Manero.- Rúbrica.- La Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública, Gloria Brasdefer Hernández.- Rúbrica.- Por el Gobierno del Estado: el Gobernador Constitucional del Estado de Puebla, Melquíades Morales Flores.- Rúbrica.- El Secretario de Gobernación, Carlos Arredondo Contreras.- Rúbrica.- El Secretario de Finanzas y Desarrollo Social, Rafael Moreno Valle Rosas.- Rúbrica.- El Secretario de Desarrollo, Evaluación y Control de la Administración Pública, Héctor Jiménez y Menéses.- Rúbrica.- El Procurador General de Justicia, Héctor Maldonado Villagómez.- Rúbrica.- El Secretario Ejecutivo del Consejo Estatal de Coordinación del Sistema Nacional de Seguridad Pública, Luis Cuauhtémoc Hidalgo Martínez.- Rúbrica.

CONVENIO de Coordinación que celebran la Secretaría de Seguridad Pública y el Estado de Quintana Roo, para la realización de acciones en materia de seguridad pública en el año 2002.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Seguridad Pública.- Sistema Nacional de Seguridad Pública.

CONVENIO DE COORDINACION QUE CELEBRAN EN EL MARCO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA POR UNA PARTE, EL GOBIERNO FEDERAL, POR CONDUCTO DE LA SECRETARIA DE SEGURIDAD PUBLICA,

REPRESENTADA POR SU TITULAR, Y PRESIDENTE DEL CONSEJO NACIONAL DE SEGURIDAD PUBLICA, EL DR. ALEJANDRO GERTZ MANERO; ASISTIDO POR LA C. GLORIA BRASDEFER HERNANDEZ, EN SU CARACTER DE TITULAR DEL SECRETARIADO EJECUTIVO DEL SISTEMA NACIONAL DE SEGURIDAD PUBLICA, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "LA SECRETARIA", Y POR LA OTRA PARTE, EL GOBIERNO DEL ESTADO DE QUINTANA ROO POR CONDUCTO DEL C. LIC. JOAQUIN ERNESTO HENDRICKS DIAZ, GOBERNADOR CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE QUINTANA ROO, ASISTIDO POR EL SECRETARIO DE GOBIERNO, EL C. ING. VICTOR MANUEL ALCERRECA SANCHEZ; EL SECRETARIO DE HACIENDA, EL C. DR. JOSE LUIS PECH VARGUEZ; LA PROCURADORA GENERAL DE JUSTICIA DEL ESTADO, LA C. LIC. CELIA PEREZ GORDILLO, Y EL SECRETARIO EJECUTIVO DEL SISTEMA ESTATAL DE SEGURIDAD PUBLICA, EL C. LIC. RICARDO ADRIAN SAMOS MEDINA, TODOS FUNCIONARIOS DEL ESTADO DE QUINTANA ROO, A QUIEN EN LO SUCESIVO SE LE DENOMINARA "EL GOBIERNO DEL ESTADO", PARA LA REALIZACION DE ACCIONES EN MATERIA DE SEGURIDAD PUBLICA EN EL AÑO 2002, AL TENOR DE LOS SIGUIENTES ANTECEDENTES, DECLARACIONES Y CLAUSULAS:

ANTECEDENTES

La Constitución Política de los Estados Unidos Mexicanos, dispone en su artículo 21, párrafos quinto y sexto, que la seguridad pública es una función a cargo de la Federación, el Distrito Federal, los estados y los municipios en las respectivas competencias que la propia Constitución prevé y que se coordinarán

los términos que la ley señale, para establecer un Sistema Nacional de Seguridad Pública.

La Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad

Dública reglementario de la dispessición constitucional aludida, prové en les ertículos 20, y 40, que el

Pública, reglamentaria de la disposición constitucional aludida, prevé en los artículos 2o. y 4o., que el Sistema Nacional de Seguridad Pública, se integra con las instancias, instrumentos, políticas, servicios y acciones previstos en la propia ley, tendientes a cumplir con los objetivos y fines de la seguridad pública; y que, cuando sus disposiciones comprendan materias y acciones que incidan en diversos ámbitos de competencia de la Federación, los estados, el Distrito Federal o los municipios, se aplicarán y ejecutarán mediante convenios generales y específicos entre las partes componentes del Sistema Nacional de Seguridad Pública. Asimismo, de conformidad con el artículo 11 de la ley de la materia, las políticas, lineamientos y acciones de coordinación se llevarán a cabo mediante la suscripción de los convenios respectivos o con base en los acuerdos y resoluciones que se tomen en el Consejo Nacional de Seguridad Pública y en las demás instancias de coordinación.

El Consejo Nacional de Seguridad Pública, en su décima primera sesión realizada el 29 de enero de 2002, aprobó el desarrollo de los proyectos comprendidos en los ejes que a continuación se relacionan:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.
- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.
- 8.- Infraestructura para la Seguridad Pública.

Con fecha 8 de julio de 1998, el Gobierno Federal y "EL GOBIERNO DEL ESTADO" suscribieron el Convenio de Coordinación para la realización de acciones en el año de 1998, en torno al Programa Nacional de Seguridad Pública 1995-2000, en el cual se acordó la constitución de un Fideicomiso Estatal para la Distribución de Fondos (FOSEG), el cual quedó formalizado el 4 de septiembre de 1998.

De igual forma, con fechas 6 de mayo de 1999, 3 de febrero del año 2000 y 22 de marzo de 2001 se formalizaron los convenios de coordinación para la realización de acciones correspondientes a los citados años, en el marco del Sistema Nacional de Seguridad Pública, entre el Gobierno Federal y "EL GOBIERNO DEL ESTADO", en los que se pactó que la administración de los recursos provenientes del Fondo denominado "Fondo de Aportaciones para la Seguridad Pública de los

Estados y del Distrito Federal", así como los aportados por "EL GOBIERNO DEL ESTADO" se continuarán administrando, a través del Fideicomiso Estatal para la Distribución de Fondos, a que se refiere el párrafo anterior, el cual fue constituido para tal fin.

La Ley de Coordinación Fiscal, en los artículos 25 fracción VII, 44 y 45, establece la existencia y destino del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", el cual se constituye con cargo a recursos federales, mismos que son determinados anualmente en el Presupuesto de Egresos de la Federación (Ramo General 33).

Conforme al artículo 44 de la Ley de Coordinación Fiscal, los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", se entregarán a las entidades federativas por el Ejecutivo Federal, a través de la Secretaría de Hacienda y Crédito Público y se distribuirán de acuerdo a los criterios que establezca el Consejo Nacional de Seguridad Pública, a propuesta de "LA SECRETARIA", utilizando para la distribución de los recursos los siguientes criterios: el número de habitantes de los estados y del Distrito Federal, el índice de ocupación penitenciaria; la tasa de crecimiento anual de indiciados y sentenciados, así como el avance de aplicación del Programa Nacional de Seguridad Pública en materia de profesionalización, equipamiento, modernización tecnológica e infraestructura, de acuerdo con el precepto legal antes citado.

El Consejo Nacional de Seguridad Pública en su décima primera sesión, celebrada el 29 de enero de 2002, aprobó los criterios de asignación y la fórmula de distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", determinado en el Decreto

de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002, mismo que se publicó el 1 de enero de 2002 en el **Diario Oficial de la Federación**.

En la citada sesión celebrada el 29 de enero de 2002, el Consejo Nacional de Seguridad Pública aprobó y ratificó, conforme lo determinan la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y la Ley de Coordinación Fiscal, la suscripción de convenios de coordinación y sus respectivos anexos técnicos para el Ejercicio Fiscal de 2002, así como continuar con la figura de los fideicomisos locales de distribución de fondos constituidos.

Con fecha 31 de enero del año 2002 se publicaron en el **Diario Oficial de la Federación**, los criterios de asignación, la fórmula de distribución y el monto correspondiente a cada Estado y al Distrito Federal del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal".

DECLARACIONES

De "LA SECRETARIA":

Que el C. Alejandro Gertz Manero fue designado Secretario de Seguridad Pública, mediante nombramiento de fecha 1 de diciembre de 2000, expedido por el C. Presidente Constitucional de los Estados Unidos Mexicanos.

Que el Secretario de Seguridad Pública, de acuerdo con los artículos 12 fracción I de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, 30 bis fracción III de la

Ley Orgánica de la Administración Pública Federal y 60. fracción III del Reglamento Interior de la Secretaría de Seguridad Pública, preside el Consejo Nacional de Seguridad Pública.

Que conforme a los artículos 30 bis fracción XX de la Ley Orgánica de la Administración Pública Federal; 16 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y 60. fracción IX del Reglamento Interior de "LA SECRETARIA", el Secretario de Seguridad Pública está facultado para suscribir el presente instrumento.

Que el 16 de octubre de 2001, el Consejo Nacional de Seguridad Pública designó a la C. Gloria Brasdefer Hernández, Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública.

Que la Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública tiene, entre otras funciones, el ejecutar y dar seguimiento a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública, de conformidad a lo dispuesto en el artículo 17 fracción III de la Ley General que Establece las

Bases

de Coordinación del Sistema Nacional de Seguridad Pública.

De "EL GOBIERNO DEL ESTADO":

Que el titular del Poder Ejecutivo, C. Lic. Joaquín Ernesto Hendricks Díaz asumió el cargo el día 5 de abril de 1999, previa la protesta formal rendida ante el H. Congreso del Estado.

Que conforme al artículo 12 fracción II de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, es integrante del Consejo Nacional de Seguridad Pública.

Que de conformidad con lo dispuesto por los artículos 90 fracciones VI y VIII; 91 fracciones VI y VIII de la Constitución Política del Estado Libre y Soberano de Quintana Roo; 2, 11 y 16 de la ley Orgánica de la Administración Pública del Estado de Quintana Roo y 12 fracción II y 15 fracción I de la Ley del Sistema Estatal de Seguridad Pública del Estado de Quintana Roo, el Titular del Poder Ejecutivo se encuentra plenamente facultado para suscribir el presente instrumento de coordinación.

De ambas partes:

Que es necesario continuar con la ejecución de los ejes, estrategias y acciones aprobadas por el Consejo Nacional de Seguridad Pública, así como la realización de acciones orientadas a cumplir con los fines y objetivos de la seguridad pública; por lo que convienen coordinarse en los términos de las siguientes:

CLAUSULAS

PRIMERA.- El presente Convenio tiene por objeto coordinar políticas y estrategias entre las partes, para el desarrollo y ejecución de acciones en el marco del Sistema Nacional de Seguridad Pública, conforme

a los acuerdos y resoluciones del Consejo Nacional de Seguridad Pública, aplicando al efecto los recursos convenidos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", con cargo al Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002, así como los recursos que para tal fin aporte "EL GOBIERNO DEL ESTADO", conforme a lo establecido en la Ley de Ingresos y Presupuesto de Egresos del Estado, tal como lo prevé el artículo 9 del Presupuesto de Egresos del Federación.

SEGUNDA.- De conformidad con los acuerdos emanados del Consejo Nacional de Seguridad Pública, los ejes que sustentan las estrategias y acciones, materia del presente Convenio son:

- 1.- Profesionalización.
- 2.- Cobertura y Capacidad de Respuesta.
- 3.- Sistema Nacional de Información.
- 4.- Equipamiento.
- 5.- Instancias de Coordinación.
- 6.- Participación de la Comunidad.
- 7.- Red Nacional de Telecomunicaciones.
- 8.- Infraestructura para la Seguridad Pública.

Dichos ejes fueron ratificados por el Consejo Nacional de Seguridad Pública en la sesión celebrada con fecha 29 de enero de 2002.

TERCERA.- Los objetivos, líneas de acción, metas e indicadores de seguimiento de los programas que se deriven de cada Eje, se acordarán conjuntamente por "LA SECRETARIA" a través del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública y "EL GOBIERNO DEL ESTADO", de conformidad con los acuerdos del Consejo Nacional de Seguridad Pública y se incluirán en los anexos técnicos respectivos.

los cuales formarán parte de este Convenio.

CUARTA.- La suscripción de los anexos técnicos a que se refiere la cláusula anterior, se sujetará al procedimiento que a continuación se expresa:

"EL GOBIERNO DEL ESTADO" proporcionará al área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, la información necesaria para definir conjuntamente las metas, montos y calendarización del ejercicio de los recursos que se asignen al proyecto o programa respectivo, en atención a la naturaleza de cada uno de los mismos, de conformidad con los requisitos que adelante se relacionan de manera enunciativa mas no limitativa:

A).- Por lo que hace a los programas correspondientes al Eje de Profesionalización:

- Las metas anuales de los programas de prevención del delito a saber: el estado de fuerza, la capacidad instalada, el nombre y el número de personas a evaluar, capacitar y certificar, así como el perfil de los mismos, tipo de evento, monto, duración y lugar en que se desarrollará éste, el número de becas para aspirantes y el monto de dichas becas; el número y el nombre de elementos propuestos al pago de dotaciones complementarias y el monto de éstas, respetando los lineamientos establecidos por la Ley de Coordinación Fiscal y la Ley General que
 - las Bases de Coordinación del Sistema Nacional de Seguridad Pública.
- B).- Por lo que se refiere a los programas relativos al Eje de Cobertura y Capacidad de Respuesta:
- Los programas de trabajo que incorporen metas de esultados y de impacto para la prevención y reducción del delito y para la realización de operativos policiacos, el tipo de operativo, las corporaciones que intervendrán en los mismos y la coordinación con los estados vecinos, incluyendo el presupuesto detallado que demanden estos proyectos. El número total de averiguaciones previas y órdenes de aprehensión, así como las pendientes de cumplimentar; asimismo, los programas de trabajo que permitan abatir el rezago existente en aquéllas.
- **C).-** Por lo que corresponde a los programas del Sistema Nacional de Información sobre Seguridad Pública y de la Red Nacional de Telecomunicaciones y Servicio Telefónico de Emergencia, correspondientes a los ejes del Sistema Nacional de Información y el de la Red Nacional de Telecomunicaciones, respectivamente, lo siguiente:
 - Información financiera respecto del costo de adquisición y operación de los equipos, la incorporación de los equipos en uso, así como los elementos que permitan definir los criterios técnicos de compatibilidad e interoperabilidad, a fin de abrir la participación a diversos proveedores de servicios de telecomunicaciones y software de operación, en los procesos de adquisición de estos equipos, en un programa permanente de migración hacia un sistema encriptado.
- **D).-** Por lo que hace a los programas correspondientes al Eje de Equipamiento, las metas a alcanzar con respecto a:
 - 1.- Adquisición de Equipos de Laboratorio para la Investigación Criminalística:
 - Los recursos humanos especializados en la materia, laboratorios fijos y móviles con que se cuenta, estado de su equipamiento y de las instalaciones, incluyendo el correspondiente presupuesto tanto para las instalaciones nuevas como para la dignificación, ampliación y/o equipamiento de las existentes, incluidos consumibles y reactivos, además de incluir los resultados antes y después de este equipamiento.
 - 2.- Equipamiento de Corporaciones.
 - 2.1.- Armamento.
 - Licencias oficiales colectivas, cantidad, tipo y características del armamento existente y del solicitado por corporación, indicando la cantidad y tipo de arma con que se dotará a cada corporación y elemento asignado a las zonas urbana y rural, ubicándolo por región o municipio.
 - 2.2.- Vehículos.

El parque vehicular existente por corporación policiaca y su ubicación geográfica y el programa anual de adquisición de vehículos terrestres, marítimos y aéreos, definiendo sus características, equipo adicional y especificaciones técnicas y su costo. Para el caso concreto de transportes marítimos y aéreos, se detallarán las funciones específicas de destino (localización, persecución, traslado de personal, etc.), así como el impacto esperado con estos bienes.

2.3.- Vestuario.

Cantidad y tipo de vestuario (uniformes) que se pretenda ministrar a los elementos de las diferentes instituciones y periodicidad de dotación.

E).- Por lo que hace a los programas correspondientes al Eje de Infraestructura para la Seguridad Pública, lo siguiente:

- Las metas, los estudios de preinversión, presupuesto y programa de obra, proyecto ejecutivo de obra pública, así como los costos de operación de la obra.
- Acreditar la propiedad o la posesión a título de dueño del terreno en donde se vaya ejecutar la obra, en su caso.

Para llevar a cabo las acciones de preinversión, presupuesto, programa de obra o proyecto ejecutivo, a solicitud de "EL GOBIERNO DEL ESTADO" se podrá suscribir un anexo técnico que determine una primera asignación de recursos económicos.

F).- Por lo que hace a los programas correspondientes al Eje de Participación de la Comunidad, lo siguiente:

Las metas y número de Comités de Consulta y Participación de la Comunidad instalados a nivel estatal y municipal principalmente; las actas de sus sesiones y el informe detallado de sus actividades mensuales, así como su programa de trabajo anual, incluyendo los proyectos a desarrollar en el Programa Ojo Ciudadano con su correspondiente presupuesto.

QUINTA.- De conformidad con el artículo 44 de la Ley de Coordinación Fiscal, la distribución de los recursos del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", se realiza con base en los criterios determinados por el Consejo Nacional de Seguridad Pública, razón por la cual los recursos asignados a "EL GOBIERNO DEL ESTADO" se enterarán mensualmente por la Secretaría de Hacienda y Crédito Público a "EL GOBIERNO DEL ESTADO", de manera ágil y directa sin más limitaciones ni restricciones que las que se establecen en las disposiciones legales aplicables.

SEXTA.- "EL GOBIERNO DEL ESTADO", de conformidad con el artículo 45 de la Ley de Coordinación Fiscal, destinará las aportaciones que reciba con cargo al "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", al apoyo de las siguientes acciones: reclutamiento, selección, depuración, evaluación y formación de los recursos humanos vinculados con tareas de seguridad pública; a complementar las dotaciones de los agentes del Ministerio Público, los peritos, los policías judiciales o sus equivalentes de la Procuraduría de Justicia del Estado, de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al equipamiento de las policías judiciales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al establecimiento operación de la de telecomunicaciones e informática (IRIS) para la seguridad pública y el servicio telefónico nacional de emergencia (066); a la construcción, mejoramiento y ampliación de las instalaciones para la procuración

e impartición de justicia, de los centros de readaptación social y de menores infractores, así como de las instalaciones de los cuerpos de seguridad pública y sus centros de capacitación, y al seguimiento y evaluación de los programas señalados.

En los anexos técnicos derivados del presente Convenio, se definirán los montos y proporciones de asignación de recursos con sus respectivos conceptos de gasto y de inversión, así como las metas a alcanzar y los indicadores que permitan el seguimiento y evaluación de las acciones a que se refiere la presente cláusula.

SEPTIMA.- "EL GOBIERNO DEL ESTADO", conforme a las disposiciones legales aplicables, se compromete a asegurar la intervención de su órgano de control interno, a fin de ejercer las facultades de control y supervisión del ejercicio de los recursos materia de este Convenio, conforme con el artículo 46 de la Ley de Coordinación Fiscal. Con tal propósito se destinará a dicho órgano de control interno el dos al millar (0.002) del monto total de los recursos ejercidos que se deberán obtener de los productos financieros generados por el patrimonio fideicomitido.

"LA SECRETARIA" y "EL GOBIERNO DEL ESTADO", en cumplimiento a lo dispuesto en las fracciones II y V del artículo 90., fracción III del artículo 15 y fracción III del artículo 17 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como el artículo 45 de la Ley de Coordinación Fiscal y a los Acuerdos y Resoluciones emanados del Consejo Nacional de Seguridad Pública, convienen en aplicar recursos para realizar acciones específicas en materia de seguimiento y evaluación respecto de los programas y acciones instrumentadas en el marco de este Convenio. Para tal efecto, las partes suscribirán el anexo técnico correspondiente, mismo que formará parte de este instrumento.

OCTAVA.- Las partes acuerdan mantener la administración de los recursos provenientes del "Fondo

de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", y los que aporte "EL GOBIERNO DEL ESTADO" a través del Fideicomiso Estatal constituido para tal fin.

NOVENA.- Para salvaguardar el cumplimiento de las metas, los ejes, estrategias y acciones de alcance

y vinculación nacional de los tres órdenes de gobierno, en cumplimiento a las disposiciones de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública y en concordancia con los acuerdos aprobados por el Consejo Nacional de Seguridad Pública, los recursos asignados a los programas que se deriven de los ejes mencionados en la cláusula segunda del presente Convenio y sus anexos técnicos, deberán destinarse a los fines previstos en los citados programas y anexos.

Los recursos a que se refiere el párrafo anterior podrán aplicarse en otros programas pertenecientes

a un mismo Eje, siempre y cuando el Consejo Estatal de Seguridad Pública o, en su caso, el Comité Técnico del Fideicomiso de Administración del Fondo de Seguridad Pública (FOSEG) aprueben la trasferencia correspondiente, en cuyo caso se informará al Secretario Ejecutivo del Sistema Nacional de Seguridad Pública.

Las reprogramaciones que comprendan dos o más ejes deberán concertarse con el Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, a solicitud escrita de "EL GOBIERNO DEL ESTADO", en el transcurso de la operación de los programas.

El Secretariado en un plazo máximo de treinta días, contados a partir de la fecha en que reciba totalmente la documentación necesaria para las reprogramaciones, aprobará la addenda respectiva.

Los recursos no ejercidos de años anteriores se tomarán en cuenta para aplicarse en los programas autorizados, previa aprobación que realice el Comité Técnico del Fideicomiso de Administración del Fondo de Seguridad Pública (FOSEG) y con la opinión favorable del área competente del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.

La aplicación de los recursos a que se refiere esta cláusula invariablemente se ajustará a lo dispuesto en el artículo 45 de la Ley de Coordinación Fiscal.

DECIMA.- De conformidad con la Ley de Coordinación Fiscal; el Decreto de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal de 2002 y de acuerdo a los criterios de asignación y fórmula

de distribución aprobadas por el Consejo Nacional de Seguridad Pública en su sesión celebrada el 29 de enero del año 2002, se destinan del "Fondo de Aportaciones para la Seguridad Pública de los Estados y del Distrito Federal", a favor de "EL GOBIERNO DEL ESTADO", recursos por un monto de \$45'227,019.00 (cuarenta y cinco millones doscientos veintisiete mil diecinueve pesos 00/100 M.N.).

Los recursos serán enterados a "EL @BIERNO DEL ESTADO", conforme al procedimiento señalado en la cláusula quinta de este instrumento. Dichos recursos serán depositados por el Gobierno Federal a la institución fiduciaria y ambas partes expedirán el recibo más eficaz que en derecho proceda a favor de la Tesorería de la Federación, por cada ministración federal que se realice.

"EL GOBIERNO DEL ESTADO" por su parte aportará al fideicomiso estatal, recursos con cargo a su propio presupuesto por un monto de \$8'000,000.00 (ocho millones de pesos 00/100 M.N.), conforme al calendario y términos que se especifiquen en cada anexo técnico.

Estas aportaciones se podrán incrementar con las que, en su oportunidad, hagan los gobiernos Federal, Estatal y Municipal para fortalecer los ejes, estrategias y acciones en el marco del Sistema Nacional de Seguridad Pública. Dichas aportaciones serán con cargo a sus propios presupuestos, o bien, de los que reciban del "Fondo de Aportaciones para el Fortalecimiento de los Municipios y de las Demarcaciones Territoriales del Distrito Federal".

Igualmente, el patrimonio fideicomitido se podrá incrementar con aquellas aportaciones que, en su oportunidad, efectúen personas físicas o morales para el fortalecimiento de las acciones materia de este Convenio, previa aceptación de "EL GOBIERNO DEL ESTADO".

DECIMA PRIMERA.- El Comité Técnico del Fideicomiso Estatal de Distribución de Fondos acordará el destino de los productos financieros generados por el patrimonio fideicomitido, teniendo siempre en cuenta los siguientes conceptos: para cubrir los servicios del fiduciario, para los servicios de control y supervisión prestados por el órgano de control interno; para la difusión de resultados de los programas previstos en la cláusula sexta, así como para alcanzar y/o ampliar las metas programadas y acciones materia de este Convenio.

DECIMA SEGUNDA.- De acuerdo con lo dispuesto en el artículo 9o. fracción VI de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, "EL GOBIERNO DEL ESTADO" se compromete a tomar las medidas necesarias para la realización de acciones y operativos, en su caso, de manera conjunta con las autoridades de seguridad pública federales y municipales, que redunden en una mayor seguridad de los habitantes del Estado de Quintana Roo. Por lo que dará cobertura preferentemente al equipamiento y operación de los policías ministeriales o sus equivalentes, de los peritos, de los ministerios públicos y de los policías preventivos o de custodia de los centros penitenciarios y de menores infractores; al equipamiento y operación de las instalaciones para la procuración e impartición de justicia, de los centros de readaptación social y de menores infractores, así como de las instalaciones de las instancias de seguridad pública y sus centros de capacitación.

En las acciones y operativos conjuntos a que alude esta cláusula, el Secretario Ejecutivo tendrá la participación que le corresponda, en los términos del artículo 17 fracción XI de la citada Ley General y en lo establecido en el anexo técnico correspondiente.

En todos los casos, la problemática de seguridad pública se abordará de manera integral, atendiendo las interrelaciones que se generan entre la prevención, la procuración y administración de justicia, la readaptación y la reinserción social de mayores delincuentes y menores infractores.

En los supuestos en que sea necesario atender factores que incidan en la seguridad pública, distintos a los atribuidos al Poder Ejecutivo y, en los casos en que se involucren otros poderes y diversas autoridades de "EL GOBIERNO DEL ESTADO", o bien de otra entidad, se firmarán los convenios a que se refiere el artículo 4o. de la Ley General en mención.

DECIMA TERCERA.- A fin de consolidar la operación y funcionamiento del Sistema Nacional de Información sobre Seguridad Pública, "EL GOBIERNO DEL ESTADO" proporcionará a "LA

SECRETARIA" en la forma y términos solicitados por ésta, la información que requiera para mantener actualizados los registros y bases de datos nacionales a que se refiere el capítulo IV del título segundo y el artículo 54 de la Ley General que Establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, así como los registros de información que hayan sido acordados por el Consejo Nacional de Seguridad Pública y la Conferencia Nacional de Procuración de Justicia.

Para los efectos a que se refiere el párrafo anterior, las partes se comprometen a realizar en esta materia, las siguientes acciones:

......

		STATUS 28 Feb. 2002	UNIDAD DE MEDIDA	META
1.	Gobierno Digital			
	AMPLIAR LA RED NACIONAL DE TELECOMUNICACIONES			
1.1	RED DE RADIOCOMUNICACION	3	 REPETIDORES INSTALADOS 	5
		7%	 COBERTURA GEOGRAFICA DE RADIOS MATRA 	18%
1.2	INTEROPERABILIDAD DE REDES EXISTENTES	-	 MUNICIPIOS PRIORITARIOS INTEROPERANDO 	Cancún Chetumal
1.3	RED DE TELEFONIA	10	PUNTOS DE PRESENCIA INSTITUCION	AL DGP y RS del Estado Tribunal Superior de Justicia Academia Estatal Policía Municipal Chetumal
		19%	USO DE CAPACIDAD INSTALADA	70%
2.1	Gobierno Digital ACTUALIZAR EL REGISTRO NACIONAL DE PERSONAL DE SEGURIDAD PUBLICA CON FOTOS Y HUELLAS PERSONAL EN ACTIVO	2220	PERSONAL EN ACTIVO INCLUYENDO	5328
2.1	PERSONAL EN ACTIVO	2220	FOTOS Y HUELLAS	5328
3	Gobierno Digital ACTUALIZAR EL REGISTRO NACIONAL DE IDENTIFICACION Y HUELLAS DIGITALES DE INTERNOS EN CERESOS Y CEFERESOS			
3.1	INTERNOS ACTUALES	133	IDENTIFICACION Y HUELLAS DE INTERNOS	1734
3.2	HISTORICO	0	HUELLAS EN ARCHIVO HISTORICO DE INTERNOS	Sin Meta aún

DECIMA CUARTA.- "EL GOBIERNO DEL ESTADO" se compromete a instrumentar de manera conjunta y coordinada con las autoridades federales y municipales, acciones tendientes a consolidar el Servicio Nacional de Apoyo a la Carrera del Personal de Seguridad Pública, homologando procedimientos de reclutamiento y selección, así como la equivalencia de los contenidos mínimos de planes y programas para la formación de los integrantes de las instituciones de seguridad pública, en los términos que establezca la Academia Nacional de Seguridad Pública, por conducto de su Consejo Técnico.

DECIMA QUINTA.- "LA SECRETARIA", por conducto del Secretario Ejecutivo del Sistema Nacional de Seguridad Pública, y "EL GOBIERNO DEL ESTADO", promoverán y adoptarán las medidas complementarias que se requieran para el cumplimiento del presente Convenio.

DECIMA SEXTA.- "LA SECRETARIA" y "EL GOBIERNO DEL ESTADO" tendrán la prerrogativa para ocurrir ante las autoridades correspondientes, en caso de incumplimiento de cualesquiera de las obligaciones pactadas en el presente Convenio o en sus anexos técnicos.

DECIMA SEPTIMA.- Este Convenio se publicará en el **Diario Oficial de la Federación** y en el Periódico Oficial de "EL GOBIERNO DEL ESTADO", y entrará en vigor a partir de la fecha de su suscripción.

El presente Convenio de Coordinación 2002 se firma, por cuadruplicado, en la ciudad de Chetumal, Quintana Roo, a los veintinueve días del mes de abril de dos mil dos.- Por la Secretaría: el Secretario de Seguridad Pública y Presidente del Consejo Nacional de Seguridad Pública, Alejandro Gertz Manero.- Rúbrica.- La Secretaria Ejecutiva del Sistema Nacional de Seguridad Pública, Gloria Brasdefer Hernández.- Rúbrica.- Por el Gobierno del Estado: el Gobernador Constitucional del Estado Libre y Soberano de Quintana Roo, Joaquín Ernesto Hendricks Díaz.- Rúbrica.- El Secretario de Gobierno, Víctor Manuel Alcérreca Sánchez.- Rúbrica.- El Secretario de Hacienda, José Luis Pech Várguez.- Rúbrica.- La Procuradora General de Justicia, Celia Pérez Gordillo.- Rúbrica.- El Secretario Ejecutivo del Sistema Estatal de Seguridad Pública, Ricardo Adrián Samos Medina.- Rúbrica.

SECRETARIA DE HACIENDA Y CREDITO PUBLICO

DECRETO por el que se otorga un estímulo fiscal en el Impuesto al Valor Agregado a las personas dedicadas a la enajenación de libros, periódicos y revistas.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Presidencia de la República.

VICENTE FOX QUESADA, Presidente de los Estados Unidos Mexicanos, en ejercicio de la facultad que me confiere el artículo 89, fracción I, de la Constitución Política de los Estados Unidos Mexicanos, con fundamento en los artículos 39, fracción III, del Código Fiscal de la Federación y 31 de la Ley Orgánica de la Administración Pública Federal, y

CONSIDERANDO

Que la Ley del Impuesto al Valor Agregado contempla, desde su promulgación, la exención en el pago del impuesto por la enajenación de los libros, periódicos y revistas;

Que al estar exenta la enajenación de estos bienes, los contribuyentes que los editan y enajenan no pueden acreditar el impuesto al valor agregado que a ellos les es trasladado en la adquisición de los activos e insumos necesarios para estas actividades;

Que al no poder acreditar el impuesto al valor agregado que les sea trasladado, y en su caso obtener la devolución, la industria editorial verá incrementados sus costos de operación hasta por el monto del impuesto al valor agregado que les hubiera sido trasladado, y

Que es intención del Ejecutivo Federal, en uso de las facultades que le confieren las leyes fiscales, conceder un estímulo fiscal para impulsar de manera eficaz al sector de la industria editorial, por lo que he tenido a bien expedir el siguiente

DECRETO

Artículo Primero. Se concede un estímulo fiscal a los contribuyentes cuya actividad sea la enajenación de libros, periódicos y revistas, que hayan editado ellos mismos, consistente en una cantidad igual al impuesto al valor agregado que no puedan acreditar y que les hubiera sido trasladado o que ellos hubiesen pagado con motivo de la importación de bienes o servicios, en el periodo o en el ejercicio correspondiente, identificado con las erogaciones destinadas a la realización de la citada actividad.

Para los efectos de este Decreto, se considera libro lo dispuesto en la Ley Federal del Derecho de Autor. Quedan comprendidos los materiales complementarios cuando no sean susceptibles de comercializarse separadamente. Se entiende que no tienen la característica de complementarios cuando los materiales pueden comercializarse en forma genérica con independencia del libro.

Artículo Segundo. El impuesto al valor agregado por el cual se podrá calcular el estímulo en los términos de este Decreto, sin perjuicio de lo dispuesto en las demás disposiciones fiscales, deberá reunir los requisitos siguientes:

 Haber sido trasladado a los contribuyentes a que se refiere el Artículo anterior o haber sido pagado por ellos con motivo de la importación de bienes o servicios, a partir del mes de junio de 2002.

- II. Corresponder a bienes o servicios estrictamente indispensables para la realización de la actividad a que se refiere el Artículo Primero, primer párrafo de este Decreto.
 - Se consideran estrictamente indispensables las erogaciones efectuadas por los contribuyentes, que sean deducibles para los fines del impuesto sobre la renta, aun cuando no se esté obligado al pago de este último impuesto. Cuando el impuesto trasladado corresponda a erogaciones parcialmente deducibles para los efectos del impuesto mencionado, el estímulo se determinará considerando únicamente la proporción en que dichas erogaciones sean deducibles.
- III. Haber sido trasladado expresamente y por separado a los contribuyentes en comprobantes que reúnan requisitos fiscales.
- IV. Haber sido efectivamente pagado.

Artículo Tercero. Los contribuyentes que obtengan el estímulo previsto en este Decreto, no lo considerarán acumulable para los efectos del impuesto sobre la renta ni podrán deducir para los efectos del citado impuesto sobre la renta, el impuesto al valor agregado sobre el cual calculan el estímulo.

Artículo Cuarto. El Servicio de Administración Tributaria expedirá las reglas de carácter general necesarias para la correcta y debida aplicación del estímulo a que se refiere el presente Decreto.

TRANSITORIO

Único. El presente Decreto entrará en vigor el día siguiente al de su publicación en el **Diario Oficial** de la Federación.

Dado en la residencia del Poder Ejecutivo Federal, en la Ciudad de México, Distrito Federal, a los veinticinco días del mes de junio de dos mil dos.- **Vicente Fox Quesada**.- Rúbrica.- El Secretario de Hacienda y Crédito Público, **José Francisco Gil Díaz**.- Rúbrica.

RESOLUCION por la que se modifican los artículos cuarto y décimo de la autorización otorgada a GE Capital Grupo Financiero, S.A. de C.V., para constituirse y funcionar como grupo financiero.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Hacienda

y Crédito Público.- Secretaría Particular.- 101-443.

RESOLUCION POR LA QUE SE MODIFICAN LOS ARTICULOS CUARTO Y DECIMO DE LA AUTORIZACION OTORGADA A GE CAPITAL GRUPO FINANCIERO, S.A. DE C.V., PARA CONSTITUIRSE Y FUNCIONAR COMO GRUPO FINANCIERO.

Con fundamento en lo dispuesto por los artículos 6, 27-D y 27-J de la Ley para Regular las Agrupaciones Financieras y 6o. fracción XXIV del Reglamento Interior de la Secretaría de Hacienda y Crédito Público, esta dependencia emite la siguiente:

RESOLUCION

PRIMERO.- En uso de la facultad que al Gobierno Federal confieren los artículos 6 y 27-D de la Ley para Regular las Agrupaciones Financieras, esta Secretaría autoriza a GE Capital Grupo Financiero, S.A. de C.V. para constituirse y funcionar como grupo financiero.

SEGUNDO.- La denominación de la Sociedad Controladora Filial del grupo financiero será GE Capital Grupo Financiero, S.A. de C.V.

TERCERO.- La Sociedad Controladora Filial tendrá por objeto adquirir y administrar acciones emitidas por los integrantes del Grupo Financiero.

CUARTO.- GE Capital International Financing Corporation será propietaria en todo tiempo, de acciones que representen por lo menos el cincuenta y uno por ciento del capital social de GE Capital Grupo Financiero, S.A. de C.V.

QUINTO.- La Sociedad Controladora Filial será propietaria en todo tiempo, de acciones que representen por lo menos el cincuenta y uno por ciento del capital social de cada uno de los integrantes del Grupo Financiero, salvo en el caso de aquellas entidades que la ley establezca que tendrá que ser propietaria de por lo menos el noventa y nueve por ciento del capital social.

SEXTO.- El Grupo Financiero estará integrado por la Sociedad Controladora Filial y por las entidades financieras siguientes:

- 1.- GE Capital Bank, S.A., Institución de Banca Múltiple;
- 2.- GE Capital Leasing, S.A. de C.V., Organización Auxiliar del Crédito, y
- 3.- GE Capital Factoring, S.A. de C.V., Organización Auxiliar del Crédito.

SEPTIMO.- El capital social de GE Capital Grupo Financiero, S.A. de C.V. es variable.

El capital fijo sin derecho a retiro asciende a la suma de \$183'402,100.00 (ciento ochenta y tres millones cuatrocientos dos mil cien pesos 00/100 moneda nacional).

OCTAVO.- El domicilio de GE Capital Grupo Financiero, S.A. de C.V. será la Ciudad de México, Distrito Federal.

NOVENO.- La autorización a que se refiere la presente Resolución es, por su propia naturaleza, intransmisible.

DECIMO.- GE Capital International Financing Corporation queda obligada a no transmitir la propiedad ni, en general, a realizar operación alguna que la prive del ejercicio de derechos patrimoniales o corporativos de sus acciones en GE Capital Grupo Financiero, S.A. de C.V., o de aquellas que suscriban en ejercicio de un derecho de preferencia o por pago de dividendos, sin la previa autorización de esta dependencia.

DECIMO PRIMERO.- La Sociedad Controladora Filial estará sujeta a la inspección y vigilancia de la Comisión Nacional Bancaria y de Valores.

TRANSITORIO

UNICO.- La presente Resolución surtirá efectos el día siguiente al de su publicación en el Diario Oficial de la Federación.

Sufragio Efectivo. No Reelección.

México, D.F., a 16 de abril de 2002.- El Secretario de Hacienda y Crédito Público, José Francisco Gil Díaz.- Rúbrica.

(R.- 163199)

ACUERDO mediante el cual se modifica la fracción II del artículo segundo de la autorización otorgada a Arrendadora Citibank, S.A. de C.V., Organización Auxiliar del Crédito, Grupo Financiero Citibank, por aumento de capital.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Hacienda

y Crédito Público.- Subsecretaría de Hacienda y Crédito Público.- Dirección General de Seguros y Valores.- Dirección de Organizaciones y Actividades Auxiliares del Crédito.- 366-l-B-1148.-723.1/291712.

AUTORIZACIONES A ORGANIZACIONES AUXILIARES DEL CREDITO.- Se modifica la otorgada a esa sociedad por aumento de capital.

Arrendadora Citibank, S.A. de C.V.

Organización Auxiliar del Crédito

Grupo Financiero Citibank

Paseo de la Reforma No. 390, piso 18

Col. Juárez

06695, México, D.F.

Esa sociedad, con objeto de dar cumplimiento al punto décimo del Acuerdo por el que se establecen los capitales mínimos pagados con que deberán contar las organizaciones auxiliares del crédito y las casas de cambio, publicado en el Diario Oficial de la Federación el 31 de marzo de 2000, con escrito del 3 de enero de 2001, remitió el primer testimonio de la escritura pública número 45,518 del 15 de noviembre de 2000, otorgada ante la fe del Notario Público número 1, licenciado Roberto Núñez y Bandera, con ejercicio en México, D.F., misma que contiene la protocolización del acta de asamblea general extraordinaria de accionistas de esa sociedad, celebrada el 27 de abril de 2000, en la que acordaron el aumento a su capital fijo sin derecho a retiro, totalmente suscrito y pagado de \$25'702,000.00 (veinticinco millones setecientos dos mil pesos 00/100 M.N.) a \$28'868,000.00 (veintiocho millones ochocientos sesenta y ocho mil pesos 00/100 M.N.), modificando al efecto el artículo quinto de sus estatutos sociales, por lo que esta Secretaría, con base en el artículo 6o. fracción XXII de su Reglamento Interior, y con fundamento en los artículos 5o. y 45 bis 3 de la Ley General de Organizaciones y Actividades Auxiliares del Crédito, ha resuelto dictar el siguiente:

ACUERDO

Se modifica la fracción II del artículo segundo de la autorización otorgada con el nombre de concesión el 20 de diciembre de 1983, modificada el 4 de octubre de 1991, 14 de julio y 1 de noviembre de 1995, 24 de mayo y 15 de noviembre de 1996, 5 de marzo de 1998, 14 de junio de 1999 y 14 de marzo de 2000, que faculta a Arrendadora Citibank, S.A. de C.V., Organización Auxiliar del Crédito, Grupo Financiero Citibank, para llevar a cabo las operaciones a que se refiere el artículo 24 de la Ley General de Organizaciones y Actividades Auxiliares del Crédito, para quedar en los siguientes términos:

ARTICULO SEGUNDO
L-
II El capital social es variable, el capital mínimo fijo sin derecho a retiro, totalmente suscrito y gado es de \$28'868,000.00 (veintiocho millones ochocientos sesenta y ocho mil pesos 00/100 M.N.).
III
Sufragio Efectivo. No Reelección.

México, D.F., a 3 de abril de 2002.- En suplencia por ausencia del C. Secretario de Hacienda y Crédito Público y de conformidad con el artículo 105 del Reglamento Interior de la Secretaría de Hacienda

y Crédito Público, el Subsecretario de Hacienda y Crédito Público, Agustín Guillermo Carstens Carstens.- Rúbrica.

(R.- 163195)

CIRCULAR CONSAR 15-7, mediante la cual se dan a conocer las modificaciones a las reglas generales que establecen el régimen de inversión al que deberán sujetarse las sociedades de inversión especializadas de fondos para el retiro.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de

y Crédito Público.- Comisión Nacional del Sistema de Ahorro para el Retiro.

CIRCULAR CONSAR 15-7

MODIFICACIONES A LAS REGLAS GENERALES QUE ESTABLECEN EL REGIMEN DE INVERSION AL QUE DEBERAN SUJETARSE LAS SOCIEDADES DE INVERSION ESPECIALIZADAS DE FONDOS PARA EL RETIRO.

La Junta de Gobierno de la Comisión Nacional del Sistema de Ahorro para el Retiro, en su sesión de fecha 24 de abril de 2002, con fundamento en los artículos 5o. fracción II, 8o. fracción IV, 43 y 47 de la Ley de los Sistemas de Ahorro para el Retiro, y

Que se debe considerar expresamente dentro de los títulos que preservan el valor adquisitivo del ahorro de los trabajadores referidos en la Ley de los Sistemas de Ahorro para el Retiro a los denominados en moneda nacional cuyos intereses garanticen un rendimiento igual o mayor a la variación de la Unidad de Inversión o del Indice Nacional de Precios al Consumidor, y

Que es importante especificar que los límites de inversión en un mismo emisor establecidos en términos de la Circular CONSAR 15-6, publicada el día 8 de abril de 2002, deben aplicarse considerando tanto los Instrumentos emitidos en moneda nacional como en moneda extranjera, ha tenido a bien expedir las siguientes:

MODIFICACIONES A LAS REGLAS GENERALES QUE ESTABLECEN EL REGIMEN DE INVERSION AL QUE DEBERAN SUJETARSE LAS SOCIEDADES DE INVERSION ESPECIALIZADAS DE FONDOS PARA EL RETIRO

PRIMERA.- Se modifican las reglas segunda fracciones VI bis y XI, cuarta, sexta fracciones II, III y IV, séptima párrafo segundo, décima fracción I y décima segunda párrafos primero y segundo de la Circular CONSAR 15-5, para quedar como siguen:

"SEGUNDA.- ...

I. a VI. ...

VI bis. Grado de Inversión, al obtenido por los Instrumentos denominados en moneda nacional, unidades de inversión o moneda extranjera que ostenten las calificaciones relacionadas en los Anexos A, B, C, D y E de las presentes reglas;

VII. a X. ...

XI. Instrumentos, a todos los valores de deuda denominados en moneda nacional o extranjera, emitidos o avalados por el Gobierno Federal; emitidos por el Banco de México; emitidos, aceptados o avalados por Instituciones de Crédito, o emitidos por Empresas Privadas; así como a los valores de deuda que se encuentren denominados en Unidades de Inversión o denominados en moneda nacional cuyos intereses garanticen un rendimiento igual o mayor a la variación de la Unidad de Inversión o del Indice Nacional de Precios al Consumidor, a los documentos o contratos de deuda a cargo del Gobierno Federal, a los depósitos a cargo del Banco de México, y aquellos otros que prevea la Ley de los Sistemas de Ahorro para el Retiro;

XII. a XIX. ..."

"CUARTA.- Tratándose de inversión por tipo de valor, las Sociedades de Inversión Básicas deberán mantener cuando menos el 51% de su activo total en Instrumentos que estén denominados en Unidades de Inversión o en Instrumentos denominados en moneda nacional, cuyos intereses garanticen un rendimiento igual o mayor a la variación de la Unidad de Inversión o del Indice Nacional de Precios al Consumidor."

"SEXTA.- ...

- I.
- Hasta el 100% de su activo total en Instrumentos emitidos por Empresas Privadas, en Instrumentos denominados en Unidades de Inversión o denominados en moneda nacional cuyos intereses garanticen un rendimiento igual o mayor a la variación de la Unidad de Inversión o del Indice Nacional de Precios al Consumidor emitidos por cualquier persona distinta al Gobierno Federal y al Banco de México y en Instrumentos emitidos, avalados o aceptados por Instituciones de Crédito y Entidades Financieras, que tengan Grado de Inversión conforme al Anexo A de las presentes reglas;
- Hasta el 35% de su activo total en Instrumentos emitidos por Empresas Privadas, en Instrumentos denominados en Unidades de Inversión o denominados en moneda nacional cuyos intereses garanticen un rendimiento igual o mayor a la variación de la Unidad de Inversión o del Indice Nacional de Precios al Consumidor emitidos por cualquier persona distinta al Gobierno Federal y al Banco de México y en Instrumentos emitidos, avalados o aceptados por Instituciones de Crédito y Entidades Financieras, que tengan Grado de Inversión conforme al Anexo B de las presentes reglas;
- Hasta un 5% de su activo total en Instrumentos emitidos por Empresas Privadas, en Instrumentos denominados en Unidades de Inversión o denominados en moneda nacional cuyos intereses garanticen un rendimiento igual o mayor a la variación de la Unidad de

Inversión o del Indice Nacional de Precios al Consumidor emitidos por cualquier persona distinta al Gobierno Federal y al Banco de México y en Instrumentos emitidos, avalados o aceptados por Instituciones de Crédito y Entidades Financieras, que tengan Grado de Inversión conforme al Anexo C de las presentes reglas;

V. y **VI**. ..." "SEPTIMA .- ...

Para efectos de lo dispuesto en el párrafo anterior, la inversión en depósitos bancarios de dinero a la vista denominados en las monedas extranjeras mencionadas podrá ser hasta por una cantidad equivalente a veinticinco mil dólares de los Estados Unidos de América, más la cantidad necesaria para el pago de obligaciones exigibles, y se considerarán para el cálculo del límite a que se refiere el párrafo anterior, así como en su caso, al límite del 10% previsto en la regla sexta, fracción V."

"DECIMA.- ...

- La inversión en Instrumentos emitidos, avalados o aceptados por un mismo emisor no podrá exceder del 5% del activo total de la Sociedad de Inversión. Dentro de este límite, se podrá invertir lo siguiente:
 - Hasta un 5% de su activo total en Instrumentos que ostenten las calificaciones previstas en los Anexos A y D de las presentes reglas;
 - Hasta un 3% de su activo total en Instrumentos que ostenten las calificaciones previstas en los Anexos B y E de las presentes reglas;
 - Hasta un 1% de su activo total en Instrumentos que ostenten las calificaciones previstas en el Anexo C de las presentes reglas.

En caso de que una Sociedad de Inversión no tenga en su activo Instrumentos de un emisor que se ubiquen en el supuesto del inciso a) anterior, los Instrumentos de ese mismo emisor que se ubiquen en los supuestos a que se refieren los incisos b) y c) anteriores, no deberán exceder en su conjunto del 3% del activo total, debiéndose respetar los límites máximos aplicables a cada Instrumento en los términos de dichos incisos.

Tratándose de Certificados de Participación Ordinaria, el límite a que se refiere esta fracción se calculará considerando como emisor al fideicomitente.

II. a IV.''

"DECIMA SEGUNDA .- Los Instrumentos en moneda nacional que adquieran las Sociedades de Inversión, con excepción de los Instrumentos emitidos o avalados por el Gobierno Federal y los emitidos por el Banco de México, deberán alcanzar las calificaciones mínimas establecidas en los Anexos A, B o C de las presentes reglas, conforme a los límites que se establecen en la regla sexta anterior. Tratándose de los Instrumentos en moneda extranjera a que se refiere la regla séptima, emitidos por personas diferentes al Gobierno Federal o al Banco de México, deberán alcanzar las calificaciones mínimas establecidas en los Anexos D o E.

Las calificaciones mencionadas deberán ser otorgadas cuando menos por dos instituciones calificadoras y todas las calificaciones con que cuente un Instrumento deberán alcanzar las establecidas en el Anexo A, B, C, D o E según le sea aplicable. Cuando las calificaciones de un mismo Instrumento correspondan a diferentes anexos, dicho Instrumento se sujetará para efectos de estas reglas a la calificación más baja con que cuente.

...

SEGUNDA.- Se modifica el Anexo D y se adiciona el Anexo E a la Circular CONSAR 15-5, en los términos de los respectivos Anexos de las presentes reglas.

TRANSITORIAS

PRIMERA.- Las presentes reglas entrarán en vigor el día hábil siguiente a su publicación en el Diario Oficial de la Federación.

SEGUNDA.- Las sociedades de inversión especializadas de fondos para el retiro que excedan los límites de inversión establecidos por la regla décima fracción I reformada por esta Circular, en virtud de haber adquirido con anterioridad a su entrada en vigor Instrumentos de un mismo emisor dentro de los límites permitidos hasta esa fecha, podrán mantener el exceso hasta la amortización de los Instrumentos causantes de éste. En este caso no deberán adquirir más Instrumentos del emisor que tengan en exceso.

Sufragio Efectivo. No Reelección.

México, D.F., a 10 de junio de 2002.- El Presidente de la Comisión Nacional del Sistema de Ahorro para el Retiro, Vicente Corta.- Rúbrica.

Anexo D

Calificaciones para emisiones en moneda extranjera

Emisiones de corto plazo (Con vencimiento hasta de un año)

MOODY'S	٠		٠.	_	_	_		
		/′\	١,	Ш.			M	

WOODIO	
P-1	
P-2	

FITCH IBCA

F1+/F1	
F2	

STANDARD & POOR'S

A-1+/A-1	
A-2	

Emisiones de mediano y largo plazo (Con vencimiento mayor a un año)

MOODY'S

Aaa
Aa1/Aa2/Aa3
A1/A2/A3
Baa1

FITCH IBCA

AAA
AA+/AA/AA-
A+/A/A-
BBB+

STANDARD & POOR'S

AAA
AA+/AA/AA-
A+/A/A-
BBB+

Anexo E

Calificaciones para emisiones en moneda extranjera

Emisiones de corto plazo (Con vencimiento hasta de un año)

MOODY'S

FITCH	IBCA
E3	

STANDARD & POOR'S

P-3

A-3

Emisiones de mediano y largo plazo (Con vencimiento mayor a un año)

MOODY'S

FITCH IBCA

Baa2/Baa3

BBB/BBB-

BBB/BBB-

SECRETARIA DE ENERGIA

DECRETO por el que se declara de utilidad pública la conservación, operación y mantenimiento de la Subestación Eléctrica Malpaso Uno, y demás instalaciones complementarias, y se expropia a favor de

de Electricidad la superficie de terreno de 254,527.407 m², ubicada en las inmediaciones del poblado Raudales de Malpaso, Municipio de Tecpatán, Estado de Chiapas. (Segunda publicación)

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Presidencia de la República.

VICENTE FOX QUESADA, Presidente de los Estados Unidos Mexicanos, en ejercicio de la facultad que me confiere la fracción I del artículo 89 de la Constitución Política de los Estados Unidos Mexicanos; con fundamento en los Artículos 27, párrafo segundo, de la propia Constitución; 10., 20, 40., de la Ley del Servicio Público de Energía Eléctrica; 1o., fracciones I, V y XII, 2o., 3o., 4o., 8o., 10, 19 y 20 de la Ley de Expropiación; 14 y 63 fracción II de la Ley General de Bienes Nacionales; 31, 33 y 37 de la Ley Orgánica de la Administración Pública Federal; y

CONSIDERANDO

Que de conformidad con los artículos 25, 27 y 28 de la Constitución Política de los Estados Unidos Mexicanos, la prestación del servicio público de energía eléctrica es una actividad estratégica reservada a la Nación, que en los términos del artículo 4o. de la Ley del Servicio Público de Energía Eléctrica, comprende la realización de todas las obras, instalaciones y trabajos que requieran la planeación, ejecución, operación y mantenimiento del sistema eléctrico nacional; asimismo, que la energía eléctrica es un artículo de consumo necesario requerido por todo centro de población del país;

Que la Comisión Federal de Electricidad es un organismo público descentralizado con personalidad jurídica y patrimonio propio, que tiene a su cargo la prestación del servicio público de energía eléctrica, según disponen los artículos 7o. y 8o. de la Ley del Servicio Público de Energía Eléctrica:

Que con el objeto de estar en posibilidad de prestar el servicio público de energía eléctrica en condiciones de continuidad, eficiencia y seguridad a los centros de población y consumo del Distrito Federal, de los Estados de Chiapas, Tabasco y Veracruz y de la Península de Yucatán, la Comisión Federal de Electricidad construyó y tiene en operación la Subestación Eléctrica de Potencia "Malpaso Uno", en el Poblado Raudales de Malpaso, Municipio de Tecpatán, Estado de Chiapas;

Que la citada Subestación Eléctrica de Potencia "Malpaso Uno" se enlaza con las Subestaciones "Eléctrica de Potencia Elevadora" y "Malpaso Dos", las cuales constituyen un complejo de subestaciones que se integran a la red nacional, interconectadas con las Centrales Hidroeléctricas "Malpaso", Manuel Moreno Torres "Chicoasén", Ángel Albino Corzo "Peñitas" y Sistema de Transmisión y Transformación Oriente, que abastece de energía eléctrica a los Estados de Chiapas, Tabasco, Veracruz, Península de Yucatán y Distrito Federal;

Que la autoridad integró el expediente de expropiación número 01/01, en el cual constan los elementos técnicos que justifican la idoneidad de los bienes, materia de la presente expropiación, para atender la causa de utilidad pública señalada en el artículo primero de este ordenamiento;

Que con el objeto de conservar el uso de la superficie donde se localiza la Subestación Eléctrica de Potencia "Malpaso Uno", su área de seguridad, el área de seguridad de la Subestación Eléctrica "Malpaso Dos" e instalaciones complementarias de ambas subestaciones, la Comisión Federal de

Electricidad llevó a cabo las instancias conciliatorias tendientes a obtener la propiedad de los predios en los que se ubican dichas obras e instalaciones, sin haber obtenido resultados favorables;

Que la Comisión Federal de Electricidad requiere adquirir mediante la expropiación correspondiente una superficie total de terreno de 254,527.407 m2, de propiedad particular, tal como se precisa en el plano número PG-2-2, de fecha 5 de marzo de 2001, revisión número 5, de fecha 14 de septiembre de 2001, elaborado por la Comisión Federal de Electricidad, ubicada en el Poblado Raudales de Malpaso, Municipio de Tecpatán, Estado de Chiapas.

Que dicha superficie se integra por el polígono "A", con superficie de 212,116.380 m2, que se subdivide por los polígonos A1 con superficie de 94,443.130 m2 y A2 con superficie de 117,673.250 m2; el polígono "B", con superficie de 9,104.191 m2; el polígono "C", con superficie de 6,974.746 m2 que se subdivide por los polígonos C1 con superficie de 6,756.936 m2 y C2 con superficie de 217.810 m2; el polígono "D", con superficie de 13,449.275 m2 que se subdivide por los polígonos D1 con superficie de 9,237.620 m2, D2 con superficie de 834.496 m2 y D3 con superficie de 3,377.159 m2; el polígono "E", con superficie de 12,625.758 m2; y el polígono "F", con superficie de 257.057 m2. Los polígonos de que se trata tienen las siguientes medidas y colindancias:

POLÍGONO A1, con superficie de terreno de 94,443.130 m2:

LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
24-48	S26°12'44"W	364.318	JESÚS SANTIAGO ABADÍA CORTÁZAR
48-49	S62°26'09"W	9.573	JESÚS SANTIAGO ABADÍA CORTÁZAR
49-50	S48°06'21"W	5.861	JESÚS SANTIAGO ABADÍA CORTÁZAR
50-51	S26°29'51"W	3.718	JESÚS SANTIAGO ABADÍA CORTÁZAR
51-52	S13°04'41"W	17.917	JESÚS SANTIAGO ABADÍA CORTÁZAR
52-53	S12°25'47"W	36.484	JESÚS SANTIAGO ABADÍA CORTÁZAR
53-54	S10°50'33"W	49.997	JESÚS SANTIAGO ABADÍA CORTÁZAR
54-M10	S65°19'09"W	8.703	JESÚS SANTIAGO ABADÍA CORTÁZAR
M10-MOJ.10 CNA	S58°29'10"W	26.238	ZONA DE PROTECCIÓN DEL EMBALSE
MOJ. 10-57 CNA	N81°42'50"W	12.856	ZONA DE PROTECCIÓN DEL EMBALSE
57-58 CNA	S64°05'23"W	13.898	ZONA DE PROTECCIÓN DEL EMBALSE
58-59 CNA	N82°53'21"W	13.587	ZONA DE PROTECCIÓN DEL EMBALSE
59-60 CNA	S86°59'00"W	12.067	ZONA DE PROTECCIÓN DEL EMBALSE
60-61 CNA	N44°07'45"W	9.983	ZONA DE PROTECCIÓN DEL EMBALSE
61-62 CNA	N17°03'07"W	7.782	ZONA DE PROTECCIÓN DEL EMBALSE
62-MOJ. 9 CNA	N20°02'36"E	24.761	ZONA DE PROTECCIÓN DEL EMBALSE
MOJ. 9-MOJ. 8 CNA	N09°43'41"E	28.295	ZONA DE PROTECCIÓN DEL EMBALSE
MOJ. 8-65 CNA	N28°13'02"E	19.280	ZONA DE PROTECCIÓN DEL EMBALSE
65-66 CNA	N34°33'46"E	9.232	ZONA DE PROTECCIÓN DEL EMBALSE
66-67 CNA	N33°39'47"E	43.870	ZONA DE PROTECCIÓN DEL EMBALSE

Miércoles 26 de	e junio de 2002	DIARIO OFIC	AL (Primera Sección)
67-68 CNA	N26°51'59"E	43.505	ZONA DE PROTECCIÓN DEL EMBALS
68-69 NA	N27°36'45"W	16.784	ZONA DE PROTECCIÓN DEL EMBALS
69-70	N76°43'48"W	8.266	ZONA DE PROTECCIÓN DEL EMBALS
NA .			
70-71	S76°20'05"W	18.162	ZONA DE PROTECCIÓN DEL EMBALS
NA 74 70	CC 490010011M	40.200	ZONA DE PROTECCIÓN DEL EMBALS
71-72 NA	S64°03'38"W	48.308	ZONA DE PROTECCIÓN DEL EMBALS
72-MOJ. 7	S81°58'25"W	19.306	ZONA DE PROTECCIÓN DEL EMBALS
:NA			
MOJ. 7-74 NA	N40°39'49"W	50.561	ZONA DE PROTECCIÓN DEL EMBALS
74-75 NA	N28°56'47"W	41.612	ZONA DE PROTECCIÓN DEL EMBALS
75-MOJ. 6 :NA	N05°14'50"W	34.277	ZONA DE PROTECCIÓN DEL EMBALS
MOJ. 6-77 CNA	N21°50'55"E	31.482	ZONA DE PROTECCIÓN DEL EMBALS
77-78 CNA	N41°34'34"E	30.209	ZONA DE PROTECCIÓN DEL EMBALS
78-79 :NA	N48°38'42"E	86.285	ZONA DE PROTECCIÓN DEL EMBALS
79-MOJ. 5 :NA	N43°48'34"E	67.338	ZONA DE PROTECCIÓN DEL EMBALS
MOJ. 5-81 CNA	N58°39'40"E	40.655	ZONA DE PROTECCIÓN DEL EMBALS
81-82 CNA	N41°58'06"E	26.885	ZONA DE PROTECCIÓN DEL EMBALS
82-83 CNA	N26°35'02"E	61.830	ZONA DE PROTECCIÓN DEL EMBALS
83-MOJ. 4 :NA	N39°03'14"E	42.166	ZONA DE PROTECCIÓN DEL EMBALS
MOJ. 4-85 NA MALPASO-	N75°40'50"E	23.539	ZONA DE PROTECCIÓN DEL EMBALS Y SERVIDUMBRE DE PASO L. MINATITLÁN II DE 400 kV (A3160)
85-86 :NA	N89°12'22"E	21.162	ZONA DE PROTECCIÓN DEL EMBALS
86-87 NA	N86°15'06"E	22.178	ZONA DE PROTECCIÓN DEL EMBALS
87-88 NA	N81°33'28"E	11.339	ZONA DE PROTECCIÓN DEL EMBALS
88-89 :NA	N72°05'09"E	12.833	ZONA DE PROTECCIÓN DEL EMBALS
89-90 :NA	N39°18'44"E	10.203	ZONA DE PROTECCIÓN DEL EMBALS
90-91 CNA	N25°53'07"E	13.162	ZONA DE PROTECCIÓN DEL EMBALS

Miércoles 26 de	junio de 2002	DIARIO OFICIAL	(Primera Sección) 48
91-MOJ. 3	N03°41'39"E	22.294	ZONA DE PROTECCIÓN DEL EMBALSE
CNA MOJ. 3-24	S05°43'12"E	144.464	FLORENTINO MARTÍNEZ
POLÍGONO A	2, con superficie de te	erreno de 117,673.250 m2	2, fracción del Rancho Subestación:
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
24-k	S43°46'35"E	95.481	JESÚS SANTIAGO ABADÍA CORTÁZAR
k-j	S55°41'20"W I-MEZCALAPA	4.450 (115 kV (73930)	SERVIDUMBRE DE PASO, CFE. MALPASO
j-i	S76°19'09"W	5.143	SERVIDUMBRE DE PASO, CFE. MALPASO I-MEZCALAPA 115 kV v (73930)
i-n MALPASO	S14°40′16″E	30.307	SERVIDUMBRE DE PASO, CFE. MALPASO I-MEZCALAPA 115 kV (73930) Y I-PEÑITAS 115 kV (73910)
n-m	N74°11'03"E	11.836	SERVIDUMBRE DE PASO, CFE. MALPASO I-PEÑITAS 115 kV (73910)
m-l	N61°24'39"E	13.601	SERVIDUMBRE DE PASO, CFE. MALPASO I-PEÑITAS 115 kV (73910)
l-25	S43°46'35"E	31.287	JESÚS SANTIAGO ABADÍA CORTÁZAR
25-26	N83°16'42"E	171.392	JESÚS SANTIAGO ABADÍA CORTÁZAR
26-27	N78°53'39"E	96.067	JESÚS SANTIAGO ABADÍA CORTÁZAR
27-C	N81°15'04"E	29.785	JESÚS SANTIAGO ABADÍA CORTÁZAR
C-B	S06°48'22"E	22.693	SERVIDUMBRE DE PASO, CFE. MALPASO II-PEÑITAS 230 kV (93940)
B-E5	S81°23'57"W SUBESTACIÓN	64.544 MALPASO DOS	COMISION FEDERAL DE ELECTRICIDAD.
E5-f	S08°58'09"E SUBESTACIÓN	89.821 MALPASO DOS	COMISIÓN FEDERAL DE ELECTRICIDAD.
f-e	N77°45'50"W	272.840	SERVIDUMBRE DE PASO, CFE. MALPASO I-CHICOASÉN 115 Kv (73940)
e-d	S79°19'25"W	16.031	SERVIDUMBRE DE PASO, CFE. MALPASO I-CHICOASÉN 115 Kv (73940)
d-c	S14°40'16"E	22.054	SERVIDUMBRE DE PASO, CFE. MALPASO I-CHICOASÉN 115 Kv (73940)
c-b	N79°19'25"E	10.036	SERVIDUMBRE DE PASO, CFE. MALPASO I-CHICOASÉN 115 Kv (73940)
b-a	S77°47'05"E	298.392	SERVIDUMBRE DE PASO, CFE. MALPASO I-CHICOASÉN 115 Kv (73940)
a-Z	S37°45'29"W	135.268	SERVIDUMBRE DE PASO, CFE. MALPASO II-CHICOASÉN 400 kV (A3150)
Z-Y	S20°30'10"W	60.811	SERVIDUMBRE DE PASO, CFE. MALPASO II-CHICOASÉN 400 kV (A3150)
Y-39	S85°18'59"W	207.055	SERVIDUMBRE DE PASO, BUS I-CFE
39-40	N18°52'53"W	60.721	SERVIDUMBRE DE PASO, BUS I-CFE
40-41	N17°22'00"W	51.601	SERVIDUMBRE DE PASO, BUS I-CFE
41-42	S77°22'27"W	73.118	SERVIDUMBRE DE PASO, BUS I y II-CFE.
42-43	S11°10'58"E	19.831	SERVIDUMBRE DE PASO, BUS II-CFE.
43-44	S32°40'17"E	6.768	SERVIDUMBRE DE PASO, BUS II-CFE.

44-45	le junio de 2002 N84°51'11"W	DIARIO OFICIAL 18.340	(Primera Sección) 4 JESÚS SANTIAGO ABADÍA CORTÁZAR
			JESÚS SANTIAGO ABADÍA CORTÁZAR
45-46	N84°34'57"W	99.307	JESÚS SANTIAGO ABADÍA CORTÁZAR
46-47	N87°24'40"W	5.833	
47-48	S76°09'11"W	10.394	JESÚS SANTIAGO ABADÍA CORTÁZAR
48-24	N26°12'44"E	364.318	FLORENTINO MARTÍNEZ
Polígono "B",	, fracción del Rancho Su	ubestación, con superfic	ie de terreno de 9,104.191 m2
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
X-W	N20°30'09.60"E II-CHICOASÉN 4	42.151 400 kV (A3150)	SERVIDUMBRE DE PASO CFE MALPASO
W-V	N37°45'28.62"E II-CHICOASÉN 4	131.258 400 kV (A3150)	SERVIDUMBRE DE PASO CFE MALPASO
V-E3	S53°16'36.95"E SUBESTACIÓN ELÉ(71.376 CTRICA MALPASO DOS	COMISIÓN FEDERAL DE ELECTRICIDAD
E3-37	N80°42'32.57"E SUBESTACIÓN ELÉ(48.542 CTRICA MALPASO DOS	COMISIÓN FEDERAL DE ELECTRICIDAD
37-38	S60°47'13.55"W	220.875	SERVIDUMBRE DE PASO, BUS I Y II CFE
38-X	S85°18'58.69"W	7.494	SERVIDUMBRE DE PASO, BUS I Y II CFE
POLÍGONO (C1, con superficie de te	rreno de 6,756.936 m2, f	fracción del Rancho Subestación:
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
U-T	N86°24'27"E II-CHICOASÉN 4	52.897 00 kV (A 3050)	SERVIDUMBRE DE PASO CFE MALPASO
T-S	S75°35'31"E I⊦CHICOASÉN 4	60.500 00 kV (A 3050)	SERVIDUMBRE DE PASO CFE MALPASO
S-35	S16°27'46"W	10.386	BERNABÉ ÁLVAREZ
35-36	S24°25'40"W	49.003	BERNABÉ ÁLVAREZ
36-E2	S80°42'33"W	76.586	JESÚS SANTIAGO ABADÍA CORTÁZAR
E2-U	N09°05'55"W SUBESTACIÓN ELÉC	79.684 CTRICA MALPASO DOS	COMISIÓN FEDERAL DE ELECTRICIDAD
POLÍGONO (C2, con superficie de ter	reno de 217.810 m2:	
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
S-H1	S75°35'31"E	3.543	SERVIDUMBRE DE PASO CFE MALPASO II-CHICOASÉN 400 kV (A 3050
H1-H2	S21°20'26"W	56.586	BERNABÉ ÁLVAREZ
H2-36	S80°42'33"W	6.128	BERNABÉ ÁLVAREZ
36-35	N24°25'40"E	49.003	JESÚS SANTIAGO ABADÍA CORTÁZAR
35-S	N16°27'46"E	10.386	JESÚS SANTIAGO ABADÍA CORTÁZAR
POLÍGONO I	D1, con superficie de ter	rreno de 9,237.620 m2, f	fracción del Rancho Subestación:
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
N-PL1	S73°34'49"E	15.988	JESÚS SANTIAGO ABADÍA CORTÁZAR
	N89°59'58"E	59.772	JESÚS SANTIAGO ABADÍA CORTÁZAR
PL1-28			FOMEDAL DA LIDA DUIZ
PL1-28 28-31	S14°20'14"W	17.835	ESMERALDA LIRA RUIZ
28-31			
	S14°20'14"W S16°25'12"W S22°35'24"W	17.835 15.604 22.573	ESMERALDA LIRA RUIZ BERNABÉ ÁLVAREZ BERNABÉ ÁLVAREZ

Miércoles 26 de ju	nio de 2002	DIARIO OFICIAL	(Primera Sección) 50
34-R	S21°57'48"W	53.543	BERNABÉ ÁLVAREZ
R-Q	N74°49'47"W II-CHICOASÉN 40	74.273 0 kV (A3050)	SERVIDUMBRE DE PASO CFE MALPASO
Q-N	N21°36'52"E II-COATZACOALCOS	118.519 II 400 kV (A 3250)	SERVIDUMBRE DE PA SO CFE MALPASO
POLÍGONO D2,	con superficie de terre	eno de 834.496 m2:	
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
28-B2	N89°59'58"E	43.768	ESMERALDA LIRA RUIZ
B2-29	S00°00′02"W	20.914	ESMERALDA LIRA RUIZ
29-30	N81°30'43"W	27.008	BERNABÉ ÁLVAREZ
30-31	S89°03'33"W	21.474	BERNABÉ ÁLVAREZ
31-28	N14°20'14"E	17.835	JESÚS SANTIAGO ABADÍA CORTÁZAR
POLÍGONO D3,	con superficie de terre	eno de 3,377.159 m2:	
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
31-30	N89°03'33"E	21.474	ESMERALDA LIRA RUIZ
30-29	S81°30'43"E	27.008	ESMERALDA LIRA RUIZ
29-B3	S00°00'02"W	54.531	BERNABÉ ÁLVAREZ
B3-34	S89°59'58"W	70.821	BERNABÉ ALVAREZ
34-33	N23°08'35"E	24.313	JESÚS SANTIAGO ABADÍA CORTÁZAR
33-32	N22°35'24"E	22.573	JESÚS SANTIAGO ABADÍA CORTÁZAR
32-31	N16°25'12"E	15.604	JESÚS SANTIAGO ABADÍA CORTÁZAR
Polígono "E", fra	acción del Rancho Sub	pestación, con superfic	cie de terreno de 12,625.758 m2
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
J-I	N47°25'35.91"E II-ESCÁRC	164.510 CEGA (93960)	SERVIDUMBRE DE PASO CFE MALPASO
I-M	S73°34'49.06"E	88.785	JESÚS SANTIAGO ABADÍA CORTÁZAR
M-L	S21°36'51.99"W II-COATZACOALCOS	96.534 II 400 kV (A 3250)	SERVIDUMBRE DE PASO CFE MALPASO
L-K	S78°04'41.39"W II-COATZACOALCOS	35.987 II 400 kV (A 3250)	SERVIDUMBRE DE PASO CFE MALPASO
K-E1	N09°05'55.08"W SUBESTACIÓN ELÉC	31.128 TRICA MALPASO DOS	COMISIÓN FEDERAL DE ELECTRICIDAD
E1-J	S81°23'57.23"W SUBESTACIÓN ELÉC	132.104 TRICA MALPASO DOS	COMISIÓN FEDERAL DE ELECTRICIDAD
Polígono "F", fra	cción del Rancho Sub	estación con superfic	ie de terreno de 257.057 m2
LADOS	RUMBO	DISTANCIA (m)	COLINDANTES
E-D	N06°45'13.44"W II-PEÑITAS 23	18.792 30 kV (93930)	SERVIDUMBRE DE PASO CFE MALPASO
D-F	N81°15'04.44"E	27.374	JESÚS SANTIAGO ABADÍA CORTÁZAR
F-E	S47°25'35.91"W I⊦ESCÁRCEGA 23	33.739 80 kV (93960)	SERVIDUMBRE DE PASO CFE MALPASO

Que la Comisión Federal de Electricidad solicitó a la Secretaría de Energía iniciar el procedimiento de expropiación materia del presente Decreto, y después de haber atendido el requerimiento de ese organismo descentralizado de carácter federal y valorado sus motivos y justificaciones expuestas, la Secretaría de Energía por conducto de la Subsecretaría de Electricidad, en los términos de los artículos 3o.

de la Ley de Expropiación; 33, 48 y 49 de la Ley Orgánica de la Administración Pública Federal; 10. y 8o. de la Ley

Federal de las Entidades Paraestatales; y 1o., 3o. Fracción II, 8o. Fracciones VII y XII, 10 fracción XXI, 11 fracción XLIV, 13 fracciones III y XVI y 18 del Reglamento Interior de la Secretaría de Energía y conforme al dictamen técnico número DGOPSE 01/2001, de fecha 10 de octubre de 2001, glosado en el expediente administrativo 01/01 de la Dirección General de Operaciones Productivas del Subsector Electricidad, ha considerado procedente la expropiación de la superficie solicitada por la Comisión Federal de Electricidad, por estimar que reúne las exigencias técnicas indispensables que se requieren para la conservación, operación y mantenimiento de las obras, así como la conservación. construcción y mantenimiento de las instalaciones, ambas ya descritas, necesarias para asegurar la prestación del servicio público de energía eléctrica en las zonas del país que se han señalado;

Que por ser tales obras e instalaciones imprescindibles para la prestación del servicio público de energía eléctrica, y estar en los supuestos previstos en el artículo 1o., fracciones I, V y XII de la Ley de Expropiación, en relación con el artículo 23 de la Ley del Servicio Público de Energía Eléctrica, he tenido bien expedir el siguiente

DECRETO

Artículo 1o.- Se declara de utilidad pública la conservación, operación y mantenimiento de la Subestación Eléctrica "Malpaso Uno"; área de seguridad de la Subestación Eléctrica "Malpaso Uno"; área de seguridad de la Subestación Eléctrica "Malpaso Dos"; y la conservación, construcción y mantenimiento de las instalaciones complementarias de ambas Subestaciones; así como el abastecimiento de energía eléctrica, como artículo de consumo necesario, a los centros de población del Distrito Federal, de los Estados de Chiapas, Tabasco y Veracruz y de la Península de Yucatán, por lo que se expropia a favor del organismo descentralizado, Comisión Federal de Electricidad, la superficie de terreno de 254,527.407 m2, integrada por los polígonos A1, A2, B, C1, C2, D1, D2, D3, E y F, cuyos datos de localización y colindancias se precisan en el apartado denominado Considerando de este Decreto, localizada en las inmediaciones del Poblado Raudales de Malpaso, Municipio de Tecpatán, Estado de Chiapas.

El expediente administrativo número 01/01 que integró la Secretaría de Energía para tramitar este ordenamiento se encuentra en guarda y custodia de la Dirección General de Operaciones Productivas del Subsector Electricidad, de conformidad a lo dispuesto por los artículos 13 fracción VII y 18 del Reglamento Interior de esa Secretaría, por lo que se pone a disposición de las personas que acrediten tener interés jurídico.

Artículo 20.- La expropiación a que se refiere el artículo anterior, incluye y hace objeto de la misma, los bienes distintos de la tierra que se localicen en los citados polígonos y se encuentren incorporados a la tierra.

Artículo 30.- El Gobierno Federal por conducto de la Comisión de Avalúos de Bienes Nacionales de la Secretaría de Contraloría y Desarrollo Administrativo, fijará el monto de las indemnizaciones que deban cubrirse en los términos de ley, a quién o a quienes acrediten su legítimo derecho.

Artículo 4o.- Una vez determinado el monto y los términos de las indemnizaciones, se hará el pago por conducto y con cargo al presupuesto de la Comisión Federal de Electricidad.

Artículo 5o.- El Gobierno Federal, por conducto de la Secretaría de Contraloría y Desarrollo Administrativo, tomará posesión de la superficie expropiada y la pondrá a disposición del organismo descentralizado Comisión Federal de Electricidad, para que la utilice en la causa de utilidad pública señalada en el Artículo 1o, de este Decreto.

Artículo 6o.- Las Secretarías de Energía y de Contraloría y Desarrollo Administrativo, en el ámbito de sus respectivas competencias, vigilarán el exacto cumplimiento del Decreto.

TRANSITORIOS

PRIMERO.- El presente Decreto entrará en vigor el día siguiente al de su publicación en el Diario Oficial de la Federación.

SEGUNDO.- Notifíquese personalmente a los interesados en el domicilio que de ellos conste en el expediente de expropiación. En caso de que el domicilio ya no corresponda, o bien, no se tenga

registrado, efectúese una segunda publicación en el **Diario Oficial de la Federación** para que surta efectos de notificación personal.

Dado en la Residencia del Poder Ejecutivo Federal, en la Ciudad de México, Distrito Federal, a los siete días del mes de junio de dos mil dos.- **Vicente Fox Quesada**.- Rúbrica.- El Secretario de Hacienda

y Crédito Público, **José Francisco Gil Díaz.**- Rúbrica.- El Secretario de Energía, **Tirso Ernesto Martens Rebolledo.**- Rúbrica.- El Secretario de Contraloría y Desarrollo Administrativo, **Francisco Javier Barrio Terrazas.**- Rúbrica.

SECRETARIA DE ECONOMIA

AVISO por el que se da a conocer la lista general de laboratorios de calibración acreditados y, en su caso, aprobados, actualizada al 30 de abril de 2002.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Economía.- Dirección General de Normas.

La Secretaría de Economía, por conducto de la Dirección General de Normas, con fundamento en los artículos 39 fracción IV, 72 y 89 de la Ley Federal sobre Metrología y Normalización; 2 y 96 de su Reglamento, en relación con el Decreto por el que se reforman, adicionan y derogan diversas disposiciones de la Ley Orgánica de la Administración Pública Federal, de la Ley Federal de Radio y Televisión, de la Ley General que establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, de la Ley de la Policía Federal Preventiva y de la Ley de Pesca, publicado en el DOF el 30 de noviembre de 2000, expide el presente Aviso por el que se da a conocer la lista general de laboratorios de calibración acreditados y, en su caso, aprobados, actualizada al 30 de abril de 2002.

Area: Dimensional

Tecnovamet, S.A. de C.V. Ing. Alfredo Gregorio García Sánchez Zapotecas No. 663 Col. Ajusco 04300. México. D.F.

Teléfono v fax: (55) 5618 3989

Dirección de correo electrónico: tecnovamet@hotmail.com

Acreditación: D-34 Vencimiento: 2004-03-19

Magnitud Dimensional	Alcance	Resolución	Incertidumbre k=2	Norma de Referencia
Comparadores y microscopios ópticos	0 a 250 mm Lentes hasta 100x	0,001 mm	<u>+</u> [3 + 12 L] unidades: μm L = m	JISB-7184 JISB-7153
Micrómetros de exteriores y cabezas micrométricas	0 a 300 mm	0,001 mm	<u>+</u> [2 + 13 L] unidades: µm L = m	NOM-CH-99-1994 ISO-3611
Calibradores analógicos y digitales	0 a 300 mm	0,01 mm	<u>+</u> [6 + 30 L] unidades: µm L = m	NMX-CH-02-1993 ISO 6906-1984
Indicadores de carátula de vástago o de palanca mono y bidireccionales	0 a 25 mm	0,002 mm	<u>+</u> [1 + 90 L] unidades: µm L = m	NMX-CH-36-1994 JIS B-7533 ISO R463

Signatarios autorizados: María Cecilia Delgado Briseño Enrique García Basilio

Alfredo Gregorio García Sánchez

Robert Bosch, S.A. de C.V. Ing. Armando Valdés González Av. Robert Bosch No. 405 Zona Industrial 50070. Toluca. Estado de México

50070, Toluca, Estado de Mexico Dirección de correo electrónico: armando.valdez@mx.bosch

Teléfono: (7) 279 23 00 ext. 440

Fax: (7) 279 23 39

Acreditación: D-37 Vencimiento: 2002-06-20

Magnitud Dimensional	Resolución	Intervalo	Incertidumbre k=2
Calibrador tipo vernier	0,02 mm	0 mm a 100 mm	0,008 mm
		101 mm a 150 mm	0,009 mm
Calibrador con carátula	0,02 mm	0 mm a 100 mm	0,008 mm
		101 mm a 150 mm	0,009 mm
Calibrador con indicador digital	0,01 mm	0 mm a 100 mm	0,007 mm
		101 mm a 150 mm	0,008 mm

Responsables técnicos:

Ing. Armando Valdés González

Ing. Manuel Ramírez Fierro

Raúl Ortega Calderón Valle de Solís No. 91 Col. El Mirador

53050, Naucalpan de Juárez, Estado de México

Teléfono y fax: (55) 5560 0160

Dirección de correo electrónico: aglarjoc@prodigy.net.mx

Acreditación: D-38 Vencimiento: 2002-07-18

Magnitud	Resolución	Intervalo	Incertidumbre
Dimensional Calibradarea can indicación tina	0.1 mm	0 a 150 mm	. 0.060 mm
Calibradores con indicación tipo	0,1 mm	0 a 150 mm	<u>+</u> 0,060 mm
vernier de carátula y electrodigitales		0 a 200 mm	<u>+</u> 0,061 mm
		0 a 500 mm	<u>+</u> 0,065 mm + 0,070 mm
			-
	0,05 mm	0 a 150 mm	<u>+</u> 0,033 mm
		0 a 200 mm	<u>+</u> 0,035 mm
		0 a 300 mm	<u>+</u> 0,041 mm
		0 a 500 mm	<u>+</u> 0,049 mm
	0,02 mm	0 a 150 mm	<u>+</u> 0,020 mm
		0 a 200 mm	<u>+</u> 0,022 mm
		0 a 300 mm	<u>+</u> 0,032 mm
		0 a 500 mm	<u>+</u> 0,041 mm
	0,01 mm	0 a 150 mm	<u>+</u> 0,017 mm
		0 a 200 mm	<u>+</u> 0,010 mm
		0 a 300 mm	<u>+</u> 0,030 mm
		0 a 500 mm	<u>+</u> 0,039 mm
Micrómetros de exteriores	0,01 y 0,001 mm	0 a 25 mm	<u>+</u> 0,0091 mm
		25 a 50 mm	<u>+</u> 0,0092 mm
		50 a 75 mm	<u>+</u> 0,0094 mm
		75 a 100 mm	<u>+</u> 0,0096 mm
		100 a 125 mm	<u>+</u> 0,0099 mm
		125 a 150 mm	<u>+</u> 0,0103 mm
		150 a 175 mm	<u>+</u> 0,0107 mm
		175 a 200 mm	<u>+</u> 0,0111 mm
		200 a 225 mm	<u>+</u> 0,0116 mm
		225 a 250 mm	<u>+</u> 0,0122 mm
		250 a 275 mm	<u>+</u> 0,0127 mm
		275 a 300 mm	<u>+</u> 0,0133 mm
		300 a 325 mm	<u>+</u> 0,0139 mm
		325 a 350 mm	<u>+</u> 0,0146 mm
		350 a 375 mm	<u>+</u> 0,0152 mm
		375 a 400 mm	<u>+</u> 0,0159 mm
		400 a 425 mm	<u>+</u> 0,0165 mm

DIARIO OFICIAL	(Primera Sección)	54
----------------	-------------------	----

Micrómetros de exteriores	0,01 y 0,001 mm	425 a 450 mm 450 a 475 mm 475 a 500 mm	± 0,0172 mm ± 0,0179 mm ± 0,0186 mm
Cabezas micrométricas	0,001 mm	0 a 50 mm	<u>+</u> 0,0092 mm
Indicadores de carátula	0,01 mm	0 a 10 mm	<u>+</u> 0,0064 mm
Indicadores electrodigitales	0,001 mm	0 a 5 mm	<u>+</u> 0,0023 mm

Responsable técnico: Raúl Ortega Calderón

Miércoles 26 de junio de 2002

Centro de Ingeniería y Desarrollo Industrial Ing. Fernando Motolinía Velázquez Playa Pie de la Cuesta No. 702 Fraccionamiento San Pablo

76130, Querétaro, Querétaro

Teléfono: (442) 211 9800 exts. 243, 269

Fax: (442) 211 9800 ext. 290

Dirección de correo electrónico: fmotolinia@cidesi.mx

Acreditación: D-39 Vencimiento: 2002-07-18

Vencimiento: 2002-07-18		
Magnitud Dimensional	Intervalo	Incertidumbre
Micrómetro para interiores de tres topes de contacto	90 mm	<u>+</u> 1,1 μm
Micrómetro de profundidades	300 mm	<u>+</u> 7,7 μm
Micrómetro de exteriores	500 mm	<u>+</u> 3 μm
Micrómetros de interiores de dos puntas de apoyo	600 mm	<u>+</u> 1,8 μm
Pernos patrón	20 mm	<u>+</u> 0,72 μm
Calibrador de alturas Microhite	1 000 mm 1 000 mm	± 21 μm
Calibrador con vernier, carátula y digital Medición de exteriores Medición de interiores	1 000 mm 500 mm	<u>+</u> 16 μm
Medición de longitudes y ángulos con el comparador óptico	Eje X 150 mm Eje Y 100 mm Angular 360°	± 11 μm ± 0°1'
Bloques patrón	100 mm	<u>+</u> 0,11 μm
Goniómetros	360°	<u>+</u> 0°4'
Discos y tampones patrón	500 mm	<u>+</u> 0,9 μm
Anillos patrón	250 mm	<u>+</u> 0,9 μm
Lainas patrón	10 mm	<u>+</u> 1 μm
Indicador tipo palanca	1 mm	<u>+</u> 2,5 μm
Indicador de vástago recto	50 mm	<u>+</u> 5 μm
Medición con la máquina de coordenadas	Eje X 700 mm Eje Y 700 mm Eje Z 600 mm	±15 μm longitudinal 4 μm x m (por eje)
Mesas de planitud (Mármoles)	2 240 x 3 050	<u>+</u> 8 μm
Patrones de radios	25 mm	<u>+</u> 6 μm
Patrones de cuerdas	Angulo 45°, 60°	0° 1,4'
	Paso: indeterminado	<u>+</u> 10 μm
Calibración de comparadores ópticos	Eje X 500 mm Eje Y 200 mm	<u>+</u> 13 μm
Rugosidad	Ra, Rmax(Ry), Rz, Rq, Rt y Rp	<u>+</u> 0,097 μm

Cintas Métricas	50 000 mm	<u>+</u> 0,15 mm
Escalas micrométricas	300 mm	<u>+</u> 15 μm
Barras patrón (para ajuste a cero)	600 mm	<u>+</u> 5,4 μm
Medición de redondez	350 mm	<u>+</u> 0,15 μm
Mallas patrón	125 mm	<u>+</u> 10 μm

Responsables técnicos:

Ing. Fernando Motolinía Velázquez Ing. Heriberto Pérez Martínez Ing. Norma Esquivel Báez Ing. Eduardo Hernández Gómez Ing. Francisco Javier Lázaro Martínez Ing. Marco Antonio Alvarez Armas Ing. Daniel Cruz Cabrera Ing. Víctor Antonio Chávez Uribe

Ing. José Othón Medrano Salinas Ing. Efraín Calva Gómez Téc. María del Carmen Flores Muñoz Téc. Ulises Cruz Arteaga

Téc. José Francisco Vázquez Herrera TSU José Antonio Ochoa Rodríguez TSU Agustín Pérez Maldonado TSU Luz Adriana Ramírez Domínguez

Escuela Superior de Ingeniería Mecánica y Eléctrica

Unidad Profesional Azcapotzalco Instituto Politécnico Nacional Ing. Félix Martínez Mateo Cerrada de Cecati S/N Col. Santa Catarina 02550, México, D.F.

Teléfono y fax: (55) 5352 8484

Dirección de correo electrónico: jvergara@ipn.mx

Acreditación: D-40 Vencimiento: 2002-08-15

Magnitud Dimensional	Intervalo	Resolución	Incertidumbre k=2
Calibradores vernier tipo escala, carátula y digital	0 a 150 mm	0,1; 0,05; 0,02; 0,01	<u>+</u> 25 μm

Responsable técnico: Técnicos:

Ing. Félix Martínez Mateo Ing. Juan Chávez Cleofas Ing. Marco Antonio Cortés Salas Ing. Roberto Martínez Sánchez

Metrología Integrada a la Manufactura, S.A. de C.V.

Ing. Antonio Angeles Yáñez Portal 92, Manzana 17, Lote 26 Col. Los Laureles

55090, Ecatepec, Estado de México

Teléfono: (55) 5770 3452 Fax: (55) 5770 4609

Dirección de correo electrónico: merlin53@pmpaq.net.mx

Acreditación: D-41 Vencimiento: 2002-10-17

Magnitud Dimensional	Intervalo	Resolución	Incertidumbre k=2
Micrómetro de exteriores	0 a 300 mm 0 a 300 mm	0,01 mm 0,001 mm	<u>+</u> 6,0 μm <u>+</u> 4,6 μm
Calibrador vernier	0 a 300 mm 0 a 300 mm	0,02 mm 0,05 mm	<u>+</u> 24 μm <u>+</u> 36 μm
Calibrador de carátula	0 a 300 mm	0,02 mm	<u>+</u> 19,0 μm
Calibrador electrodigital	0 a 300 mm	0,01 mm	<u>+</u> 15 μm
Indicador de cuadrante	0 a 100 mm	0,01 mm	<u>+</u> 5,0 μm
Comparador óptico	Hasta 350 mm diámetro de pantalla	0,001 mm	<u>+</u> 18,0 μm

Responsables técnicos:

(Primera Sección) 56

Ing. Antonio Angeles Yáñez Ing. Pedro Ramírez R. Ing. Vicente Silva

Ing. Alfredo Antonio Aguilar Ing. Guillermo Pedroza R.

Unidad Profesional Interdisciplinaria de Ingeniería, Ciencias Sociales

y Administrativas del Instituto Politécnico Nacional

Íng. Moisés Ramírez Tapia

Calle Té No. 950 Col. Granjas México 08400, México, D.F.

Teléfono: (55) 5624 2000 ext. 70126

Fax: (55) 5650 3840

Dirección de correo electrónico: mieleu34@hotmail.com

Acreditación: D-42 Vencimiento: 2002-10-17

Magnitud Dimensional	Intervalo	Resolución	Incertidumbre k=2
Calibrador con vernier	0 a 150 mm	0,1 mm	<u>+</u> 116 μm
y carátula	0 a 150 mm	0,02 mm	<u>+</u> 24 μm
·	0 a 150 mm	0,05 mm	+ 60 µm

Responsables técnicos:

Téc. Jorge Flores García Ing. Reyna Cruz Gómez TSU Aurelio Flores García Ing. Moisés Ramírez Tapia

Centro de Asistencia Técnica Profesional

"Cuautitlán Izcalli" CONALEP Ing. Benito Juan Morales Valeriano Av. Dr. Jorge Jiménez Cantú s/n

54700, Cuautitlán Izcalli, Estado de México

Teléfono: (55) 5880 9037 Fax: (55) 5880 9115 Acreditación: D-43 Vencimiento: 2002-10-17

Magnitud Dimensional	Alcance	Resolución	Incertidumbre k=2
Calibrador Universal	150 mm	0,01 mm	± (0,06 + 2,2x10 ⁻⁴ L)
	300 mm	0,01 mm	± (0,012 + 2,2x10 ⁻⁵ L)
	300 mm	0,05 mm	<u>+</u> (0,046 + 1,0x10 ⁻⁵ L)
	300 mm	0,02 mm	<u>+</u> (0,022 + 1,0x10 ⁻⁵ L)

Responsables técnicos:

Ing. Benito Juan Morales Valeriano Ing. Gabriel Jacob González Heras Ing. José Antonio Torres Echeverría Ing. Josué Pedro González Heras

Schneider Electric México, S.A. de C.V.

Ing. Víctor Galindo Méndez

km 17,5 vía corta Puebla-Santa Ana Chiautempan

90860, Acuamanala, Tlaxcala Teléfono: (249) 797 10 Fax: (249) 797 19

Dirección de correo electrónico: galindob@squard.com

Acreditación: D-44 Vencimiento: 2002-11-21

Magnitud Dimensional	Alcance	Incertidumbre k=2
Micrómetros para exteriores	0 mm a 25 mm	<u>+</u> 2 μm
Calibradores vernier	0 mm a 300 mm	<u>+</u> 5 μm
Medidores de altura	0 mm a 300 mm	+ 10 µm

Responsables técnicos:

Víctor Galindo Méndez Gonzalo Aguila Sánchez

Orlando Aguilar Montiel

Intervalo

4 mm a 50 mm

50 a 125 mm

125 a 275 mm

Incertidumbre k=2

<u>+</u> 1 µm

<u>+</u> 1,5 μm

<u>+</u> 2 μm

Mitutoyo Mexicana, S.A. de C.V. Ing. José Ramón Zeleny Vázquez Prolongación Industria Eléctrica No. 15 Parque Industrial Naucalpan 53370, Naucalpan, Estado de México

Teléfono: (55) 5312 5612 Fax: (55) 5312 5655

Dirección de correo electrónico: imm@mitutoyo.com.mx

Acreditación: D-45 Vencimiento: 2002-11-21

Anillos Patrón

Magnitud	Alcance				
Dimensional					

4 mm a 275 mm

Magnitud Dimensional	Alcance Resol		olución		Incertidumbre k=2		
Bloques patrón planoparalelo	1,27 a 25,4 mm	1	0,000	0,00001 mm		<u>+</u> 0,07 μm	
	25,4 a 101,6 mn	n	0,000	001 mm		<u>+</u> 0,11 μm	
Rugosímetro portátil de palpador	Parámetro Ra 0 a 4 m		0,0)1 μm		<u>+</u> 0,02 μm	
Radio de penetrador de diamante	0,15 a 0,25 mm	l	0,00)1 mm		<u>+</u> 0,007 mm	
Angulo de penetrador de diamante	115° a 125°		0,	001°		<u>+</u> 0,16°	
Comparadores ópticos, servicio en sitio	X=Y=0-50 mm X=Y=0-250 mm	ı	- ,)1 mm)1 mm		<u>+</u> 0,005 mm <u>+</u> 0,010 mm	
Mesas de planitud, servicio en sitio	190 x 100 mm a 3 658 x 1 828 mi	Grado		Grado 0 Grados 1, 2, 3		± 2 + 3L/1000 μm ± 2 + 4L/1000 μm	
Magnitud Dimensional	Alcance	Re	solución	Intervalo		Incertidumbre k=2	
Palpadores de amplificación electrónica	Hasta 1,5 mm		0,1 µm	0 a 5 µm		<u>+</u> 0,18 μm	
				0 a 15 µm		<u>+</u> 0,7 μm	
				0 a 50 µm		<u>+</u> 1,1 μm	
				0 a 500 μm		<u>+</u> 7,5 μm	
				0 a 1 500 μn	n	<u>+</u> 30,0 μm	
Reglas metálicas, rígidas y flexibles y semiflexibles	0 mm a 300 mm	1 mm y 0,5 mm		0 a 300 mm		<u>+</u> 0,01 mm	
Reglas de vidrio				0 a 50 mm		<u>+</u> 2 μm	
	0 mm a 300 mm	1 r	nm y 5 mm	0 a 200 mm		<u>+</u> 3,5 μm	
				0 a 300 mm		<u>+</u> 4 μm	

Magnitud Dimensional	Alcance	Incertidumbre k = 2
Patrones de radios	0,4 a 7 mm	<u>+</u> 0,1 mm
(cóncavos y convexos) Plantillas	7 a 25 mm	<u>+</u> 0,2 mm

Responsables técnicos: José Velázquez García Arturo Hernández Ballesteros Técnicos: José Luis Rubio García Gabriel Romualdo Domínguez Betsabé del Valle Ramírez

Hugo D. Labastida Jiménez

Carlos A. Nájera Montiel Antonio Villalobos Meléndez Sergio Moreno Vázquez

Héctor Ceballos Contreras Antonio Rosas López J. Miguel Martínez Cruz Luis López Saucedo

José Agustín Briones Guillermo Sánchez Juárez Marco Antonio Contreras Bautista

Magnitud Dimensional	Alcance máximo	Resolución	Incertidumbre k=2	Norma de referencia o procedimiento
Bloques Patrón Largos	100 a 1 000 mm		<u>+</u> (250+0,5 L) nm L en mm	NMX-CH-86-1994
Maestro de longitudes fijas (pasos uniformes)	0 a 2 000 mm 0 a 304,8 mm 0 a 609,6 mm		<u>+</u> (250+0,5 L) nm L en mm <u>+</u> 1,0 µm <u>+</u> 2,0 µm	IMM-163 IMM-06 y 08
Maestro de alturas	0 a 304,8 mm 0 a 457,2 mm 0 a 609,6 mm	0,2 µm	± 1,0 μm ± 1,5 μm ± 2,6 μm	ISO 7863-1984
Patrón para micrómetro de profundidades	0 a 150 mm 0 a 300 mm		<u>+</u> 0,6 μm <u>+</u> 1,0 μm	IMM-70 y 72
Reglas metálicas	0 a 3 000 mm	1,0 mm 0,5 mm	± (2,6+0,008 L) μm L en mm	NOM-040-SCFI-1994
Calibrador de indicadores	0 a 1,27 mm 0 a 5,8 mm 0 a 25,4 mm	0,2 μm 0,2 μm 1 μm	± 0,4 μm ± 0,5 μm ± 0,5 μm	IMM-66 y69 IMM-65 y 68 IMM-64 y 67

Responsables técnicos: José Luis Rubio García Carlos Abraham Nájera Montiel Antonio Villalobos Meléndez

Héctor Ceballos Contreras

Hugo Daniel Labastida Jiménez Gabriel Romualdo Domínguez Sergio Moreno Vázquez José Agustín Briones

Nacional de Conductores Eléctricos, S.A. de C.V.

Ing. Ana María Muñiz Martínez Industrias No. 3830, 1a. Sección Zona Industrial, Manzana 34

78395, San Luis Potosí, San Luis Potosí

Teléfono: (48) 26 53 39, 26 53 64

Fax: (48) 24 52 64

Dirección de correo electrónico: bcenteno@condumex.com.mx

Acreditación: D-46 Vencimiento: 2002-12-19

Magnitud Dimensional	Alcance	División mínima	Incertidumbre k=2
Instrumento a calibrar	0 mm a 150 mm	0,01 mm	15 μm
Calibrador digital electrónico	0 mm a 200 mm	0,01 mm	19 μm
Calibrador con vernier	0 mm a 150 mm	0,02 mm	24 μm
Calibrador de carátula	0 mm a 150 mm	0,05 mm	46 μm
Micrómetro de exteriores digital	0 mm a 25 mm	0,001 mm	1,4 μm
Micrómetro de exteriores analógico	0 mm a 25 mm	0,001 mm	1,7 μm
	0 mm a 25 mm	0,01 mm	10 μm

Responsables técnicos:

Ing. Armando Llanas Sánchez Téc. Ubaldo Santaella Torres

Llog, S.A. de C.V. Ing. Arturo Lara Cruz Cuitláhuac No. 54 Col. Aragón la Villa 07000, México, D.F. Teléfono: (55) 5750 1414 Fax: (55) 5577 3238

Dirección de correo electrónico: desarrollo@llogsa.com

Acreditación: D-47 Vencimiento: 2003-02-20

Magnitud Dimensional	Resolución	Alcance	Incertidumbre k=2
Calibración de medidores de espesores por ultrasonido	0,01 mm 0,01 mm	0 a 2,54 mm 2,54 a 25,4 mm	<u>+</u> 0,014 mm <u>+</u> 0,022 mm
Calibración de medidores de fallas por ultrasonido	0,01 mm	hasta 25,4 mm	<u>+</u> 0,022 mm

Responsable técnico:

Ing. Arturo Lara Cruz

Nacional de Conductores Eléctricos, S.A. de C.V.

Ing. Alfonso Figueroa Armenta

Poniente 140 No. 720 Col. Industrial Vallejo 02300, México, D.F. Teléfono: (55) 5328 2953 Fax: (55) 5328 2953

Dirección de correo electrónico: ggmejia@condumex.com.mx

Acreditación: D-48 Vencimiento: 2003-03-20

Magnitud Dimensional	Alcance	Incertidumbre k=2
Micrómetros	0 a 25 mm	<u>+</u> 5 μm
Calibradores	hasta 304,8 mm	<u>+</u> 20 μm
Reglas graduadas	hasta 1 000 mm	<u>+</u> 0,5 mm

Responsables técnicos:

Téc. Gustavo García Mejía Téc. José Luis Torres Padua

Téc. Ignacio López Olalde

Certifik, S.A. de C.V. Ing. Alfonso Castillón Martín San Jerónimo No. 514 Col. San Jerónimo 64640, Monterrey, Nuevo León

Teléfono: (81) 8348 2037 Fax: (81) 8348 1354 Acreditación: D-49 Vencimiento: 2003-03-20

Magnitud Dimensional	Alcance	Incertidumbre en µm con k=2, L en mm
Instrumentos a calibrar Anillos patrón lisos	1 mm a 245 mm	<u>+</u> (1,2 + 0,004 L)
Pernos patrón lisos	1 mm a 200 mm	<u>+</u> (1,2 + 0,004 L)
Pernos patrón roscados	M2X0,4 a M100X6 *	<u>+</u> (1,9 + 0,004 L)
Pernos patrón roscados	M8X1 a M100X6 *	<u>+</u> (1,9 + 0,004 L)

^{*} Diámetro nominal X paso, M es la designación correspondiente de ISO.

Magnitud Dimensional	Alcance máximo	División mínima	Incertidumbre en µm con k=2, L en mm
Instrumentos a calibrar Micrómetros para exteriores analógico	1 000 mm	0,01 mm 0,002 mm 0,001 mm	± (3,7 + 0,013 L) ± (2,5 + 0,013 L) ± (2,0 + 0,013 L)
Micrómetros para exteriores digital	1 000 mm	0,01 mm 0,001 mm	± (15 + 0,016 L) ± (2,0 + 0,016 L)
Micrómetros de profundidades analógico	300 mm	0,01 mm 0,002 mm 0,001 mm	± (3,7 + 0,014 L) ± (2,3 + 0,015 L) ± (1,7 + 0,017 L)
Micrómetros de profundidades digital	300 mm	0,01 mm 0,001 mm	<u>+</u> (12 + 0,015 L) + (1,7 + 0,016 L)

Micrómetros de interiores analógico dos puntas	450 mm	0,01 mm 0,002 mm	<u>+</u> (3,2 + 0,012 L) <u>+</u> (2,3 + 0,013 L)
·		0,001 mm	<u>+</u> (1,7 + 0,014 L)
Micrómetros de interiores digital	450 mm	0,01 mm	<u>+</u> (1,7 + 0,011 L)
dos puntas		0,001 mm	<u>+</u> (1,7 + 0,011 L)
Calibradores vernier	1 000 mm	0,05 mm	<u>+</u> (58 + 0,08 L)
		0,02 mm	<u>+</u> (24 + 0,08 L)
Calibradores de carátula	1 000 mm	0,05 mm	<u>+</u> (25 + 0,07 L)
		0,02 mm	<u>+</u> (11 + 0,07 L)
		0,01 mm	<u>+</u> (6 + 0,07 L)
Calibradores de profundidad digitales	300 mm	0,01 mm	<u>+</u> (12 + 0,07 L)
Medidores de alturas con vernier	1 000 mm	0,02	<u>+</u> (24 + 0,12 L)
Medidor de alturas de carátula	1 000 mm	0,02 mm	<u>+</u> (11 + 0,14 L)
		0,01 mm	<u>+</u> (6 + 0,12 L)
Medidor de alturas de digitales	1 000 mm	0,01 mm	<u>+</u> (12 + 0,12 L)
		0,001 mm	<u>+</u> (4 + 0,08 L)
Indicadores de carátula	50 mm	0,01 mm	<u>+</u> (3,4 + 0,12 L)
		0,005 mm	<u>+</u> (2,2 + 0,13 L)
		0,002 mm	<u>+</u> (1,7 + 0,14 L)
		0,001 mm	<u>+</u> (1,6 + 0,14 L)
Indicadores digitales	50 mm	0,01 mm	<u>+</u> (1,2 + 0,28 L)
		0,001 mm	<u>+</u> (1,9 + 0,14 L)
Máquina de medición unidimensional	450 mm	0,00002 mm	<u>+</u> (1,11 + 0,013 L)

Responsables técnicos:

Ing. Arturo Luévano Lucio

Téc. Eulogio Atilano Hernández

Vidriera Los Reyes, S.A. de C.V. Ing. Francisco Murillo Jaramillo Avenida Presidente Juárez No. 2039 Col. Los Reyes

54090, Tlalnepantla, Estado de México

Teléfono: (55) 5227 9624 Fax: (55) 5390 6780

Dirección de correo electrónico: labmetrologia@vto.com

Acreditación: D-50 Vencimiento: 2003-04-17

Magnitud	Alcance de medición	Intervalo de medición	Incertidumbre k=2	
Dimensional			Resolución	
			0,01 mm	0,02 mm
Calibradores vernier de	0 a 450 mm	0 a 150 mm	<u>+</u> 9 μm	<u>+</u> 17 μm
carátula y electrónico		0 a 200 mm	<u>+</u> 11 μm	<u>+</u> 21 µm
		0 a 300 mm	<u>+</u> 16 μm	<u>+</u> 24 µm
		0 a 450 mm	<u>+</u> 18 μm	<u>+</u> 26 µm
Calibradores de profundidad	0 a 300 mm	0 a 150 mm	<u>+</u> 9 μm	<u>+</u> 17 μm
		0 a 200 mm	<u>+</u> 11 μm	<u>+</u> 21 µm
		0 a 300 mm	<u>+</u> 16 μm	<u>+</u> 24 µm
Micrómetros de exteriores	0 a 450 mm	0 a 100 mm	<u>+</u> 6 μm	
e interiores dos puntos		100 a 300 mm	<u>+</u> 8 μm	
		300 a 450 mm	<u>+</u> 10 μm	
Micrómetros de profundidad	0 a 300 mm	0 a 300 mm	<u>+</u> 8 µm	
Indicador de carátula y electrónico	0 a 25 mm	0 a 25 mm	<u>+</u> 7 μm	<u>+</u> 12 μm
Medidor de alturas	0 a 600 mm	0 a 300 mm	<u>+</u> 9 μm	<u>+</u> 14 μm
		0 a 450 mm	<u>+</u> 10 μm	<u>+</u> 16 µm
		0 a 600 mm	<u>+</u> 12 μm	<u>+</u> 18 µm

Responsables técnicos: Ing. Francisco Murillo Jaramillo Alejandro Velázquez Hernández

Luis A. Buenrostro López

Grupo CTT, S.A. de C.V.

Lic. José Antonio Benítez Acosta

Avenida Independencia No. 1850 primer piso Fraccionamiento Jardines de la Concepción II 20120, Aguascalientes, Aguascalientes Teléfono y fax: (449) 712 3700

Acreditación: D-51 Vencimiento: 2003-05-15

Magnitud Dimensional	Alcance (mm)	Mínima división de escala (mm)	Incertidumbre k=2 (mm)	Norma de referencia o procedimiento
Calibración de medidores de espesores por ultrasonido	0 a 50 50 a 100 100 a 150 150 a 203,3	0,01	± 0,014 ± 0,017 ± 0,021 ± 0,025	CTT-POL-06-2000
Calibración de medidores de espesores por ultrasonido	0 a 50 50 a 100 100 a 150 150 a 203,3	0,1	± 0,08 ± 0,12 ± 0,17 ± 0,22	CTT-POL-06-2000
Calibración de detectores de fallas ultrasónico	0 a 12,7 12,7 a 63,5 63,5 a 127 127 a 203,3	0,1	± 0,10 ± 0,37 ± 0,74 ± 1,18	CTT-POL-07-1999

Responsables técnicos:

Oscar R. Domínguez García

Daniel Rodea Rodríguez

Centro de Instrumentos de la UNAM

Ing. Sergio Padilla Olvera Circuito Exterior S/N Ciudad Universitaria 04510, México, D.F. Teléfono: (55) 5622 8628

Fax: (55) 5622 8603

Dirección de correo electrónico: padillas@aleph.cinstrum.unam.mx

Acreditación: D-52

Magnitud Dimensional	Resolución	Alcance	Incertidumbre k=2	Norma de referencia o procedimiento
Instrumento Maestro de Alturas	1 μm	0 - 500 mm	<u>+</u> 2 μm	ISO 7863
Bloques de Aumento		0 - 500 mm	<u>+</u> 2 μm	ISO 7863
Maestro de Profundidad		0 - 500 mm	<u>+</u> 2 μm	MPT - 15
Maestros de Longitudes		0 - 500 mm	<u>+</u> 2 μm	MPT - 15
Comparador Optico	1 μm 1 minuto de arco	0 - 300 mm hasta 100 X 0 a 360°	± (2 + 10L) μm en longitud L en m En amplificación ± 0,06 % En ángulo ± 1 minuto de arco	JIS B 7184
Bloques Patrón	Grado 0 Grado 1 Grado 2	0,5 a 100 mm	<u>+</u> (0,05 + 0, 8L) μm L en m	ISO 3650
Barras Patrón para Micrómetro	Grado 1 Grado 2	25 mm a 1000 mm	<u>+</u> (0,1 + 2,7) μm L en m	BS 5317
Planos Opticos	Grado 1 Grado 2 Grado 3	Hasta 100 mm de diámetro	<u>+</u> (0,05) μm	JIS B 7430
Paralelas Opticas	Grado 0 Grado 1 Grado 2	Hasta 40 mm de diámetro	± (0,05) μm Planitud ± (0,05) μm Paralelismo	JIS B 7431

Mesas de Planitud (servicio en sitio)	Grado 0 Grado 1 Grado 2 Grado 3	Desde 0,2 m x 0,2 m hasta 3,0 m x 3,0 m	± 4,4 L μm L = Diagonal en m	ISO 8512-2
Niveles Electrónicos	0,1 segundo de arco	2000 segundos de arco	± 0,5 segundos de arco	MPT-08
Niveles de Burbuja	2 segundos de arco	Hasta 2000 segundos de arco	± 4,9 segundos de arco	JIS B 7511 JIS B 7901
Escalas Angulares (mesas divisoras)	1 segundo	0 a 2 ð rad	± 2,7 segundos de arco	MPT-05

Responsables técnicos:

Ing. Rigoberto Nava Sandoval Ing. Gerardo Ruiz Botello Ing. Benjamín Valera Orozco

Ing. Sergio Padilla Olvera Ing. José Sánchez Vizcaíno

Lakeside de México, S.A. de C.V. Ing. Dolores Cerón Toledano Isidro Fabela Norte No. 1536

Col. Parque Industrial 50030, Toluca, Estado de México Teléfono: (722) 279 1760 Fax: (722) 279 1760 ext. 5252 Acreditación: D-53 Vencimiento: 2003-07-17

Magnitud Dimensional	Alcance	Resolución	Incertidumbre k=2	Norma de referencia
Micrómetro de exteriores (indicación digital)	0 a 25 mm	0,001 mm	<u>+</u> 0,0015 mm	NMX-CH-99-SCFI-1993
Micrómetro de exteriores (indicación analógica)	0 a 25 mm	0,001 mm	<u>+</u> 0,002 mm	NMX-CH-99-SCFI-1993
Calibrador Vernier (Indicación digital)	0 a 100 mm 0 a 150 mm	0, 01 mm 0, 01 mm	<u>+</u> 0,008 mm <u>+</u> 0,010 mm	NMX-CH-02-SCFI-1993
Calibrador Vernier (Indicación analógica)	0 a 100 mm 0 a 100 mm 0 a 100 mm 0 a 150 mm 0 a 150 mm 0 a 150 mm	0,01 mm 0,02 mm 0,05 mm 0,01 mm 0,02 mm 0,05 mm	± 0,008 mm ± 0,016 mm ± 0,040 mm ± 0,010 mm ± 0,016 mm ± 0,040 mm	NMX-CH-02-SCFI-1993

Responsables técnicos:

Ing. Dolores Cerón Toledano Ing. Juan Manuel Romero Alonso QFB Leticia Gutiérrez Martínez QFB Carlos Castellanos Vargas Ing. Adamec Gutiérrez Cajero Tec. Jesús Zamora Fabián

Syntex, S.A. de C.V. Ing. Dolores Cerón Toledano Isidro Fabela Norte No. 1536 Col. Parque Industrial 50030, Toluca, Estado de México Teléfono: (722) 279 1760 Fax: (722) 279 1760 ext. 5252

Acreditación: D-54 Vencimiento: 2003-07-17

Magnitud Dimensional	Alcance	Resolución	Incertidumbre k=2	Norma de referencia
Micrómetro de exteriores (indicación digital)	0 a 25 mm	0,001 mm	<u>+</u> 0,0015 mm	NMX-CH-99-SCFI-1993
Micrómetro de exteriores (indicación analógica)	0 a 25 mm	0,001 mm	<u>+</u> 0,002 mm	NMX-CH-99-SCFI-1993
Calibrador Vernier (Indicación digital)	0 a 100 mm 0 a 150 mm	0,01 mm 0,01 mm	<u>+</u> 0,008 mm <u>+</u> 0,010 mm	NMX-CH-02-SCFI-1993
Calibrador Vernier (Indicación analógica)	0 a 100 mm 0 a 100 mm 0 a 100 mm 0 a 150 mm 0 a 150 mm 0 a 150 mm	0,01 mm 0,02 mm 0,05 mm 0,01 mm 0,02 mm 0,05 mm	± 0,008 mm ± 0,016 mm ± 0,040 mm ± 0,010 mm ± 0,016 mm ± 0,040 mm	NMX-CH-02-SCFI-1993

Responsables técnicos:

Ing. Dolores Cerón Toledano Ing. Juan Manuel Romero Alonso QFB Leticia Gutiérrez Martínez QFB Carlos Castellanos Vargas Ing. Adamec Gutiérrez Cajero Tec. Jesús Zamora Fabián

Altos Hornos de México, S.A. de C.V. Ing. Víctor Manuel Velázquez Campos Prolongación Juárez S/N

Col. La Loma 25770, Monclova, Coahuila Teléfono: (866) 649 38 00, (866) 649 33 30 ext. 1929

Fax: (866) 649 20 12

Dirección de correo electrónico: masanchez@gan.com.mx

Acreditación: D-55 Vencimiento: 2003-07-17

Magnitud Dimensional	Alcance	Resolución	Incertidumbre k=2	Norma de referencia
Flexómetros	hasta 15 m	1 mm	<u>+</u> (0,48+0,04L) mm L en m	NOM-046-SCFI-1999
Calibradores	hasta 300 mm	0,01 mm	<u>+</u> (0,012+0,00001L) mm L en mm	NMX-CH-02-1993
Micrómetros para exteriores	hasta 300 mm	0,001 mm	<u>+</u> (1,5+0,009L) m L en mm	NMX-CH-99-1993
Indicadores de carátula	hasta 20 mm	0,001 mm	<u>+</u> 0,0044 mm	NMX-CH-36-1994 JIS-B-7533-1996
Lainas patrón	hasta 1 mm		<u>+</u> 0,0019 mm	JIS-B-7524-1992

Responsables técnicos:

Ing. Miguel Angel Sánchez y Sánchez

Ing. Ismael Castillo Tovar

Aseguramiento Metrológico, S.A. de C.V.

Ing. Julio Ramírez Bonilla

Sierra Vista 340, interior 101 altos

Col. Lindavista 07300, México, D.F.

Teléfono: (55) 5754 3425 Fax: (55) 5754 6433

Dirección de correo electrónico: jramirez@asmet.com.mx

Acreditación: D-56 Vencimiento: 2003-07-17

Magnitud Dimensional	Alcance	Resolución	Incertidumbre k=2	Norma de referencia
Micrómetro	0 a 50 mm	0.001 mm	<u>+</u> 0.003 mm	
Exteriores		0.01 mm	<u>+</u> 0.005 mm	
	50 a 100 mm	0.001 mm	<u>+</u> 0.004 mm	
		0.01 mm	<u>+</u> 0.006 mm	NMX-CH-99-1993-SCFI
	100 a 150 mm	0.001 mm	<u>+</u> 0.006 mm	
		0.01 mm	<u>+</u> 0.007 mm	
	150 a 200 mm	0.001 mm	<u>+</u> 0.008 mm	
		0.01 mm	<u>+</u> 0.009 mm	
Micrómetro	200 a 250 mm	0.001 mm	<u>+</u> 0.009 mm	
Exteriores		0.01 mm	<u>+</u> 0.010 mm	
	250 a 300 mm	0.001 mm	<u>+</u> 0.011 mm	
		0.01 mm	<u>+</u> 0.012 mm	
	300 a 350 mm	0.001 mm	<u>+</u> 0.012 mm	
		0.01 mm	<u>+</u> 0.013 mm	
	350 a 400 mm	0.001 mm	<u>+</u> 0.014 mm	NMX-CH-99-1993-SCFI
		0.01 mm	<u>+</u> 0.015 mm	
	400 a 450 mm	0.001 mm	<u>+</u> 0.016 mm	
		0.01 mm	<u>+</u> 0.016 mm	
	450 a 500 mm	0.001 mm	<u>+</u> 0.017 mm	
		0.01 mm	<u>+</u> 0.018 mm	
Micrómetro	50 a 100 mm	0.001 mm	<u>+</u> 0.008 mm	

Miércoles 26 de junio de 2002		DIARIO OFIC	IAL	(Primera Sección) 64
Interiores		0.01 mm	<u>+</u> 0.010 mm	
(Tubular)	>100 a 200 mm	0.001 mm	<u>+</u> 0.016 mm	JIS B 7502 1994
		0.01 mm	<u>+</u> 0.017 mm	
	>200 a 300 mm	0.001 mm	<u>+</u> 0.024 mm	
		0.01 mm	<u>+</u> 0.025 mm	
Micrómetro de	0 a 100 mm	0.001 mm	<u>+</u> 0.012 mm	
Profundidades		0.01 mm	<u>+</u> 0.015 mm	
	>100 a 200 mm	0.001 mm	<u>+</u> 0.015 mm	
		0.01 mm	<u>+</u> 0.018 mm	JIS B 7544 1994
	>200 a 300 mm	0.001 mm	<u>+</u> 0.018 mm	
		0.01 mm	<u>+</u> 0.02 mm	
Calibradores		0.01 mm	<u>+</u> 0.01 mm	
	0 a 200 mm	0.02 mm	<u>+</u> 0.016 mm	NMX-CH-02-1993-SCFI
		0.05 mm	<u>+</u> 0.035 mm	
		0.01 mm	<u>+</u> 0.013 mm	
	>200 a 450 mm	0.02 mm	<u>+</u> 0.018 mm	
		0.05 mm	<u>+</u> 0.036 mm	NMX-CH-02-1993-SCFI
Calibradores		0.01 mm	<u>+</u> 0.015 mm	
	>450 a 600 mm	0.02 mm	<u>+</u> 0.019 mm	
		0.05 mm	<u>+</u> 0.037 mm	
		0.01 mm	<u>+</u> 0.011 mm	
	0 a 300 mm	0.02 mm	<u>+</u> 0.016 mm	
Calibradores		0.05 mm	<u>+</u> 0.041 mm	NMX-CH-141:1996 IMNC
de Alturas		0.01 mm	<u>+</u> 0.015 mm	
	>300 a 600 mm	0.02 mm	<u>+</u> 0.019 mm	
		0.05 mm	<u>+</u> 0.042 mm	
Indicadores	0 a 25 mm	0.01 mm	<u>+</u> 0.005 mm	NMX-CH-36-1994-SCFI
Medidores de	0 a 25 mm	0.001 mm	<u>+</u> 0.004 mm	AM-DC-15
Espesores		0.01 mm	<u>+</u> 0.006 mm	
Cintas Métricas	3000 mm		<u>+</u> 0.45 mm	
(Flexómetros)	5000 mm	1 mm	<u>+</u> 0.67 mm	NOM-046-SCFI-1999
	8000 mm		<u>+</u> 1.1 mm	

Responsables técnicos: Julio Ramírez Bonilla Víctor Manuel Escobar Reyes

Vencimiento: 2003-12-18

Calibradores de Carátula

Calibradores de Carátula

Alberto Huerta García Alejandro Torres Alfaro

 \pm (17 + 0,012 * L) μ m

± (27,5 + 0,0115 * L) μm

Soluciones de Metrología, S.A. de C.V. Sr. Juan Antonio Casillas Ríos Padre Mier No. 306 Fracc. Guadalupe Victoria 66050, Escobedo, Nuevo León Teléfono: (81) 89 01 09 60 Fax: (81) 89 01 09 61 Acreditación: D-57

Magnitud **Alcance** Resolución Incertidumbre Norma de referencia Dimensional Micrómetros Exteriores 500 mm 0,001 mm ± (4,9 + 0,0162 * L) μm Analógicos Micrómetros Exteriores 500 mm 0,01 mm ± (7,7 + 0,0146 * L) μm NMX-CH-99-1993 Analógicos Micrómetros Exteriores 500 mm 0,001 mm ± (3,1 + 0,0198 * L) μm Electro digitales Calibradores con Vernier 1 000 mm 0,02 mm ± (26 + 0,017 * L) μm Calibradores de Carátula \pm (10 + 0,013 * L) μ m 1 000 mm 0.01 mm Calibradores de Carátula 1 000 mm 0,01 mm ± (12,9 + 0,0141 * L) μm NMX-CH-02-1993

0,02 mm

0,05 mm

1 000 mm

1 000 mm

DIARIO OFICIAL

(Primera Sección) 65

Indicadores de carátula con husillo	25 mm	0,01 mm	± 6,5 μm	
Indicadores de carátula con husillo	25 mm	0,02 mm	± 14,1 µm	NMX-CH-36-1994
Indicadores electrodigitales con husillo	25 mm	0,01 mm	± 7,3 μm	
Cintas métricas	0 a 10 m	1 mm	<u>+</u> (337+ 0,012 * L) μm	NMX-CH-11-1993
Cintas métricas	>10 a 50 m	1 mm	+ (445+ 0,024 * L) µm	

Donde L es longitud en mm Signatarios autorizados: Juan Antonio Casillas Ríos

Jesús Alfredo Esparza V.

Metrotec, S.A. de C.V.

Ing. Rubén Gerardo Galindo Gurrola

5 Šur No. 4308 Col. Huexotitla

72534, Puebla, Puebla

Teléfono y fax: (222) 243 16 60

Acreditación: D-58 Vencimiento: 2003-12-18

Magnitud Dimensional	Alcance	Resolución	Incertidumbre k=2	Norma de referencia
Verificación del desempeño de máquinas de medición por tres coordenadas (X o Y o Z)	250 a 12 000 mm	0,001 mm	$X \circ Y \circ Z \pm (1,0 + 1,5 L / 1000)$ 1000 mm $Volumétrica \ge (1,2 + 2,0 L / 1000)$ 1000 mm Donde L (X,Y,Z) = mm	ASME B89.4.1- 1997

Donde L es longitud en mm

Signatarios autorizados:

Ing. Rubén Gerardo Galindo Gurrola Ing. Jesús Arizmendi Apango Ing. Jesús Silvestre Méndez Ing. Jesús Marañón Ruiz

Area: Dureza

Metrolab, S.A. de C.V. Ing. Marcelo Castañón Alvarez Av. San Nicolás No. 118 Col. Arboledas de San Jorge

66465, San Nicolás de los Garza, Nuevo León

Teléfono: (81) 8383 69 30

Fax: (81) 8383 69 33

Dirección de correo electrónico: jrodriguez@metrolab.com.mx

Acreditación: DZA-04 Vencimiento: 2003-08-21

Magnitud Dureza	Escala	Incertidumbre k=2	Norma de referencia
Dureza Rockwell	Completa	+ 1,5 HR	ISO 6508-2
Dureza Rockwell superficial	Completa	+ 2,0 HR	ISO 6508-2
Dureza Brinell	Completa	+ 2,0% L.	ISO 6506-2
Dureza Vickers	Completa	+ 2,0% L.	ISO 6507-2
Dureza Micro-Vickers	Completa	+ 3,0% L.	ISO 6507-2
Dureza Knoop	Completa	+ 2,0% L.	ASTM E384

Responsables técnicos:

Jaime Rodríguez Montelongo Ervey López Hinojosa Alberto García Hernández

Diagnóstico y Asesoría Técnica a Equipos de Laboratorio, S.A. de C.V. Ing. Jesús Moreno Velázquez

Ing. Jesús Moreno Velázquez Av. Mazatlán 152 A, Despacho 1 Col. Hipódromo Condesa 06170, México, D.F. Teléfono: (55) 5286 2211 Fax: (55) 5211 8676

Dirección de correo electrónico: datel_imv@hotmail.com

Acreditación: DZA-05 Vencimiento: 2003-02-20

Magnitud Dureza	Alcance	Incertidumbre k=2
Calibración de durómetros farmacéuticos	5 N a 500 N	± 1% Lectura

Responsables técnicos:

Jesús Moreno Velázquez Leonardo Moreno Ramírez Julio Montes de Oca González Guillermo Juárez Salinas Zulem Lara Echeverría

Control y Medición Laboratorios Metrológicos, S.A. de C.V.

Lic. Daniel Fuentes Contreras

Calle 12 No. 23-A

Col. San Pedro de los Pinos

03800, México, D.F. Teléfono: (55) 5516 9924 Fax: (55) 5277 8086

Dirección de correo electrónico: info_mex@conmed.com.mx

Acreditación: DZA-06 Vencimiento: 2002-10-01

Intervalo	Magnitud Dureza	Incertidumbre k=2
Escalas	Servicio de calibración de máquinas de medición de dureza	
Completa	Dureza Rockwell	<u>+</u> 2,0%
Completa	Dureza Rockwell superficial	<u>+</u> 1,5%
HB 10/3 000	Dureza Brinell	<u>+</u> 2,0%
Completa	Dureza Vickers	<u>+</u> 2,0%
Completa	Dureza Micro-Vickers	<u>+</u> 2,0%
Completa	Dureza Knoop	<u>+</u> 2,0%

Nota: Solamente se podrán proporcionar servicios de calibración, utilizando bloques de referencia propiedad de Control y Medición Laboratorios Metrológicos, S.A. de C.V. y el servicio de calibración sólo se realizará en medidores de dureza por penetración.

Responsables técnicos:

Lic. Daniel Fuentes Contreras Téc. Cayetano Pizaña Uribe Téc. Isidro Fuentes Contreras Ing. Eduardo Zamudio González Ina. Isidro Fuentes Domínguez Ing. Javier Ponce Arredondo

9	9		
Magnitud	Escalas	Incertidumbre	Norma de referencia
Dureza		k=2	
Dureza Shore Servicio de calibración de máquinas de	A, B, C, D, DO, O, OO	± 1% Lectura	ASTM D 2240
medición de Dureza			

Nota: El servicio de calibración se realizará en medidores de dureza que utilicen el principio de penetración.

Signatarios autorizados:

Lic. Daniel Fuentes Contreras Téc. Isidro Fuentes Contreras Ing. Javier Ponce Arredondo Téc. Cayetano Pizaña Uribe Ing. Eduardo Zamudio González Ing. Isidro Fuentes Domínguez

Servicios Metrológicos y Desarrollo, S.A. de C.V. Ing. Miguel Rodríguez Retana

Petén No. 641-B Col. Vértiz - Narvarte 03020, México, D.F.

Teléfono y fax: (55) 5605 9749

Dirección de correo electrónico: semyde@prodigy.net.mx

Acreditación: DZA-08 Vencimiento: 2003-10-16

Magnitud	Escala	Incertidumbre
Dureza		k=2

Dureza Rockwell	A	± 1,5%
Dureza Rockwell	В	± 1,5%
Dureza Rockwell	С	± 1,5%
Dureza Rockwell superficial	30 N	± 1,5%
Dureza Rockwell superficial	30 T	+ 1,5%
Dureza Brinell	HB 10 / 3 000	+ 2,0%
Dureza Vickers	HV 10	+ 1,5%
Dureza micro-Vickers	HV 0,5 y HV 1	± 2,0%

Signatarios autorizados:

Ing. Miguel Rodríguez Retana Ing. Olimpo Gómez Jasso

Ing. Armando Jiménez Arcega

Av. 1-A No. 28 Col. Santa Rosa 07620, México, D.F.

Teléfono y fax: (55) 5392 1626 Acreditación: DZA-09 Vencimiento: 2002-05-16

Magnitud Dureza	Intervalo	Incertidumbre k=2
Dureza	Rockwell B Rockwell C	<u>+</u> 1,5% <u>+</u> 1,5%

Responsable técnico:

Ing. Armando Jiménez Arcega

Mitutoyo Mexicana, S.A. de C.V. Ing. José Ramón Zeleny Vázquez Prolongación Industria Eléctrica No. 15 Parque Industrial Naucalpan

53370, Naucalpan, Estado de México Teléfono: (55) 5312 5612

Fax: (55) 5312 5655

Dirección de correo electrónico: imm@mitutoyo.com.mx

Acreditación: DZA-10 Vencimiento: 2002-12-19

Magnitud Dureza	Alcance	Incertidumbre k=2
Rockwell	Escala completa	<u>+</u> 2% L
Rockwell superficial	Escala completa	+ 1,5% L

Responsables técnicos:

Arturo Hernández Ballesteros Luis López Saucedo José Miguel Martínez Cruz Guillermo Sánchez Juárez

Antonio Rosas López Javier Contreras Ramírez Marco Antonio Contreras Bautista

Abaco Ingeniería de Instrumentación y Electrónica Industrial, S.A. de C.V.

Ing. Salvador Frías Ramírez

Av. La Nacional No. 532, Edificio B, Depto. 1

Col. Santa Clara Coatitla

55540, Ecatepec, Estado de México

Teléfono: (55) 5569 4862 Fax: (55) 5791 95 22

Dirección de correo electrónico: abacoi@prodigy.net

Acreditación: DZA-11 Vencimiento: 2003-06-19

Magnitud Dureza	Alcance	Incertidumbre k=2	Norma de referencia o procedimiento
Rockwell	B C	2 HRB 1,5 HRC	ISO 6508-2
Rockwell superficial	15, 30, 45 HRT 15, 30, 45 HRN	2 HRT 1,5 HRN	ISO 6508-2
Brinell	3 000 kg	2%	ISO 6506-2

Responsables técnicos:

Ing. Salvador Frías Ramírez Jorge Samuel Luna Serna Comercializadora y Servicios Técnicos "SL", S.A. de C.V.

Ing. Francisco Arechavaleta Rodríguez

Leandro Valle No. 36 Col. Ciudad López Mateos

52900, Atizapán de Zaragoza, Estado de México Teléfono: (55) 5822 8896

Fax: (55) 5825 1272

Dirección de correo electrónico: cstmex01@terra.com.mx

Acreditación: DZA-12 Vencimiento: 2003-06-19

Magnitud Dureza	Alcance	Incertidumbre k=2	Norma de referencia o procedimiento
Dureza Rockwell	Completa	<u>+</u> 1,5 HR	cyst-PT-02.03
Dureza Rockwell superficial	Completa	<u>+</u> 2,0 HR	
Dureza Brinell	Completa	<u>+</u> 2,0%	cyst-PT-03.04
Dureza Vickers	Completa	<u>+</u> 2,0%	cyst-PT-04.03
Dureza micro Vickers	Completa	<u>+</u> 2,0%	cyst-PT-05.03
Dureza Knoop	Completa	<u>+</u> 2,0%	cyst-PT-06.03
Dureza Shore	A, B, C, D, DO, O, OO	<u>+</u> 0,5%	cyst-PT-01.04

Nota: Solamente podrán proporcionar servicios de calibración, utilizando bloques de referencia de su propiedad y el servicio de calibración sólo se realizará en medidores de dureza por penetración.

Responsables técnicos:

Ing. Francisco Arechavaleta Rodríguez José Antonio Herrera González Víctor Hugo Valenzuela Zamudio

*Excepto para dureza Shore.

José Luis Rivera Jiménez Isaac Alfonso Suárez Soriano * Víctor Raúl Martínez Romero

Calibración y Certificación, S.A. de C.V. Ing. Reynaldo Cárdenas Marroquín

Helios No. 3320 Col. Country Tesoro

64850, Monterrey, Nuevo León Teléfono: (81) 8676 41 14 Fax: (81) 8357 98 36 Acreditación: DZA-13 Vencimiento: 2003-09-18

Magnitud Dureza	Escala	Incertidumbre k=2	Norma de Referencia
Dureza Rockwell	Completa	± 1,5 HR	ISO 6508-2
Dureza Rockwell Superficial	Completa	± 2,0 HR	ISO 6508-2
Dureza Brinell	Completa	± 2,0%	ISO 6506-2
Dureza Vickers	Completa	± 2,0%	ISO 6507-2
Dureza Micro Vickers	Completa	± 3,0%	ISO 6507-2
Dureza Knoop	Completa	± 3,0%	ASTM-E-384

Responsables técnicos:

Reynaldo Cárdenas Marroquín Edy Samuel Ibarra Carreón Roberto García González Luis Angel Villarreal Lozano

Sistemas Integrales de Calibración y Aseguramiento Metrológico, S.A. de C.V. QFB Ezequiel E. Noguez Sáenz

Juan Aldama Sur No. 1135

Col. Universidad

50130, Toluca, Estado de México Teléfono: (722) 270 15 84 Fax: (722) 270 15 84

Dirección de correo electrónico: dolores.ceron@terra.com.mx Acreditación: DZA-14 (Norma NMX-EC-17025-IMNC-2000)

Vencimiento: 2006-04-16

Magnitud Dureza	Alcance	Incertidumbre k=2
Calibración de Durómetros Farmacéuticos	10 N A 500 N	<u>+</u> 0,5% Lectura

Ing. Ma. de los Dolores Cerón Toledano Ing. Jesús Zamora Fabián

Ing. Felipe de Jesús Noguez Sáenz

Area: Eléctrica

Servicios Profesionales en Instrumentación, S.A. de C.V.

Ing. Juan Edmundo Garay Moreno

Norte 42-A No. 3618 Col. 7 de Noviembre

07840, México, D.F.
Teléfonos y fax: (55) 5759 3199, 5537 0862
Dirección de correo electrónico: sepri1@netmex.com

Acreditación: E-17 Vencimiento: 2004-04-16

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Medición	1 mV a 100 mV	± 8,0 ppm
Tensión en corriente continua	100 mV a 1 V	± 4,7 ppm
. Gildion on comerne commun	1 V a 10 V	± 4,5 ppm
	10 V a 100 V	± 6,6 ppm
	100 V a 1000 V	± 6,4 ppm
Medición	1 kV a 20 kV	± 0,08%
Alta tensión en corriente continua	20 kV a 100 kV	± 0,5%
Medición	0,1 nA a 100 nA	± 0,043%
Intensidad de corriente continua	100 nA a 1 μA	± 60 ppm
método directo	1 μΑ α 10 μΑ	± 30 ppm
	10 μΑ a 100 μΑ	± 28 ppm
	0,1 mA a 1 mA	± 25 ppm
	1 mA a 10 mA	± 25 ppm
	10 mA a 100 mA	± 40 ppm
	0,1 A a 1 A	± 0,012%
Medición	20 μΑ a 100 μΑ	± 14 ppm
Intensidad de corriente continua	0,1 mA a 1 mA	± 12 ppm
método indirecto	1 mA a 10 mA	± 18 ppm
	10 mA a 100 mA	± 21 ppm
	100 mA a 500 mA	± 27 ppm
	0,5 A a 2,5 A	± 50 ppm
	2,5 A a 5 A	± 0,01%
	5 A a 10 A	± 0,01%
Medición	1 mV a 10 mV	,
Tensión en corriente alterna	10 Hz a 40 Hz	± 0.063%
Totalon on comonic anoma	40 Hz a 1 kHz	± 0,031%
	1 kHz a 20 kHz	± 0,041%
	20 kHz a 50 kHz	± 0,041%
	50 kHz a 100 kHz	± 0,11%
	100 kHz a 300 kHz	± 4%
Medición	10 mV a 10 V	= :,%
Tensión en corriente alterna	10 Hz a 40 Hz	± 0,011%
Tonoion on comonic alterna	40 Hz a 1 kHz	± 90 ppm
	1 kHz a 20 kHz	± 0.016%
	20 kHz a 50 kHz	± 0,010% ± 0,032%
	50 kHz a 100 kHz	± 0,032% ± 0,082%
		•
	100 kHz a 300 kHz 300 kHz a 1 MHz	± 0,31%
	1 MHz a 2 MHz	± 1,0% ± 1,5%
Marall -15		±1,570
Medición Tensión en corriente alterna	10 V a 100 V 10 Hz a 40 Hz	. 0.0249/
rension en comente alterna		± 0,024%
	40 Hz a 20 kHz	± 0,019%
	20 kHz a 50 kHz	± 0,037%
	50 kHz a 100 kHz	± 0,12%
	100 kHz a 300 kHz	± 0,41%
	300 kHz a 1 MHz	± 1,5%

Miercoles 26 de junio de 2002	DIARIO OFICIAL	(Primera Seccion) /0		
Medición	100 V a 750 V	± 0,045%		
Tensión en corriente alterna	10 Hz a 40 Hz	± 0,019%		
	40 Hz a 20 kHz	± 0,12%		
	20 kHz a 50 kHz	± 0,3%		
	50 kHz a 100 kHz			
Medición de diferencia corriente	1 V			
alterna-corriente continua	50 Hz	± 25 ppm		
	1 kHz	± 25 ppm		
Generación y Medición de	10 kHz	± 25 ppm		
Tensión en corriente alterna	3 V			
Empleando transferencia térmica en	50 Hz	± 25 ppm		
forma puntual	1 kHz	± 25 ppm		
Medición de diferencia corriente	10 V			
alterna-corriente continua	50 Hz	± 25 ppm		
	1 kHz	± 25 ppm		
Generación y Medición de	10 kHz	± 25 ppm		
Tensión en corriente alterna	30 V			
Empleando transferencia térmica en	50 Hz	± 25 ppm		
forma puntual	1 kHz	± 25 ppm		
Medición de diferencia corriente	50 V			
alterna-corriente continua	50 V 50 Hz	. 25 nnm		
alterna-comente continua	1 kHz	± 25 ppm		
		± 25 ppm		
Generación y Medición de	100 V	0.5		
Tensión en corriente alterna	50 Hz	± 25 ppm		
Empleando transferencia térmica en	1 kHz	± 25 ppm		
forma puntual	10 kHz	± 25 ppm		
Medición de diferencia corriente	300 V			
alterna-corriente continua	50 Hz	± 35 ppm		
	1 kHz	± 35 ppm		
Generación y Medición de	500 V			
Tensión en corriente alterna	50 Hz	± 35 ppm		
Empleando transferencia térmica	1 kHz	± 35 ppm		
en forma puntual	1 000 V			
	50 Hz	± 35 ppm		
	1 kHz	± 35 ppm		
Medición	45 Hz a 65 Hz			
Alta Tensión en corriente alterna	1 kV a 35 kV	± 0,35%		
	35 kV a 100 kV	± 1,0%		
	Pico a pico	,.,,		
	1 kV a 140 kV	± 2,0%		
Medición	1 μA a 100 μA			
Intensidad de corriente en corriente	10 Hz a 20 Hz	± 0,43%		
alterna-método directo	20 Hz a 45 Hz	± 0,43 % ± 0,18%		
alterna-metodo directo	45 Hz a 100 Hz	± 0,10%		
	100 Hz a 5 kHz	± 0,09%		
		± 0,0370		
	0,1 mA a 100 mA	. 0.400/		
	10 Hz a 20 Hz	± 0,42%		
	20 Hz a 45 Hz	± 0,17%		
	45 Hz a 100 Hz	± 0,08%		
	100 Hz a 5 kHz	± 0,05%		
	5 kHz a 20 kHz	± 0,08%		
	20 kHz a 50 kHz	± 0,44%		
	50 kHz a 100 kHz	± 0,7%		

DIARIO OFICIAL	(Primera Sección)	71
0,1 A a 1 A		
10 Hz a 20 Hz	+ 0.42%	

Miercoles 20 de junio de 2002	DIANIO OFICIAL	(Filliera Seccioli) /1
Medición	0,1 A a 1 A	
Intensidad de corriente en corriente	10 Hz a 20 Hz	± 0,42%
alterna-método directo	20 Hz a 45 Hz	± 0,18%
ลเเอเกล-เกอเบนบ นิเเอยเบ	45 Hz a 100 Hz	± 0,1%
	100 Hz a 5 kHz	± 0,12%
	5 kHz a 20 kHz	± 0,32%
	20 kHz a 50 kHz	± 0,32% ± 1,04%
		± 1,04%
	1 A a 20 A	
	20 Hz a 500 Hz	± 0,05%
Medición	45 Hz 1 kHz	
Intensidad de corriente en corriente	20 μΑ a 100 μΑ	± 0,015%
alterna-método indirecto	0,1 mA a 1 mA	± 0,015%
	1 mA a 10 mA	± 0,015%
	10 mA a 100 mA	± 0,015%
	100 mA a 500 mA	± 0,016%
	0,5 A a 2,5 A	± 0,015%
	2,5 A a 5 A	± 0,015%
	5 A a 10 A	± 0,01%
Medición	0,5 Ω a 10 Ω	± 20 ppm
Resistencia eléctrica	10 Ω a 100 Ω	± 17 ppm
método directo	100 Ω a 100 k Ω	± 11 ppm
	0,1 MΩ a 1 MΩ	± 17 ppm
	1 MΩ a 10 MΩ	± 60 ppm
	10 MΩ a 100 MΩ	± 0,051%
	100 MΩ a 1 GΩ	± 0,5%
Medición	100 μA a 20,5 A	
Resistencia eléctrica	50 μ Ω	± 0,062%
Método indirecto	50 μΩ α 100 Ωμ	± 0,034%
	100 μΩ a 500 Ωμ	± 0,017%
	500 μΩ a 1000 Ωμ	± 0,015%
	1 mΩ a 10 mΩ	± 68 ppm
	10 m Ω a 1 Ω	± 27 ppm
	100 μA a 20,5 A; 45 Hz a 1 kHz	± 0,24%
	50 μΩ a 100 μΩ	± 0,061%
	100 μ Ω a 500 μ Ω	± 0,043%
	500 μΩ a 1000 μΩ	± 0,024%
	1 mΩ a 1 Ω	± 0,024%
	1 Ω a 10 Ω	,
Medición	100 V a 10 kV	
Resistencia eléctrica	10 kΩ a 100 kΩ	± 30 ppm
Método indirecto	100 kΩ a 10 MΩ	± 30 ppm
e.eeeaeee	10 ΜΩ α 100 ΜΩ	± 34 ppm
	100 ΜΩ a 1 GΩ	± 62 ppm
	1 GΩ a 10 GΩ	± 0,01%
	10 GΩ a 100 GΩ	± 0,023%
	100 GΩ a 500 GΩ	± 0,20%
	500 GΩ a 1 TΩ	± 0,40%
		-, -
	Método de comparación	± 1,2 ppm
	10 Ω y 10 kΩ	• • •
Medición		
Potencia eléctrica en corriente	1 V a 1000 V	± 0,6%
continua	50 μA a 5 A	,-,-
Medición	20 Hz a 500 Hz	
MICUICION	250 mV a 750 V	± 0,11%
Potencia eléctrica en corriente	250 10 / 3 / 50 /	
Potencia eléctrica en corriente alterna	40 mA a 20 A	± 0,1170

Miércoles 26 de junio de 2002

Medición Angulo de fas	e	250 mV a 750 V; 20 Hz a 500 Hz 40 mA a 20 A		± 0,05°	
, angulo de las		-180° a 0 a + 180°			_ 0,00
		50 mV a 500 V; 500			± 0.05°
		-180° a 0 a			± 0,00
					0.00
		500 mV a 600 V, 4			± 0,2°
		20 A a 5	*		
		-180° a 0 a	+ 180°		
Medición					
Factor de Poten	cia	Atrasado 0,1 – 0 – 0	0,1 Adelantado		± 0,001
Medición					
Frecuencia para Tensión eléctrica		50 mV a	50 V	± 0,5 ppm	
•		0,01 Hz a 2	2 MHz		
Medición					_
Capacitancia		50 Hz a 1	kHz		± 0,077%
o apacitairo a		1 pF a 1,1			_ 0,070
Medición		50 Hz a 1	kHz		± 0,077%
Inductancia		100 µH a 10 H			,
Magnitud		Alcance	Frecuenc	ia	Incertidumbre
Eléctrica					k=2
Medición					
Relación de	Transformadores de Tensión:		45 Hz a 100 Hz		± 0,01%
transformación	1141151011		0 a 150		2 0,0 1 70
Hansionnacion	T	I' Z			0.000/
	ransform	nadores de corriente: 45 Hz a 100			± 0,02%
		l ₁ /l ₂ 0 a 200			

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Medición Simulación eléctrica de Temperatura		
Sensor tipo RTD Pt 385 100 Ω Sensor tipo RTD	200°C a 850°C	± 17 ppm (valor resistivo)
Pt 3916 100 Ω Sensor tipo RTD	-200°C a 650°C	± 17 ppm (valor resistivo)
Pt 385 1000 Ω	-200°C a 850°C	± 0,059%
Medición y Generación de Energía	45 a 65 Hz 60 V a 600 V; 1 μA a 50 A 0° y – 60°	± 0,025%
Medición y Generación de Simulación Eléctrica de Temperatura		
Sensor tipo termopar B	600°C a 800°C 800°C a 1 000°C 1 000°C a 1 550°C 1 550°C a 1 820°C	± 0,34°C ± 0,26°C ± 0,23°C ± 0,26°C
Sensor tipo termopar C	0°C a 800°C 150°C a 1 000°C 650°C a 1 550°C 1 000°C a 1 800°C 1 800°C a 2 316°C	± 0,23°C ± 0,20°C ± 0,24°C ± 0,39°C ± 0,65°C
Sensor tipo termopar E	-250°C a -100°C -100°C a -25°C -25°C a 350°C 350°C a 650°C 650°C a 1 000°C	± 0,39°C ± 0,12°C ± 0,11°C ± 0,12°C ± 0,16°C

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Primera Sección) 73
Sensor tipo termopar J	-210°C a -100°C	± 0,21°C
	-100°C a -30°C	± 0,12°C
	-30°C a 150°C	± 0,11°C
	150°C a 760°C	± 0,13°C
	760°C a 1 200°C	± 0,18°C
Sensor tipo termopar K	-210°C a -100°C	± 0,26°C
Consor apo termopar ix	-100°C a -25°C	± 0,14°C
	-25°C a 120°C	± 0,12°C
	120°C a 1 000°C	± 0,20°C
	1 000°C a 1 372°C	± 0,31°C
Songer tipe termoner I	-200°C a -100°C	± 0,29°C
Sensor tipo termopar L	-100°C a 800°C	± 0,29 C ± 0,20°C
	800°C a 900°C	
		± 0,13°C
Sensor tipo termopar N	-210°C a -100°C	± 0,31°C
	-100°C a -25°C	± 0,17°C
	-25°C a 120°C	± 0,15°C
	120°C a 410°C	± 0,14°C
	410°C a 1 300°C	± 0,21°C
Sensor tipo termopar R	0°C a 250°C	± 0,44°C
·	250°C a 400°C	± 0,27°C
	400°C a 1 000°C	± 0,26°C
	1 000°C a 1 767°C	± 0,31°C
Sensor tipo termopar S	0°C a 250°C	± 0,36°C
Gensor tipo termopar G	250°C a 400°C	± 0,28°C
	400°C a 1 000°C	± 0,29°C
	1 000°C a 1 767°C	± 0,36°C
0 11 1 7		+
Sensor tipo termopar T	-250°C a -150°C	± 0,49°C
	-150°C a -0°C	± 0,19°C
	0°C a 120°C	± 0,12°C
	120°C a 400°C	± 0,11°C
Sensor tipo termopar U	-200°C a 0°C	± 0,43°C
	0°C a 600°C	± 0,21°C
Generación	1 μV a 330 mV	± 18 ppm
Tensión en corriente continua	330 mV a 3,3 V	± 9 ppm
	3,3 V a 33 V	± 10 ppm
	33 V a 330 V	± 12 ppm
	330 V a 1 000 V	± 12 ppm
Generación		
Alta Tensión en corriente continua	1 kV a 20 kV	± 0,08%
	4 20	= 0,0070
Generación Alta Tensión en corriente alterna	40 Hz a 100 Hz	. 0.359/
Alta Tension en comente alterna		± 0,35%
	1 kV a 35 kV	
Generación	0,1 μΑ a 330 μΑ	± 0,016%
Intensidad de corriente en corriente	330 μA a 3,3 mA	± 89 ppm
continua	3,3 mA a 33 mA	± 84 ppm
	33 mA a 330 mA	± 84 ppm
	330 mA a 1,1 A	± 0,018%
	1,1 A a 3 A	± 0,031%
*Exclusivamente para la calibración	3 A a 11 A	± 0,042%
de ampérmetros de gancho	11 A a 20,5 A	± 0,08%
	20,5 A a 1000 A *	± 0,5%
Generación	1 mV a 33 mV	
Tensión en corriente alterna	10 Hz a 45 Hz	± 0,076%
	45 Hz a 10 kHz	± 0,026%
	10 kHz a 20 kHz	± 0,030%
	20 kHz a 50 kHz	± 0,092%
	50 kHz a 100 kHz	± 0,29%
	100 kHz a 500 kHz	± 0,074%
ı		1 2,500.00

liércoles 26 de junio de 2002	DIARIO OFICIAL	(Primera Sección) 74
	33 mV a 330 mV	
	10 Hz a 45 Hz	± 0,041%
	45 Hz a 10 kHz	± 0,013%
	10 kHz a 20 kHz	± 0,014%
	20 kHz a 50 kHz	± 0,029%
	50 kHz a 100 kHz	± 0,070%
	100 kHz a 500 kHz	± 0,17%
	033 V a 3,3 V	± 0,17%
		. 0.0240/
	10 Hz a 45 Hz	± 0,024%
	45 Hz a 10 kHz	± 0,013%
	10 kHz a 20 kHz	± 0,016%
	20 kHz a 50 kHz	± 0,024%
	50 kHz a 100 kHz	± 0,057%
	100 kHz a 500 kHz	± 0,20%
	3,3 V a 33 V	
	10 Hz a 45 Hz	± 0,025%
	45 Hz a 10 kHz	± 0,013%
	10 kHz a 20 kHz	± 0,020%
	20 kHz a 50 kHz	± 0,029%
	50 kHz a 100 kHz	± 0,074%
	33 V a 330 V	
	45 Hz a 1 kHz	± 0,015%
	1 kHz a 10 kHz	± 0,017%
	10 kHz a 20 kHz	± 0,021%
	20 kHz a 50 kHz	± 0,025%
	50 kHz a 100 kHz	± 0,17%
Generación	330 V a 1000 V	± 0,1770
Tensión en corriente alterna	45 Hz a 1 kHz	± 0,024%
rension en comente alterna	1 kHz a 5 kHz	± 0,024% ± 0,020%
	5 kHz a 10 kHz	± 0,020 % ± 0,024%
Generación	0,03 mA a 0,33 mA	-,-
Intensidad de corriente	10 Hz a 20 Hz	± 0,18%
en corriente alterna	20 Hz a 45 Hz	± 0,14%
on comonic atoma	45 Hz a 1 kHz	± 0,12%
	1 kHz a 5 kHz	± 0,127%
	5 kHz a 10 kHz	± 0,27 %
	10 kHz a 30 kHz	± 1,3%
	0,33 mA a 3,3 mA	,
	10 Hz a 20 Hz	± 0,16%
	20 Hz a 45 Hz	± 0,10%
	45 Hz a 1 kHz	± 0,081%
	1 kHz a 5 kHz	± 0,16%
	5 kHz a 10 kHz	± 0,40%
	10 kHz a 30 kHz	± 0,79%
	3,3 mA a 33 mA	
	10 Hz a 20 Hz	± 0,14%
	20 Hz a 45 Hz	± 0,075%
	45 Hz a 1 kHz	± 0,036%
	1 kHz a 5 kHz	± 0,067%
	5 kHz a 10 kHz	± 0,16%
	10 kHz a 30 kHz	± 0,32%
	33 mA a 330 mA	
	10 Hz a 20 Hz	± 0,14%
	20 Hz a 45 Hz	± 0,075%
	45 Hz a 1 kHz	± 0,036%
	1 kHz a 5 kHz	± 0.090%
	5 kHz a 10 kHz	± 0,20%
	SKIZATUKIZ	± 0,2070

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Primera Sección) 75
	0,330 A a 3 A	
	10 Hz a 45 Hz	± 0,14%
	45 Hz a 1 kHz	± 0,049%
	1 kHz a 5 kHz	± 0,49%
	5 kHz a 10 kHz	± 2,1%
	3 A a 11 A	
	45 Hz a 100 Hz	± 0,061%
	100 Hz a 1 kHz	± 0,092%
	1 kHz a 5 kHz	± 2,3%
	11 A a 20,5 A	
	45 Hz a 100 Hz	± 0,11%
	100 Hz a 1 kHz	± 0,14%
	1 kHz a 5 kHz	± 2,3%
*Exclusivamente para la calibración	20,5 A a 1000 A *	
de ampérmetros de gancho	45 Hz a 65 Hz	± 0,5%
Generación	Calibrador multifunciones	
Resistencia eléctrica	0,5 Ω a 11 Ω	± 102 ppm
	11 Ω a 33 Ω	± 61 ppm
	33 Ω a 110 Ω	± 32 ppm
	110 Ω a 330 Ω	± 26 ppm
	330 Ω a 1,1 kΩ	± 23 ppm
	1,1 k Ω a 3,3 k Ω 3,3 k Ω a 11 k Ω	± 26 ppm
	3,3 kΩ a 11 kΩ 11 kΩ a 33 kΩ	± 23 ppm
	33 kΩ a 110 kΩ	± 26 ppm ± 23 ppm
	110 kΩ a 330 kΩ	± 23 ppm
	$330 \text{ k}\Omega \text{ a } 1,1 \text{ M}\Omega$	± 26 ppm
	$1,1 \text{ M}\Omega \text{ a } 3,3 \text{ M}\Omega$	± 54 ppm
	$3,3 \text{ M}\Omega$ a 11 M Ω	± 0,010%
	11 M Ω a 33 M Ω	± 0,025%
	33 M Ω a 110 M Ω	± 0,041%
	110 M Ω a 330 M Ω	± 0,26%
	330 M Ω a 1,1 G Ω	± 1,2%
Generación	Décadas	
Resistencia eléctrica	5 V a 100 V	± 0,01%
	1 Ω a 100 kΩ	± 0,02%
	100 kΩ a 1 MΩ	± 0,05%
	1 MΩ a 10 MΩ	± 0,05%
	10 MΩ a 100 MΩ	± 0,08%
	100 MΩ a 1 GΩ	
	corriente continua a 1 kHz	0.000/
	1 Ω a 100 kΩ	± 0,02%
Generación	Derivadores y décadas	
Resistencia eléctrica	1 A a 20 A	
	50 μΩ	± 0,063%
	75 μΩ	± 0,043%
	100 μΩ	± 0,034%
	150 μΩ	± 0,025%
	300 μΩ 400 μΩ	± 0,018% ± 0,017%
	400 μΩ 667 μΩ	± 0,017% ± 0,016%
	1 000 μΩ	± 0,016% ± 0,015%
	50 mΩ	± 0,012%
	100 mΩ	± 5,0 1270 ± 50 ppm
	1 Ω	± 37 ppm
Generación	Décadas	11
Resistencia eléctrica	100 V a 10 kV	± 0,08%
	1 kΩ a 100 kΩ	± 0,08%
	100 kΩ a 1 MΩ	± 0,08%
	1 MΩ a 10 MΩ	± 0,08%
	10 MΩ a 100 MΩ	± 0,08%
	100 MΩ a 10 GΩ	± 0,08%
	10 G Ω a 22 G Ω	± 0,08%

Whereores 20 de junto de 2002	DIARIO OFICIAL	(Fillicia Seccion) 70
Generación	33 mV a 1000 V	
Potencia en corriente continua	50 nA a 330 μA	± 0,016%
1 otencia en comente continua	0,33 mA a 3,3 mA	± 90 ppm
	3,3 mA a 33 mA	• •
	1 · · · · · · · · · · · · · · · · · · ·	± 84 ppm
	33 mA a 330 mA	± 84 ppm
	330 mA a 1,1 A	± 0,018%
	1,1 A a 3 A	± 0,031%
* Exclusivamente para la calibración	3 A a 11 A	± 0,042%
de medidores de potencia	11 A a 20,5 A	± 0,08%
con gancho	20,5 A a 1 000 A *	± 0,5%
Generación	33 mV a 1 000 V	·
Potencia en corriente alterna	F.P. = 1	
Fotericia en comente alterna		
	45 Hz a 10 kHz	0.400/
	29 μΑ α 330 μΑ	± 0,12%
	0,33 mA a 3,3 mA	± 0,082%
	3,3 mA a 33 mA	± 0,038%
	33 mA a 330 mA	± 0,038%
	0,33 A a 3 A	± 0,051%
	45 Hz a 5 kHz	
	3 A a 11 A	± 0,062%
	11 A a 20,5 A	± 0,11%
	,	2 0,1170
	Para Factor de potencia variable,	
	agregar a la Incertidumbre del F.P. = 1	
	la incertidumbre del factor	
	de potencia variable	
	0,9	± 0,066%
	0,8	± 0,10%
	0,7	± 0,14%
	0,6	± 0,18%
	0,5	± 0,23%
	0,4	± 0,31%
	0,3	± 0,43%
	0,2	± 0,66%
	0,1	± 1,3%
Generación		
Potencia en corriente alterna	33 mV a 1 000 V	± 0,55%
*Exclusivamente para la calibración	45 Hz a 5 kHz	,
de medidores de potencia	F.P. de 0,2 a 1	
-	•	
con gancho	20,5 A a 1 000 A *	
Generación	10 mV a 1 000 V; 1 μA a 20,5 A	
Variación de ángulo de fase	10 Hz a 65 Hz	
3	± 180°	± 0,078°
	Atrasado 0,1 - 0 - 0,1 Adelantado	2 0,070
	, , , , , , , , , , , , , , , , , , ,	
	65 Hz a 500 Hz	
	± 180°	± 0,19°
	Atrasado 0,1 - 0 - 0,1 Adelantado	
	500 Hz a 1 kHz	
	± 180°	± 0,39°
		± 0,09
	Atrasado 0,1 - 0 - 0,1 Adelantado	
	1 kHz a 5 kHz	
	± 180°	± 1,9°
	Atrasado 0,1 - 0 - 0,1 Adelantado	
Generación	10 mV a 1 000 V	. 2
		± 2 ppm
Frecuencia para tensión eléctrica	0,01 Hz a 2 MHz	

DIARIO OFICIAL	(Primera Sección)	77
Calibrador multifunciones 0,19 nF a 4 nF	± 2,3%	
0,4 nF a 1,1 nF	± 1,1%	
1,1 nF a 3,3 nF	± 0,62%	

0 ''	0.11 1.167	
Generación	Calibrador multifunciones	0.004
Capacitancia	0,19 nF a 4 nF	± 2,3%
	0,4 nF a 1,1 nF	± 1,1%
	1,1 nF a 3,3 nF	± 0,62%
	3,3 nF a 11 nF	± 0,26%
	11 nF a 33 nF	± 0,43 %
	33 nF a 110 nF	± 0,26%
	110 nF a 330 nF	± 0,26%
	0,33 μF a 1,1 μF	± 0,26%
	1,1 μF a 3,3 μF	± 0,26%
	3,3 µF a 11 µF	± 0,26%
	11 μF a 33 μF	± 0,31%
	33 μF a 110 μF	± 0,35%
	110 μF a 330 μF	± 0,35%
	0,33 mF a 1,1 mF	± 0,42%
	1,1 mF a 3,3 mF	± 0,42%
	3,3 mF a 11 mF	± 0,42%
	11 mF a 33 mF	± 0,4276
	33 mF a 110 mF	± 0,03 % ± 0,92%
	Década	± 0,32 /0
		. 0.0770/
	40 pF a 1,2 μF	± 0,077%
Generación Simulación Eléctrica de Temperatura		
Sensor tipo RTD	-200°C a 0°C	± 0,039°C
Pt 385 100 Ω	0°C a 100°C	± 0,054°C
	100°C a 300°C	± 0,070°C
	300°C a 400°C	± 0,078°C
	400°C a 630°C	± 0,093°C
	630°C a 800°C	± 0,18°C
Consenting DTD		
Sensor tipo RTD	-200°C a 0°C	± 0,039°C
Pt 3926 100 Ω	0°C a 100°C	± 0,054°C
	100°C a 300°C	± 0,070°C
	300°C a 400°C	± 0,078°C
	400°C a 630°C	± 0,093°C
Sensor tipo RTD	-200°C a -190°C	± 0,19°C
Pt 3916 100 Ω	-190°C a -80°C	± 0,031°C
	-80°C a 0°C	± 0,039°C
	0°C a 100°C	± 0,047°C
	100°C a 260°C	± 0,054°C
	260°C a 300°C	± 0,062°C
	300°C a 400°C	± 0,070°C
	400°C a 600°C	± 0,078°C
	600°C a 630°C	± 0,078 C ± 0,18°C
0 " 5-5		
Sensor tipo RTD	-200°C a 100°C	± 0,031°C
Pt 385 200 Ω	100°C a 260°C	± 0,039°C
	260°C a 300°C	± 0,093°C
	300°C a 400°C	± 0,1°C
	400°C a 600°C	± 0,11°C
	600°C a 630°C	± 0,12°C
Sensor tipo RTD	-200°C a -80°C	± 0,031°C
Pt 385 500 Ω	-80°C a 100°C	± 0,039°C
	100°C a 260°C	± 0,047°C
	260°C a 400°C	± 0,062°C
	400°C a 600°C	± 0,070°C
	600°C a 630°C	± 0,076 C ± 0,085°C
	000 C a 000 C	± 0,000 C

Miércoles 26 de junio de 2002

Sensor tipo RTD	-200°C a 0°C	± 0,023°C
Pt 385 1000 Ω	0°C a 100°C	± 0,031°C
	100°C a 260°C	± 0,039°C
	260°C a 300°C	± 0,047°C
	300°C a 600°C	± 0,031°C
	600°C a 630°C	± 0,18°C
Sensor tipo RTD	-80°C a 100°C	± 0,062°C
Ni 120 200 Ω	100°C a 260°C	± 0,11°C
Sensor tipo RTD		
Cu 427 10 Ω	-100°C a 260°C	± 0,23°C

Signatarios autorizados:

Miércoles 26 de junio de 2002

Ing. Juan Edmundo Garay Moreno Ing. Juan Jesús Garay Correa Téc. José Daniel Arista Delgadillo Téc. Mario Enrique Marín Carrillo

Grupo Canefer, S.A. de C.V. Ing. Fernando Gutiérrez Guzmán Montes Urales No. 108

Col. Vista Hermosa 76063, Querétaro, Querétaro Teléfono: (442) 213 40 40 Fax: (442) 213 98 89

Dirección de correo electrónico: canefer1@qro1.telmex.net.mx

Acreditación: E-24 Vencimiento: 2003-07-17

Magnitud Eléctrica	Alcance	Incertidumbre k=2 *
ensión en corriente continua	0-329 mV	± 0,0069%
Generación	0,33-3,29 V	± 0,0052%
	3,3-32,9 V	± 0,0052%
	33-329 V	± 0,0057%
	100-1000 V	± 0,0057%
Tensión en corriente alterna	1 - 32,9 mV	
Generación	45 Hz - 10 kHz	± 0,21%
	10 kHz - 20 kHz	± 0,26%
	20 kHz - 50 kHz	± 0,31%
	50 kHz - 100 kHz	± 0,45%
	33 - 329 mV	
	45 Hz - 10 kHz	± 0,56%
	10 kHz - 20 kHz	± 0,11%
	20 kHz - 50 kHz	± 0,17%
_	50 kHz - 100 kHz	± 0,29%
	0,33 - 3,29 V	
	45 Hz - 10 kHz	± 0,032%
	10 kHz - 20 kHz	± 0,082%
	20 kHz - 50 kHz	± 0,15%
<u> </u>	50 kHz - 100 kHz	± 0,29 %
	3,3 - 32,9 V	
	45 Hz- 10 kHz	± 0,042%
	10 kHz - 20 kHz	± 0,088%
	20 kHz - 50 kHz	± 0,21%
<u> </u>	50 kHz - 100 kHz	± 0,29%
_	33 - 329 V	
	45 Hz - 1 kHz	± 0,052%
	1 kHz - 10 kHz	± 0,085%
	10 kHz - 20 kHz	± 0,10%
	330 - 1000 V	

* Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95%.

Magnitud Eléctrica	Alcance	Alcance Corriente	f.p.	Incertidumbre k=2 *
Tensión		3,3 - 329 mA		± 0,040%
Potencia en corriente continua	0,33 - 1 000 V	0,33 - 4,49 A		± 0,12%
Generación		4,5 - 11 A		± 0,090%

11 - 32,9 M Ω

33 - 109,9 MΩ

110 - 329 M Ω

 $\pm 0,10\%$

± 0,51%

 $\pm 0,51\%$

^{*} Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95%.

Magnitud Eléctrica	Alcance Tensión	Alcance Corriente	f.p.	Incertidumbre k=2 *
Potencia en corriente alterna		3,3 - 8,99 mA	1	± 0,40%
45 a 65 Hz	33 - 329 mV	9 - 32,9 mA	1	± 0,25%
Generación		33 - 89,9 mA	1	± 0,35%
		90 - 329 mA	1	± 0,25%
		0,33 - 0,899 A	1	± 0,35%
	33 - 329 mV	0,9 - 2,19 A	1	± 0,25%
		2,2 - 4,49 A	1	± 0,35%
		4,5 - 11 A	1	± 0,25%
		3,3 - 8,99 mA	1	± 0,25%
	330 mV - 1000 V	9 - 32,9 mA	1	± 0,15%
		33 - 89,9 mA	1	± 0,25%
		90 - 329 mA	1	± 0,15%
		0,33 - 0,899 A	1	± 0,25%
	330 mV - 1 000 V	0,9 - 2,19 A	1	± 0,15%
		2,2 - 4,49 A	1	± 0,20%
		4,5 - 11 A	1	± 0,15%
Energía 50 Hz-60 Hz	60 - 600 V	0,2 - 6,9 A		± 0,025%

^{*}Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95%.

Magnitud Eléctrica	Alcance	Incertidumbre k=2 *
Tensión en corriente continua	1 - 100 mV	± 0,00089%
Medición	0,1 - 1 V	± 0,00045%
	1 - 10 V	± 0,00042%
	10 - 100 V	± 0,00068%
	100 - 1 000 V	± 0,00069%

^{*}Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95%.

Magnitud Alcance Eléctrica				Incertidumbre k=2 *
Tensión en corriente alterna	10 - 100 mV			
Medición	40 Hz - 1 kHz 1 kHz - 20 kHz 20 kHz - 50 kHz	± 0,0090% ± 0,017% ± 0,032%		
	0,1 - 1 V			
	40 Hz - 1 kHz 1 kHz - 20 kHz 20 kHz - 50 kHz	± 0,0090% ± 0,017% ± 0,032%		
	1 - 10 V			
	40 Hz - 1 kHz 1 kHz - 20 kHz 20 kHz - 50 kHz	± 0,0090% ± 0,017% ± 0,032%		
	10 - 100 V			
	40 Hz- 1 kHz 1 kHz - 20 kHz 20 kHz - 50 kHz	± 0,021% ± 0,021% ± 0,036%		
	100 - 1000 V			
	40 Hz - 100 Hz 100 Hz - 20 kHz	± 0,044% ± 0,063%		

Magnitud Eléctrica	Alcance	Incertidumbre k=2 *
Intensidad de	10 - 100 nA	± 0,050%
Corriente Continua	0,1 - 1 μΑ	± 0,0077%
Medición	1 - 10 μΑ	± 0,0036%
	10 - 100 μΑ	± 0,0033%
	0,1 - 1 mA	± 0,0030%
	1 - 10 mA	± 0,0030%
	10 - 100 mA	± 0,0042%
	0,1 - 1 A	± 0,0035%
	1 - 20 A	± 0,010%

^{*} Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95%.

Magnitud Eléctrica	Alcance	Incertidumbre k=2 *
Intensidad de corriente alterna	10 - 100 μΑ	
Medición	45 Hz - 100 Hz 100 Hz - 5 kHz	± 0,090% ± 0,090%
	0,1 - 1 mA	
	45 Hz - 100 Hz 100 Hz - 5 kHz	± 0,080% ± 0,050%
	1 - 10 mA	
	45 Hz - 100 Hz 100 Hz - 5 kHz	± 0,080% ± 0,050%
	10 - 100 mA	
	45 Hz - 100 Hz 100 Hz - 5 kHz	± 0,080% ± 0,050%
	0,1 - 1 A	
	45 Hz - 100 Hz 100 Hz - 5 kHz	± 0,015% ± 0,027%
	1 - 20 A	
	45 Hz - 1 kHz	± 0,015%
Resistencia	0,01 - 10 Ω	± 0,0023%
Medición	10 - 100 Ω	± 0,0020%
	100 - 1 000 Ω	± 0,0014%
	1 - 10 kΩ	± 0,0014%
	10 100 kΩ	± 0,0014%
	100 - 1 000 kΩ	± 0,0020%
	1 - 10 MΩ	± 0,0063%
	10 - 100 ΜΩ	± 0,051%
	100 - 1 000 MΩ	± 0,051%

^{*} Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95%.

Magnitud Eléctrica	Tipo de Termopar	Alcance	Incertidumbre k=2 *
Simulación eléctrica de	В	600°C - 1820°C	± 0,23°C
temperatura (termopares)	С	0°C - 2316°C	± 0,20°C
	Е	-250°C - 1000°C	± 0,11°C
	J	-210°C - 1200°C	± 0,11°C
	K	-200°C - 1200°C	± 0,12°C
	L	-200°C - 1372°C	± 0,13°C
	N	-200°C - 1300°C	± 0,14°C
	R	0°C - 1767°C	± 0,26°C
	S	0°C - 1767°C	± 0,28°C

Т	250°C - 400°C	± 0,11°C
U	-200°C - 0°C	± 0,19°C

* Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95%.

Magnitud Eléctrica	Tipo de RTD	Alcance	Incertidumbre k=2 *
	Pt 385, 100 Ω	-200°C - 800°C	± 0,005°C
	Pt 3926, 100 Ω	-200°C - 630°C	± 0,005°C
	Pt 3916, 100 Ω	-200°C - 630°C	± 0,005°C
Simulación eléctrica de	Pt 385, 200 Ω	-190°C - 630°C	± 0,003°C
temperatura (RTD)	Pt 385, 500 Ω	-190°C - 630°C	± 0,003°C
	Pt 385, 1000 Ω	-190°C - 630°C	± 0,003°C
	PtNi 385, 120 Ω	-80°C - 260°C	± 0,024°C
	Cu 427, 10 Ω	-100°C - 260°C	± 0,087°C

Roberto Saúl Miranda Hernández

Ing. Enrique Pérez Romero

Responsables técnicos:

Ing. Fernando Gutiérrez Guzmán Ing. Rafael Isaac Castro Ruelas

Ing. Oscar Gutiérrez Galván

Insco de México, S.A. de C.V. Ing. Jorge Mendoza Illescas Blvd. Toluca No. 43-C Col. El Conde

53500, Naucalpan, Estado de México

Teléfono: (55) 5359 0088 Fax: (55) 5358 3913

Dirección de correo electrónico: inscomex@prodigy.net.mx

Acreditación: E-27 Vencimiento: 2003-09-18

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Tensión en corriente continua Generación	Patrón de referencia Zener 1,018 V	± 2 ppm
	10 V	± 2 ppm
	Patrón de trabajo	
	0,8 μV a 220 mV	± 10 ppm
	220 mV a 2,2 V	±7 ppm
	2,2 V a 11 V	±7 ppm
	11 V a 22 V	± 7 ppm
	22 V a 220 V	± 8 ppm
	220 V a 1 100 V	± 9 ppm
Intensidad de corriente	10 nA a 220 μA	± 82 ppm
en corriente continua	220 μA a 2,2 mA	± 50 ppm
Generación	2,2 mA a 22 mA	± 50 ppm
	22 mA a 220 mA	± 58 ppm
	220 mA a 2,2 A	± 85 ppm
Resistencia	Resistores patrón	± 2 ppm
Generación	1 Ω	
	10 kΩ	± 2 ppm
	Patrón de trabajo	
	1 Ω	± 86 ppm
	10 Ω	± 26 ppm
	100 Ω	± 16 ppm

^{*} Las incertidumbres indicadas son las mejores del intervalo para un nivel de confianza de aproximadamente el 95.%

Miércoles 26 de junio de 2002	DIARIO OFICIAL (Primera S		mera Sección) 83	
	1 kΩ		=	± 12 ppm
	10 kΩ		± 11 ppm	
	100 kΩ		± 13 ppm	
	1 ΜΩ		± 18 ppm ± 36 ppm	
	10 ΜΩ			
	100 MΩ			± 0,01%
Magnitud Eléctrica	Alcance	Fre	ecuencia	Incertidumbre k=2
Tensión en corriente alterna	220 μV a 220 mV	40 H	lz a 20 kHz	± 0,012%
Generación		20 kF	lz a 50 kHz	± 0,032%
		50 kH	z a 100 kHz	± 0,081%
	220 mV a 2,2 V	40 H	lz a 20 kHz	± 0,0069%
		20 kF	lz a 50 kHz	± 0,012%
		50 kH	z a 100 kHz	± 0,025%
Tensión en corriente alterna	2,2 V a 22 V	40 H	z a 20 kHz	± 0,0069%
Generación		20 kHz a 50 kHz		± 0,012%
		50 kHz a 100 kHz		± 0,0036%
	22 V a 220 V	40 H	lz a 20 kHz	± 0,0074%
		20 kH	łz a 50 kHz	± 0,021%
		50 kH	z a 100 kHz	± 0,05%
	220 V a 1 100 V	50 H	Hz a 1 kHz	± 0,0073%
Intensidad de corriente en corriente	9 μΑ a 220 μΑ	40 H	Hz a 1 kHz	± 0,020%
alterna Generación		1 kF	lz a 5 kHz	± 0,072%
		5 kH	z a 10 kHz	± 0,17%
	220 A a 2,2 mA	40 H	Hz a 1 kHz	± 0,014%
		1 k⊦	Hz a 5 kHz	± 0,072%
		5 kH	z a 10 kHz	± 0,17%
	2,2 mA a 22 mA	40 H	Hz a 1 kHz	± 0,014%
		1 k⊦	Hz a 5 kHz	± 0,072%
		5 kH	z a 10 kHz	± 0,17%
	22 mA a 220 mA	40 H	Hz a 1 kHz	± 0,015%
		1 kH	Hz a 5 kHz	± 0,072%
		5 kH	z a 10 kHz	± 0,17%
	220 mA a 2,2 A	20 H	Hz a 1 kHz	± 0,060%
		1 kH	Hz a 5 kHz	± 0,070%
		5 kH	z a 10 kHz	± 0,79%

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Tensión en corriente continua	0,3 μV a 200 mV	± 9 ppm
Medición	200 mV a 2 V	± 7 ppm
	2 V a 20 V	± 7 ppm
	20 V a 200 V	± 10 ppm
	200 V a 1 000 V	± 11 ppm
Resistencia	Por método indirecto	
Medición	0,2 m Ω a 0,01 Ω	± 0,011%
	0,01 Ω a 0,1 Ω	± 97 ppm
	0,1 Ω a 1 Ω	± 63 ppm
	1 Ω a 10 Ω	± 63 ppm
Resistencia	Método directo	
Medición	10 a 200 Ω	± 10 ppm
	200 Ω a 2 k Ω	± 9 ppm
	2 k Ω a 20 k Ω	± 9 ppm

Whereoles 20 de junio de 2002	2111110 01101		(-	Timera secensii)		
	20 kΩ a 200 ks	Ω		± 9 ppm		
	200 kΩ a 2 Ms	Ω	·	± 13 ppm		
	2 MΩ a 20 MΩ	2		± 21 ppm		
	20 MΩ a 200 M	ΙΩ		± 0,013%		
Intensidad de corriente en corriente continua Medición	20 μA a 2 A		· · · · · · · · · · · · · · · · · · ·		± 46 ppm	
Magnitud Eléctrica	Alcance	Frecuer	ncia	Incertidumbre k=2		
Tensión en corriente alterna	20 μV a 200 mV	40 Hz a 1	l kHz	± 0,046%		
Medición		1 kHz a 10	0 kHz	± 0,058%		
		10 kHz a 10	00 kHz	± 0,082%		
	200 mV a 2 V	40 Hz a 1	l kHz	± 0,031%		
		1 kHz a 10	0 kHz	± 0,046%		
		10 kHz a 10	00 kHz	± 0,23%		
	2 V a 20 V	40 Hz a 1	l kHz	± 0,031%		
		1 kHz a 10	0 kHz	± 0,035%		
		10 kHz a 10	00 kHz	± 0,23%		
<u></u>	20 V a 200 V	40 Hz a 1	l kHz	± 0,031%		
<u></u>		1 kHz a 10	0 kHz	± 0,035%		
<u></u>		10 kHz a 10	00 kHz	± 0,23%		
	200 V a 700 V	40 Hz a 1	l kHz	± 0,054%		
Intensidad de corriente	0,8 mA a 2 A	30 Hz a 1	l kHz	± 0,092%		
en corriente alterna Medición		1 kHz a 5	kHz	± 0,31%		
<u> </u>	Termopar tipo T	-100 a 4	00°C	± 0,12°C		
<u></u>	Termopar tipo K	-100 a 1 1	100°C	± 0,12°C		
	Termopar tipo J	-100 a 1 1	100°C	± 0,12°C		
<u></u>	Termopar tipo S	-50 a 1 7	00°C	± 0,12°C		
Simulación de temperatura	Termopar tipo R	-50 a 1 7	00°C	± 0,12°C ± 0,12°C		
	Termopar tipo N	-100 a 1 2	-100 a 1 200°C			
	Termopar tipo E	-100 a 1 000°C ± 0,12°		± 0,12°C		
	Termopar tipo B	0°C a 1 6	00°C	± 0,12°C		

Responsables técnicos:

Miércoles 26 de junio de 2002

Ing. Agustín Villalobos Estrada Ing. David Licea Panduro*

* En el área de medición de temperatura por simulación.

Centro Latinoamericano de Metrología, S.A. de C.V.

Ing. Ernesto Andrade Jiménez Av. Independencia No. 68-202

Col. Centro

06050, México, D.F. Teléfono: (55) 5512 9639 Fax: (55) 5512 0364

Dirección de correo electrónico: labclam@netservice.com

Acreditación: E-28 Vencimiento: 2003-10-16

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Tensión en corriente continua Generación	10 mV a 330 mV	± 54 ppm
	330 mV a 3,3 V	± 40 ppm
	3,3 V a 33 V	± 40 ppm
	33 V a 330 V	± 44 ppm
	330 V a 1 000 V	± 44 ppm

Intensidad de corriente en corriente	10 μA a 3,3 mA	± 0,012%
continua Generación	3,3 mA a 33 mA	± 0,0085%
	33 mA a 330 mA	± 0,0085%
	330 mA a 2,2 A	± 0,025%
	2,2 A a 11 A	± 0,049%
Simulación de corriente continua	11 A a 550 A**	± 0.43%

^{**} Exclusivamente para ampérmetros de gancho.

(Continúa en la Segunda Sección)

SECRETARIA DE TURISMO

CONVENIO de reasignación de recursos para la promoción y desarrollo turístico, que celebran las secretarías de Hacienda y Crédito Público, de Contraloría y Desarrollo Administrativo, y de Turismo, y el Estado de Coahuila.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Turismo.

CONVENIO DE REASIGNACION DE RECURSOS PARA LA PROMOCION Y DESARROLLO TURISTICO QUE CELEBRAN EL GOBIERNO FEDERAL. POR CONDUCTO DE LAS SECRETARIAS DE HACIENDA Y CREDITO PUBLICO. DE CONTRALORIA Y DESARROLLO ADMINISTRATIVO Y DE TURISMO, Y EL GOBIERNO DEL ESTADO LIBRE Y SOBERANO DE COAHUILA.

El Gobierno Federal, por conducto de la Secretaría de Hacienda y Crédito Público, a la que en lo sucesivo se denominará la "SHCP", representada por su titular licenciado Francisco Gil Díaz; la Secretaría de Contraloría y Desarrollo Administrativo, a la que en lo sucesivo se denominará la "SECODAM", representada por su titular C.P. Francisco Barrio Terrazas; la Secretaría de Turismo, a la que en lo sucesivo se denominará la "SECTUR", representada por su titular licenciada Bertha Leticia Navarro Ochoa, y el Gobierno del Estado Libre y Soberano de Coahuila al que en lo sucesivo se denominará el "ESTADO", representado por el licenciado Enrique Martínez y Martínez en su carácter de Gobernador Constitucional, y asistido por los Secretarios Generales de Gobierno, licenciado Raúl Sifuentes Guerrero; de Finanzas, licenciado Javier Guerrero García; de Planeación y Desarrollo, C.P. Ignacio Diego Muñoz, conjuntamente con el Director General del Instituto Estatal de Turismo del Estado, licenciado José Gerardo Elizondo García, y la Secretaria de la Contraloría y Modernización Administrativa, C.P. María Inés Garza Orta, acuerdan celebrar el presente Convenio de Coordinación al tenor de los siguientes antecedentes y cláusulas.

ANTECEDENTES

- I.- El Gobierno Federal ha asumido entre sus compromisos el consolidar al turismo como una verdadera prioridad nacional, por lo que parte esencial de las estrategias del desarrollo regional consistirá en lograr una mejor asignación de los recursos públicos y privados entre las regiones.
- II.- Entre las directrices de la planeación nacional del desarrollo, se pretende contribuir al logro de los objetivos sectoriales de empleo, divisas y desarrollo regional; su orientación hacia los destinos y regiones definidas como prioritarias; la elevación de la competitividad, la calidad y rentabilidad de los productos turísticos y la concertación y coordinación de las acciones sectoriales tanto al interior del sector público como con los otros niveles de gobierno y con el sector privado.
- III.- El Gobierno Federal y el Ejecutivo del Estado suscriben anualmente el Convenio de Desarrollo Social, el cual tiene por objeto impulsar la realización coordinada de acciones entre ambos órdenes de gobierno, en materia de desarrollo social y regional con la participación que corresponde a los municipios de dicha entidad federativa.
- IV.- El Decreto de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal del año 2001 dispone en su artículo 10 que para la reasignación del gasto público federal a las entidades federativas, el Gobierno Federal, por conducto de la Secretaría de Hacienda y Crédito Público; la

Secretaría de Contraloría y Desarrollo Administrativo y las dependencias, celebrarán convenios con los gobiernos de dichas entidades federativas.

V.- Mediante oficio número 311-A-1213 de fecha 9 del mes de marzo del año 2001, la Secretaría de Hacienda y Crédito Público, y mediante oficio número 300/391/2001 de fecha 17 del mes de mayo del año 2001, la Secretaría de Contraloría y Desarrollo Administrativo autorizaron la celebración del presente Convenio, en los términos del artículo 11 del Decreto de Presupuesto de Egresos de la Federación para el ejercicio fiscal del año 2001.

VI.- Con oficio número 111.4.-0579 de fecha 29 del mes de marzo del año 2001, la Secretaría de Desarrollo Social dictaminó que el presente instrumento es congruente con el Convenio de Desarrollo Social 2001 del Estado de Coahuila y, en consecuencia, se adiciona a él para formar parte de su contexto.

VII.- Con fundamento en los siguientes artículos: 25, 26, 115 y 116 de la Constitución Política de los Estados Unidos Mexicanos; 90., 22, 26, 31, 37 y 42 de la Ley Orgánica de la Administración Pública Federal; 16, 33 al 36 y 44 de la Ley de Planeación; 1o., 2o., 4o. y 5o. de la Ley de Presupuesto, Contabilidad y Gasto Público Federal; 1o. fracción VI de la Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público: 1 de la Ley de Obras Públicas y Servicios Relacionados con las Mismas; 2 fracción VI, 4, 33 a 44 de la Ley de Fiscalización Superior de la Federación; 2o., 8o., 9o., 17, 18, 20 y 21 de la Ley Federal de Turismo; 10, 11 y 12 del Decreto de Presupuesto de Egresos de la Federación para el Ejercicio Fiscal del año 2001, y los artículos 82 fracción V de la Constitución Política del Estado de Coahuila y los artículos 1o., 3o., 25, 27 y 32 de la Ley Orgánica de la Administración Pública del Estado de Coahuila y demás ordenamientos aplicables, el Gobierno Federal, por conducto de las secretarías de Hacienda y Crédito Público, de Contraloría y Desarrollo Administrativo y de Turismo, y el Gobierno del Estado de Coahuila, sujetan este Convenio las siguientes:

CLAUSULAS

PRIMERA.- OBJETO.- El presente Convenio y los anexos que formen parte integrante del mismo, tienen por objeto coordinar, en el marco del Convenio de Desarrollo Social a que alude el sexto antecedente de este instrumento, la participación del Gobierno Federal y del "ESTADO" en materia de promoción y desarrollo de los destinos turísticos de esa entidad federativa, así como determinar las aportaciones en la materia de ambos órdenes de Gobierno para el ejercicio fiscal del año 2001, la aplicación que se dará a tales recursos, los compromisos que sobre el particular asumen el "ESTADO" y el Gobierno Federal y los mecanismos para la evaluación y control de su ejercicio.

Con objeto de asegurar la aplicación y efectividad del presente Convenio, las partes se sujetarán a las disposiciones específicas previstas en los anexos, los cuales forman parte del presente instrumento.

SEGUNDA.- APORTACIONES.- El Gobierno Federal reasignará al "ESTADO" recursos para promoción turística hasta por la cantidad de \$170,000.00 (ciento setenta mil pesos 00/100 M.N.) y para desarrollo turístico hasta por la cantidad de \$1'025,000 (un millón veinticinco mil pesos 00/100 M.N.), de acuerdo con el calendario que se precisa en el Anexo Uno de este Convenio. Dichos recursos pasarán a formar parte del Presupuesto de Egresos del "ESTADO" y su ejercicio deberá ser incorporado en la Cuenta Pública de esa entidad federativa, sin que por ello pierdan su carácter federal.

Por su parte, el "ESTADO" se obliga a destinar de sus recursos presupuestarios para la promoción de los destinos turísticos de esa entidad federativa, la cantidad de \$170,000.00 (ciento setenta mil pesos 00/100 M.N.) y para desarrollo la cantidad de \$1'000,000 (un millón de pesos 00/100 M.N.), conforme al calendario que se incluye como Anexo Dos del presente instrumento. Asimismo, el "ESTADO" se obliga a realizar las gestiones necesarias para obtener recursos que provendrán de las

empresas turísticas del sector privado, de los gobiernos municipales u otras instancias asentadas en dichos destinos, para promoción hasta por un importe de \$170,000 (ciento setenta mil pesos 00/100 M.N.) y para desarrollo hasta por un importe de \$1'000,000.00 (un millón de pesos 00/100 M.N.), de acuerdo con el calendario del Anexo Tres de este instrumento, celebrando para este efecto los convenios correspondientes.

Las aportaciones que provengan de las empresas turísticas del sector privado podrán ser en especie hasta por el equivalente al 30 por ciento del importe comprometido.

TERCERA.- APLICACION.- Los recursos que reasigna el Gobierno Federal y las aportaciones del "ESTADO" a que alude la cláusula segunda de este instrumento, no podrán canalizarse al patrimonio de ninguno de los fideicomisos denominados Fondos Mixtos constituidos por el "ESTADO" y la iniciativa privada; dichos recursos y aportaciones y las de las empresas turísticas del sector privado, de los gobiernos municipales u otras instancias a que también alude la cláusula segunda de este instrumento, se destinarán en forma exclusiva, por lo que toca a la promoción turística, a la realización de estudios de mercado turístico, de campañas de promoción y publicidad turística a nivel nacional e internacional, de campañas de formación para prestadores de servicios turísticos, de relaciones públicas, así como para la concertación de acciones para incrementar las rutas aéreas, marítimas y terrestres hacia dichos destinos.

En lo tocante al desarrollo turístico, los recursos se destinarán al análisis del comportamiento de los centros, regiones y productos turísticos; el apoyo y diseño de programas de desarrollo turístico; la diversificación de las actividades turísticas; el desarrollo de nuevos productos turísticos; el apoyo a los sistemas de información turística estatal; la inversión en infraestructura, servicios e imagen urbana y el fomento de la participación de inversionistas públicos y privados.

Dichos recursos no podrán traspasarse a otros conceptos de gasto, y se registrarán conforme a la naturaleza del gasto, sea de capital o corriente.

CUARTA.- PROGRAMAS.- Los recursos que reasigna el Gobierno Federal y las aportaciones del "ESTADO" y de las empresas turísticas del sector privado, gobiernos municipales y otras instancias a que se refiere la cláusula segunda del presente Convenio, se aplicarán a los fines que se señalan en la cláusula tercera y hasta por los importes que a continuación se mencionan:

PROGRAMAS	IMPORTE	
A. PROGRAMAS DE PROMOCION	\$510,000.00	(Anexo 5)
B. PROYECTOS DE DESARROLLO	\$3'025,000.00	(Anexo 6)

Para los gastos administrativos que resulten de la ejecución de los programas antes señalados se destinará hasta un cinco por ciento del total de los recursos aportados por las partes.

QUINTA.- LINEAMIENTOS.- Las campañas de promoción y publicidad turística, las de formación para prestadores de servicios turísticos, las de relaciones públicas y las acciones de desarrollo turístico que realice el "ESTADO" se sujetarán a los lineamientos siguientes:

- La planeación y evaluación operativas en materia de promoción turística estarán a cargo del Comité Técnico Consultivo en Materia Turística que al efecto constituya el "ESTADO", mismo que estará integrado por representantes, propietarios y suplentes, del "ESTADO", de la "SECTUR" y de las empresas turísticas del sector privado;
- II. La planeación y evaluación operativas en materia de desarrollo turístico se realizarán en forma conjunta por el "ESTADO y la "SECTUR";
- **III.** Las campañas de promoción y las acciones de desarrollo a que se refiere esta cláusula habrán de desarrollarse en el marco de la política turística nacional que dicte la "SECTUR";

- IV. La aplicación de estrategias en situaciones contingentes se llevará a cabo de acuerdo con las políticas que al respecto dicte la "SECTUR";
- V. El material promocional deberá sujetarse a los lineamientos contenidos en el Manual de Identidad Corporativa emitido por la "SECTUR";
- VI. El impacto que tendrán las campañas de promoción y las acciones de desarrollo se pronosticará con base en los indicadores de gestión que determinaron el Gobierno Federal por conducto de las secretarías de Hacienda y Crédito Público, de Contraloría y Desarrollo Administrativo y de Turismo conjuntamente con el "ESTADO" y con la participación del órgano estatal de control, mismos que se consignan en el Anexo Cuatro de este Convenio;
- VII. Para la contratación de medios se consultará el catálogo de precios por volumen que lleva la "SECTUR", y
- VIII. Las modificaciones programático-presupuestarias a los programas previstos en la cláusula cuarta de este instrumento se realizarán por acuerdo de la "SECTUR" y el "ESTADO", siempre y cuando se destinen a los fines a que se refiere la cláusula tercera del mismo.

SEXTA.- MINISTRACION DE RECURSOS.- Los recursos federales a que alude la cláusula segunda, párrafo primero, del presente instrumento, serán reasignados y canalizados al "ESTADO" por la "SHCP" con cargo al presupuesto de la "SECTUR".

La Secretaría de Finanzas del "ESTADO" o su equivalente será responsable de recibir los recursos, suministrarlos oportunamente para la ejecución de los programas previstos en este instrumento, conservar la documentación comprobatoria de las erogaciones, realizar los registros correspondientes en la cuenta de la Hacienda Pública Estatal y dar cumplimiento a las disposiciones legales aplicables.

Los recursos federales que se reasignen estarán sujetos a la disponibilidad del Presupuesto de Egresos de la Federación para el ejercicio fiscal del año 2001.

SEPTIMA.- OBLIGACIONES DEL "ESTADO".- El "ESTADO" se obliga a:

- I. Aportar para la promoción y desarrollo de los destinos turísticos de esa entidad federativa los recursos a que se refiere la cláusula segunda párrafo segundo de este Convenio;
- **II.** Concertar las acciones necesarias, a fin de obtener en tiempo y forma de las empresas turísticas del sector privado, de los gobiernos municipales u otras instancias, las aportaciones a que alude la cláusula segunda párrafos segundo y tercero de este instrumento; celebrando para este efecto los convenios correspondientes;
- III. Aplicar los recursos que le otorga el Gobierno Federal, al igual que las aportaciones del "ESTADO"
 - y de las empresas turísticas del sector privado, gobiernos municipales y otras instancias a los fines señalados en este Convenio;
- IV. Realizar la adquisición de bienes y la contratación de servicios para los fines señalados en este instrumento, de conformidad con lo dispuesto por el artículo 1o. fracción VI de la Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público y demás ordenamientos legales federales aplicables;
- V. Llevar a cabo las campañas de promoción y publicidad turística, las de formación para los prestadores de servicios turísticos, así como las acciones de desarrollo turístico, conforme a los lineamientos contenidos en la cláusula quinta de este Convenio;
- VI. Informar mensualmente a la "SECODAM" y a la "SECTUR" sobre las aportaciones que realicen
 - y que obtenga de las empresas turísticas del sector privado, de los gobiernos municipales u otras instancias, así como sobre el avance programático presupuestal de los programas previstos en este instrumento;

- VII. Evaluar trimestralmente, con la participación de la "SECTUR" y de las empresas turísticas del sector privado, el impacto por la promoción de los destinos turísticos de esa entidad federativa, de acuerdo con los indicadores de gestión que determinaron el Gobierno Federal por conducto de las secretarías de Hacienda y Crédito Público, de Contraloría y Desarrollo Administrativo, y de Turismo, conjuntamente con el "ESTADO" y con la participación del órgano estatal de control, mismos que se consignan en el Anexo Cuatro de este Convenio;
- VIII. Evaluar trimestralmente el impacto por las acciones de desarrollo de los destinos turísticos de esa entidad federativa, de acuerdo con los indicadores de gestión que para tal efecto determinaron el Gobierno Federal por conducto de las secretarías de Hacienda y Crédito Público. Contraloría de
 - y Desarrollo Administrativo, y de Turismo, conjuntamente con el "ESTADO" y con la participación del órgano estatal de control, mismos que se consignan en el Anexo Cuatro de este Convenio:
- IX. La Secretaría de Finanzas del "ESTADO" o su equivalente será responsable de recibir los recursos, ministrarlos oportunamente para la ejecución de los programas previstos en este instrumento, conservar la documentación comprobatoria de las erogaciones y proporcionarla a los órganos de control del "ESTADO" y del Gobierno Federal, realizar los registros correspondientes en la Cuenta de la Hacienda Pública estatal, así como dar cumplimiento a las demás disposiciones legales aplicables en la administración de dichos recursos;
- X. Aplicar los recursos que le otorga el Gobierno Federal, al igual que las aportaciones del Estado en los programas establecidos en la cláusula cuarta de este Convenio, sujetándose a los objetivos, metas e indicadores previstos en los anexos de este instrumento;
- XI. Precisar la Unidad Responsable a la que compete la ejecución y cumplimiento de las metas;
- XII. Iniciar las acciones para dar cumplimiento a los programas a que hace referencia la cláusula cuarta de este Convenio, en un plazo no mayor a noventa días naturales, contados a partir de la formalización de este instrumento;
- XIII. Requerir con la oportunidad debida a las instancias federales, estatales o municipales que correspondan, la asesoría técnica, autorizaciones o permisos que resulten necesarios para la realización de los programas previstos en este instrumento, y
- XIV. Reintegrar a la Tesorería de la Federación, durante los primeros cinco días hábiles del ejercicio fiscal siguiente, los saldos disponibles de los recursos federales reasignados al "ESTADO", que no se encuentren devengados al 31 de diciembre de 2001, incluyendo, en su caso, los rendimientos financieros generados.

OCTAVA.- OBLIGACIONES DE LA "SECTUR".- El Gobierno Federal, por conducto de la "SECTUR", se obliga a:

- Reasignar para la promoción y desarrollo de los destinos turísticos de esa entidad federativa los recursos a que se refiere la cláusula segunda párrafo primero del presente Convenio;
- II. Determinar, en coordinación con las secretarías de Hacienda y Crédito Público y de Contraloría
 - y Desarrollo Administrativo, los indicadores de gestión para evaluar el impacto por la promoción
 - y desarrollo de los destinos turísticos de esa entidad federativa, conjuntamente con el "ESTADO"
 - y con la participación del órgano estatal de control;
- III. Participar en las evaluaciones trimestrales que lleve a cabo el "ESTADO", junto con las empresas turísticas del sector privado, e

IV. Informar mensualmente a la "SECODAM" sobre los recursos reasignados al "ESTADO" en el marco del presente instrumento.

NOVENA.- CONTROL, VIGILANCIA Y EVALUACION.- El control, vigilancia y evaluación de los recursos a que se refiere la cláusula segunda de este Convenio corresponderán al órgano estatal de control, sin perjuicio de las atribuciones de control y evaluación que en el ámbito federal competan a la "SHCP" y a la "SECODAM" en coordinación con la "SECTUR", conforme a lo dispuesto por el artículo 88 del Decreto del Presupuesto de Egresos de la Federación para el Ejercicio Fiscal del año 2001.

Para llevar a cabo el control, vigilancia y evaluación de los recursos, el "ESTADO" transferirá al órgano estatal de control el equivalente al 0.2 por ciento del monto total de los recursos aportados en efectivo, importe que será ejercido conforme a los lineamientos que emita la "SECODAM".

Las responsabilidades administrativas, civiles y penales derivadas de afectaciones a la Hacienda Pública Federal en que, en su caso, incurran autoridades locales exclusivamente por motivo de la desviación de los recursos federales reasignados, serán sancionados en los términos de las leyes aplicables.

DECIMA.- VERIFICACION.- Las partes convienen en que la "SECODAM" podrá -de oficio o a petición de la "SECTUR"-, verificar en cualquier momento y sin la autorización previa del "ESTADO" el cumplimiento

de los compromisos a cargo de este último, particularmente la aplicación de los recursos que reasigne el Gobierno Federal, en los términos del presente instrumento.

Con el objeto de asegurar la aplicación y efectividad del presente Convenio, las partes convienen en hacer la revisión periódica y sistemática de su contenido e instrumentación, por lo que la "SECTUR" adoptará las medidas necesarias para establecer el enlace y la comunicación con el "ESTADO" para el debido seguimiento a los compromisos asumidos.

DECIMA PRIMERA.- SUSPENSION DE LA RADICACION DE APOYOS.- La "SECTUR" podrá suspender la radicación de apoyos federales al "ESTADO", cuando la "SECODAM" determine que dichos apoyos se destinaron a fines distintos a los previstos en este Convenio o por el incumplimiento de las obligaciones contraídas, previa audiencia al "ESTADO".

DECIMA SEGUNDA.- RECURSOS FEDERALES NO DEVENGADOS.- Las partes acuerdan que los saldos disponibles de los recursos federales reasignados al "ESTADO", incluyendo los rendimientos financieros generados, que no se encuentren devengados al 31 de diciembre de 2001, no podrán ejercerse

y el "ESTADO" deberá reintegrarlos a la Tesorería de la Federación durante los primeros cinco días hábiles del ejercicio fiscal siguiente.

DECIMA TERCERA.- MODIFICACIONES AL CONVENIO.- Las partes acuerdan que el presente Convenio podrá modificarse de común acuerdo y por escrito, con apego a las disposiciones legales aplicables.

DECIMA CUARTA.- VIGENCIA.- El presente Convenio empezará a surtir efectos a partir de la fecha de su suscripción por todas sus partes y será publicado en el **Diario Oficial de la Federación** y en el periódico oficial del "ESTADO" dentro de los 15 días hábiles posteriores a su formalización. La vigencia del presente Convenio será hasta el 31 de diciembre del presente ejercicio.

DECIMA QUINTA.- JURISDICCION Y COMPETENCIA.- Para todo lo relativo a la jurisdicción y competencia del presente Convenio, las partes se someten a lo dispuesto en el Convenio de Desarrollo Social.

DECIMA SEXTA.- INTERPRETACION DEL CONVENIO.- La "SHCP" y la "SECODAM", en el ámbito de sus respectivas competencias en el orden federal, están facultadas para interpretar las estipulaciones

del presente Convenio y establecer las medidas conducentes a su correcta y homogénea aplicación, con base en lo previsto en el Convenio de Desarrollo Social.

México, Distrito Federal, a los nueve días del mes de mayo de dos mil uno.- Por el Gobierno Federal:

el Secretario de Hacienda y Crédito Público, Francisco Gil Díaz.- Rúbrica.- El Secretario de Contraloría y Desarrollo Administrativo, Francisco Barrio Terrazas.- Rúbrica.- La Secretaria de Turismo, Bertha Leticia Navarro Ochoa.- Rúbrica.- Por el Estado: el Gobernador Constitucional, Enrique Martínez y Martínez.- Rúbrica.- El Secretario General de Gobierno, Raúl Sifuentes Guerrero.- Rúbrica.- El Secretario de Finanzas, Javier Guerrero García.- Rúbrica.- El Secretario de Planeación y Desarrollo, Ignacio Diego Muñoz.- Rúbrica.- El Director General del Instituto Estatal de Turismo del Estado de Coahuila, José Gerardo Elizondo García.- Rúbrica.- La Secretaria de la Contraloría y Modernización Administrativa, María Inés Garza Orta, Rúbrica,

COMISION REGULADORA DE ENERGIA

RESOLUCION por la que se modifican las bases de la licitación pública internacional LIC-GAS-017-2002.

que tendrá por objeto el otorgamiento del primer permiso de distribución de gas natural para la zona geográfica

de Veracruz.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Comisión Reguladora de Energía.- Secretaría Ejecutiva.

RESOLUCION No. RES/106/2002.

RESOLUCION POR LA QUE SE MODIFICAN LAS BASES DE LA LICITACION PUBLICA INTERNACIONAL LIC-GAS-017-2002. QUE TENDRA POR OBJETO EL OTORGAMIENTO DEL PRIMER PERMISO DE DISTRIBUCION DE GAS NATURAL PARA LA ZONA GEOGRAFICA DE VERACRUZ.

CONSIDERANDO

Primero.- Que esta Comisión Reguladora de Energía (esta Comisión), mediante Resolución número RES/067/2002 aprobó la Convocatoria para participar en la Licitación Pública Internacional LIC-GAS-017-2002,

que tendrá por objeto el otorgamiento del primer permiso de distribución de gas natural para la zona geográfica de Veracruz (la Convocatoria), misma que se publicó el 7 de mayo de 2002 en el Diario Oficial de la Federación:

Segundo.- Que el 21 de mayo de 2002, mediante Resolución número RES/092/2002, esta Comisión expidió las bases de la licitación mencionada en el considerando inmediato anterior, mismas que, conforme al calendario establecido en la Convocatoria fueron puestas a la venta el 24 de mayo de 2002;

Tercero.- Que conforme a los artículos 28, 40 y 41 fracción XII del Reglamento de Gas Natural, así como a lo establecido en el numeral 3.2 de la Convocatoria y en la disposición 2.40 de las bases de licitación, el primer permiso de distribución de gas natural será otorgado mediante licitación pública, para

el procedimiento de licitación correspondiente la Comisión publicará la Convocatoria en el Diario Oficial de la Federación, y que cualquier modificación a las bases de licitación deberá publicarse en dicho diario cuando menos con veinte días de anticipación a la fecha señalada originalmente para la presentación y apertura de propuestas;

Cuarto.- Que esta Comisión estima conveniente modificar las bases de licitación por lo que hace a las disposiciones 1.7, 2.37 y 2.44 que establecen el calendario de actividades de la propia licitación o hacen referencia al mismo, a fin de que los posibles interesados cuenten con más tiempo para elaborar sus propuestas, y

Quinto.- Que, asimismo, esta Comisión estima conveniente modificar las bases de licitación por lo que hace a la disposición 4.27 a fin de precisar la forma en que los licitantes deberán dar cumplimiento a lo requerido en la misma.

Por lo anteriormente expuesto y con fundamento en los artículos 4o. segundo párrafo y 14 fracción I, incisos a) y c) de la Ley Reglamentaria del Artículo 27 Constitucional en el Ramo del Petróleo; 2 fracción VII, 3 fracciones VIII, XII y XXII, 4 y 11 de la Ley de la Comisión Reguladora de Energía; 1 y 3 de la Ley Federal de Procedimiento Administrativo, 40, 41 fracción XII, y relativos del Reglamento de Gas Natural, y la disposición 2.40 de las bases de la licitación LIC-GAS-017-2002, esta Comisión Reguladora

DIARIO OFICIAL

RESUELVE

Primero. Se modifica el calendario a que se refieren la Convocatoria y la disposición 2.44 de las bases de la licitación pública internacional LIC-GAS-017-2002, que tendrá por objeto el otorgamiento del primer permiso de distribución de gas natural para la zona geográfica de Veracruz, para quedar como sigue:

CALENDARIO DE LA LICITACION

АСТО	FECHA	HORA
Venta de bases de licitación	24 de mayo al 12 de julio de 2002	9:00 a 18:00 Horas
Junta de aclaraciones	19 de julio de 2002	12:00 Horas
Presentación de propuestas y apertura de ofertas técnicas	6 de septiembre de 2002	12:00 Horas
Apertura de ofertas económicas	14 de octubre de 2002*	12:00 Horas
Fallo de la licitación	1 de noviembre de 2002*	12:00 Horas
Otorgamiento del Permiso	2 de diciembre de 2002*	

^{*}Fechas límite.

de Energía:

Segundo. Se modifican las disposiciones 1.7 y 2.37 de las bases de licitación, para quedar como sigue:

1.7. Los activos de distribución de Petróleos Mexicanos (en lo sucesivo Pemex) y Pemex-Gas y Petroquímica Básica (PGPB) para el suministro de gas natural a usuarios finales ubicados en la zona geográfica de Veracruz serán usados por el ganador de la licitación de conformidad con los términos y condiciones establecidos en el documento complementario que será puesto a disposición de las personas que adquieran estas bases, a más tardar el 19 de julio de 2002 (en lo sucesivo el Documento Complementario). El Documento Complementario formará parte integrante de estas bases.

2.37. Las preguntas y las consultas adicionales relativas a la licitación deberán presentarse por escrito.

La Comisión sólo atenderá las preguntas y consultas adicionales que sean presentadas a partir del 24 de mayo de 2002 y hasta el 12 de agosto de 2002. Las respuestas que por escrito dé la Comisión se harán del conocimiento de todas las personas que hayan adquirido o que adquieran estas bases. Las preguntas se agruparán según la fecha en que sean presentadas siguiendo el orden de las disposiciones de las bases y las respuestas correspondientes se darán a conocer, según sea el caso, en la fecha señalada para llevar a cabo la junta de aclaraciones a que se refiere la disposición 2.32 anterior cuando las preguntas se hayan presentado diez días hábiles antes de la junta de aclaraciones, y a más tardar el 30 de agosto de 2002 cuando se hayan presentado posteriormente.

Tercero.- Se modifica el párrafo segundo de la disposición 4.27, para quedar como sigue:

Cuando el licitante o integrante del consorcio demuestre la experiencia técnica a través de una empresa matriz, filial o subsidiaria, deberá acompañar un documento escrito, firmado por el representante legal de dicha empresa matriz, filial o subsidiaria, en el que se haga constar que conoce las características del proyecto presentado por el licitante y que se obliga a aportar su experiencia técnica para el desarrollo del proyecto en los términos previstos en estas bases. La documentación a que hace referencia esta disposición podrá presentarse en idioma inglés. Asimismo, el licitante podrá

acreditar la experiencia técnica requerida, mediante la presentación de un contrato celebrado con una persona moral (en los sucesivo el Agente Técnico) que cumpla con las características y condiciones señaladas en el primer párrafo de esta disposición. El contrato a que se refiere este párrafo deberá cubrir cada uno de los aspectos señalados en esta disposición.

Cuarto.- Publíquese la presente Resolución en el Diario Oficial de la Federación.

Quinto.- Inscríbase la presente Resolución bajo el número RES/106/2002 en el registro a que se refiere la fracción XVI del artículo 3 de la Ley de la Comisión Reguladora de Energía.

México, D.F., a 13 de junio de 2002.- El Presidente, Dionisio Pérez-Jácome.- Rúbrica.-Los Comisionados: Javier Estrada, Rubén Flores, Raúl Monteforte y Raúl Nocedal.- Rúbricas.

(R.- 163355)

BANCO DE MEXICO

TIPO de cambio para solventar obligaciones denominadas en moneda extranjera pagaderas en la República Mexicana.

Al margen un logotipo, que dice: Banco de México.

TIPO DE CAMBIO PARA SOLVENTAR OBLIGACIONES DENOMINADAS EN MONEDA EXTRANJERA PAGADERAS EN LA REPUBLICA MEXICANA

Con fundamento en el artículo 35 de la Ley del Banco de México; en los artículos 8o. y 10o. del Reglamento Interior del Banco de México, y en los términos del numeral 1.2 de las Disposiciones Aplicables

a la Determinación del Tipo de Cambio para Solventar Obligaciones Denominadas en Moneda Extranjera Pagaderas en la República Mexicana, publicadas en el Diario Oficial de la Federación el 22 de marzo de 1996, el Banco de México informa que el tipo de cambio citado obtenido el día de hoy

al procedimiento establecido en el numeral 1 de las Disposiciones mencionadas, fue de \$9.8203 M.N. (NUEVE PESOS CON OCHO MIL DOSCIENTOS TRES DIEZMILESIMOS MONEDA NACIONAL) por un dólar de los EE.UU.A.

La equivalencia del peso mexicano con otras monedas extranjeras se calculará atendiendo a la cotización que rija para estas últimas contra el dólar de los EE.UU.A., en los mercados internacionales el día en que se haga el pago. Estas cotizaciones serán dadas a conocer, a solicitud de los interesados, por las instituciones de crédito del país.

> Atentamente México, D.F., a 25 de junio de 2002. BANCO DE MEXICO

Gerente de Operaciones Internacionales y Monedas Ricardo Medina Alvarez

Rúbrica.

Director de Disposiciones de Banca Central Fernando Corvera Caraza Rúbrica.

TASAS de interés de instrumentos de captación bancaria en moneda nacional.

Al margen un logotipo, que dice: Banco de México.

TASAS DE INTERES DE INSTRUMENTOS DE CAPTACION BANCARIA EN MONEDA NACIONAL

TASA **TASA BRUTA** BRUTA I. DEPOSITOS A PLAZO II. PAGARES CON RENDI-FIJO MIENTO LIQUIDABLE AL VENCIMIENTO A 60 días A 28 días Personas físicas 3.76 Personas físicas 3.19

Miércoles 26 de junio de 2002	DIARIO OFICIAL		(Primera Sección)	94
Personas morales	3.76	Personas morales	3.19	-
A 90 días		A 91 días		
Personas físicas	3.94	Personas físicas	3.69	
Personas morales	3.94	Personas morales	3.69	
A 180 días		A 182 días		
Personas físicas	4.17	Personas físicas	4.04	
Personas morales	4.17	Personas morales	4.04	

Las tasas a que se refiere esta publicación, corresponden al promedio de las determinadas por las instituciones de crédito para la captación de recursos del público en general a la apertura del día 25 de junio de 2002. Se expresan en por ciento anual y se dan a conocer para los efectos a que se refiere la publicación de este Banco de México en el **Diario Oficial de la Federación** de fecha 11 de abril de 1989.

México, D.F., a 25 de junio de 2002. BANCO DE MEXICO

Director de Disposiciones

de Banca Central

Fernando Corvera Caraza

Director de Información

del Sistema Financiero

Cuauhtémoc Montes Campos

Rúbrica. Rúbrica.

TASA de interés interbancaria de equilibrio.

Al margen un logotipo, que dice: Banco de México.

TASA DE INTERES INTERBANCARIA DE EQUILIBRIO

Según resolución de Banco de México publicada en el **Diario Oficial de la Federación** del 23 de marzo

de 1995, y de conformidad con lo establecido en el Anexo 1 de la Circular 2019/95, modificada mediante Circular-Telefax 4/97 del propio Banco del 9 de enero de 1997, dirigida a las instituciones de banca

se informa que la Tasa de Interés Interbancaria de Equilibrio a plazo de 28 días, obtenida el día de hoy, fue de 9.0800 por ciento.

La tasa de interés citada se calculó con base a las cotizaciones presentadas por: BBVA Bancomer, S.A., Banca Serfin S.A., Banco Internacional S.A., Banco Nacional de México S.A., IXE Banco, S.A., Banco Inbursa S.A., Banco Invex S.A., ING Bank México S.A., ScotiaBank Inverlat, S.A. y Banco Mercantil Del Norte S.A.

México, D.F., a 25 de junio de 2002. BANCO DE MEXICO

Gerente de Operaciones
Internacionales y Monedas
Ricardo Medina Alvarez
Rúbrica.

Director de Disposiciones
de Banca Central
Fernando Corvera Caraza
Rúbrica.

INFORMACION semanal resumida sobre los principales renglones del estado de cuenta consolidado al 21 de junio de 2002.

Al margen un logotipo, que dice: Banco de México.

En cumplimiento de lo dispuesto en el Artículo 41 del Reglamento Interior del Banco de México, publicado en el **Diario Oficial de la Federación** el 16 de marzo de 1995, se proporciona la:

INFORMACION SEMANAL RESUMIDA SOBRE LOS PRINCIPALES RENGLONES DEL ESTADO DE CUENTA CONSOLIDADO AL 21 DE JUNIO DE 2002.

(Cifras preliminares en millones de pesos)

ACTIVO

A 0 1 1 V 0	
Reserva Internacional 1/	418,855
Crédito al Gobierno Federal	0
Valores Gubernamentales ^{2/}	0
Crédito a Intermediarios Financieros y	
Deudores por Reporto 3/	146,001

	(
Crédito a Organismos Públicos 4/	74,944
PASIVO Y CAPITAL CONTABLE	
Fondo Monetario Internacional	0
Base Monetaria	<u>206,159</u>
Billetes y Monedas en Circulación	206,152
Depósitos Bancarios en Cuenta Corriente ^{5/}	7
Bonos de Regulación Monetaria	197,681
Depósitos del Gobierno Federal	137,581
Depósitos de Regulación Monetaria	35,822
Depósitos de Intermediarios Financieros y	
Acreedores por Reporto 3/	105,310
Otros Pasivos y Capital Contable 6/	(42,753)

DIARIO OFICIAL

- Según se define en el Artículo 19 de la Ley del Banco de México.
- 2/ Neto de depósitos de regulación monetaria. - No se consideran los valores afectos a la reserva para cubrir obligaciones de carácter laboral.- En caso de saldo neto acreedor, éste se presenta en el rubro de Depósitos de Regulación Monetaria.
- 3/ Incluye banca múltiple, banca de desarrollo, fideicomisos de fomento y operaciones de reporto con casas de bolsa.
- Créditos asumidos por el Instituto para la Protección al Ahorro Bancario, conforme a lo establecido en la Ley de Protección al Ahorro Bancario.
- Se consigna el saldo neto acreedor del conjunto de dichas cuentas, en caso de saldo neto deudor éste se incluye en el rubro de Crédito a Intermediarios Financieros y Deudores por Reporto
- Neto de otros activos.

México, D.F., a 25 de junio de 2002. BANCO DE MEXICO Gerente de Presupuestos y Contabilidad Jesús Alonso Navarro Rúbrica.

AVISOS JUDICIALES Y GENERALES

Estados Unidos Mexicanos Poder Judicial de la Federación Juzgado Cuarto de Distrito en el Estado San Luis Potosí EDICTO

En el Juicio de Amparo número 91/2001-I, promovido por el Banco Nacional de México, S.A., Integrante del Grupo Financiero Banamex Accival, Sociedad Anónima de Capital Variable, por conducto de Alejandro Cortés López, contra actos del Juez Séptimo del Ramo Civil de esta ciudad, que hizo consistir en el auto dictado con fecha catorce de diciembre de dos mil, y notificado por lista el once de enero del año dos mil uno, dictado dentro de los autos del Juicio Ejecutivo Mercantil 1273/96, promovido por el licenciado Alejandro Cortés López, apoderado del Banco quejoso en contra de Carlos Javier Morelos Zaragoza Eichelmann y María Elizabeth Meneses Marín se dictó lo siguiente:

....Toda vez que del estado que guardan los presentes autos, se desprende que no ha sido posible... emplazar a los terceros perjudicados Carlos Javier Morelos Zaragoza Eichelmann y María Elizabeth Meneses Marín de Morelos, en los domicilios proporcionados por la parte quejosa y no obstante las múltiples gestiones ante los Directores de Policía Ministerial del Estado, del Instituto Federal Electoral, Secretaría de Hacienda y Crédito Público y Teléfonos de México de esta ciudad; con fundamento en la fracción II del artículo 30 de la Ley de Amparo, emplácese a los citados terceros perjudicados, por medio de edictos a costa de la parte quejosa, los cuales deberán publicarse por tres veces, de siete en siete días, en uno de los periódicos de mayor circulación en la República y en el Diario Oficial de la Federación, los que además deberán contener un extracto de la demanda de garantías promovida por Banco Nacional de México, S.A., Integrante del Grupo Financiero Banamex Accival, Sociedad Anónima de Capital Variable, por conducto de Alejandro Cortés López contra de actos del Juez Séptimo del Ramo Civil de esta ciudad; háganseles saber por este medio que deberán presentarse ante este Juzgado Cuarto de Distrito en el Estado, dentro del término de treinta días, contado a partir del

siguiente al de la última publicación; que quedan a su disposición en la Secretaría de este Juzgado copia de la demanda de amparo y que, en caso de no comparecer, las subsecuentes notificaciones, aun las de carácter personal, se les practicarán por medio de lista en los estrados de este tribunal.

Colóquese en la puerta de este Juzgado copia integra del presente acuerdo por todo el tiempo que dure el emplazamiento, en la inteligencia que se deja a disposición de los mencionados terceros perjudicados, copia de la demanda de garantías de mérito en esta misma Secretaría..."

Notifíquese personalmente.

Lo proveyó y firma la licenciada Laura Coria Martínez, Juez Cuarto de Distrito en el estado, quien actúa con la Secretaria que autoriza y da fe.-"

Lo transcribo a usted para su conocimiento y efectos legales conducentes.

San Luis Potosí, S.L.P., a 27 de junio de2001.

Juez Cuarto de Distrito en el Estado

Lic. Laura Coria Martínez

Rúbrica.

Secretaria del Juzgado

Lic. Adriana Garcia Olvera

Rúbrica.

(R.- 162552)

Estados Unidos Mexicanos Poder Judicial de la Federación Juzgado Primero de Distrito en el Estado de Durango

FDICTO

CC. Gustavo Leopoldo Guzmán Bollain y Goytia

María del Rosario Guzmán Bollain v Govtia

Rosa del Consuelo Guzmán Bollain y Goytia y Alejandro Cervantes Riba.

En los autos del juicio de amparo 697/2001 promovido por David Barbosa Maldonado, apoderado de las sociedades mercantiles Compañía Minera Basis, S.A. de C.V. y Minas Argenta, S.A. de C.V. contra actos del Juez Cuadragésimo Segundo de lo Civil en México, Distrito Federal y otras autoridades, con fundamento en el artículo 315 del Código Federal de Procedimientos Civiles de aplicación supletoria de la Ley de Amparo, se ordenó emplazarlos por este medio como terceros perjudicados, se les hace saber que pueden apersonarse dentro del término de treinta días, contados a partir del día siguiente de la última publicación, y que está a su disposición en la Secretaría de este Juzgado la copia correspondiente a la demanda de amparo. Apercibidos que de no comparecer dentro de dicho término por sí, por apoderado o por gestor que pueda representarlos, se seguirá el juicio sin su intervención y las posteriores notificaciones, aun las de carácter personal, se realizarán por medio de lista.

Durango, Dgo., a 28 de febrero de 2002.

El Secretario del Juzgado Primero de Distrito en el Estado

Lic. Luis Fernando Aviña Pescador

Rúbrica.

(R.- 162689)

Estados Unidos Mexicanos Poder Judicial de la Federación Juzgado Primero de Distrito en el Estado San Luis Potosí

FDICTO

En el juicio ordinario mercantil 3/2001, promovido por el licenciado Alejandro Aguilar García, apoderado legal del organismo descentralizado denominado Comisión Federal de Electricidad, en contra de la empresa denominada Triple I, S.A. de C.V., se ordenó emplazar por este conducto a dicha empresa; en tal virtud, hágase saber a la referida demandada, que deberá presentarse a este Juzgado Primero de Distrito en el Estado de San Luis Potosí, con residencia en la ciudad del mismo nombre, dentro del término de treinta días, contados a partir del siguiente al de la última publicación de estos edictos; además se le hace saber que de no comparecer dentro de dicho término el juicio seguirá su curso, sin necesidad de que se acuse rebeldía, y se tendrá perdido el derecho que pudiere hacer valer, amén de que todas las notificaciones se le harán por lista en los estrados de este tribunal. San Luis Potosí, S.L.P., a 9 de mayo de 2002.

El Juez Primero de Distrito en el Estado

Lic. Ernesto Martínez Andreu

Rúbrica.

(R.- 162703)

Estados Unidos Mexicanos Poder Judicial de la Federación Juzgado Quinto de Distrito en el Estado Uruapan, Mich.

EDICTO

Asociación de Productores del Valle de Apatzingán.

En cumplimiento al acuerdo del pasado diecinueve de marzo de dos mil dos, dictado en el juicio de amparo número 489/2001, del índice del Juzgado Quinto de Distrito en el Estado de Michoacán, promovido por Virginia Arévalo Hernández y otros, contra actos del Juez Segundo de Primera Instancia en Materia Penal, con residencia en Apatzingán, Michoacán, en el cual reclaman el desalojo y lanzamiento de un bien inmueble de su propiedad, mismo que se ubica en la colonia Las Palmas y se localiza y deslinda como sigue: al norte, con la calle Hermenegildo Galeana; al oriente, con la calle Pascacio Ruiz de Letona; al sur con la calle Granaditas y al poniente con varias casas de la colonia Las Palmas fincadas en terrenos de la zona urbana del ejido Apatzingán, esto para dar posesión y entregar dicho bien a Salvador García Ramos, Ramón Sandoval Hernández supuestos presidente y secretario de la Asociación de Productores del Valle de Apatzingán; toda vez que esta última fue señalada como tercero perjudicado y que se ignora su domicilio; por tanto, con apoyo en el artículo 315 del Código Federal de Procedimientos Civiles, aplicado supletoriamente conforme al artículo 20., de la Ley de Amparo, se ordena emplazarla por este medio y se le hace saber que su representante legal puede apersonarse ante este Juzgado, dentro del término de treinta días, contados a partir del día siguiente al de su última publicación y que en la Secretaría de este Juzgado, se encuentra a su disposición una copia de la demanda de garantías, para el efecto de hacer valer lo que a su interés corresponda.

Asimismo, se le hace saber que la audiencia constitucional se encuentra señalada para las once horas del dieciséis de abril del año en curso, para su celebración.

Nota: El presente edicto se ordenó publicarse por tres veces de siete en siete días, en el Diario Oficial de la Federación y en uno de los periódicos diarios de mayor circulación en la República Mexicana. Atentamente

Uruapan, Mich., a 4 de abril de 2002.

El Secretario del Juzgado Quinto de Distrito en el Estado de Michoacán

Lic. Julio César López Jardines

Rúbrica.

(R.- 162852)

Poder Judicial Estado de México Juzgado Segundo Civil

Tlainepantia, Méx. Primera Secretaría

EDICTO

En autos del expediente 668/99, relativo al juicio suspensión de pagos promovido por Promotora Textil Mexicana, S.A. de C.V. se dictó sentencia de aprobación de convenio en fecha diecisiete de mayo de dos mil dos, mismo que fue en base a las siguientes cláusulas:

"PRIMERA.- La suspensa pagará a los acreedores concurrentes y ausentes el cuarenta y uno por ciento del capital de sus créditos en una sola exhibición, pago que se efectuará con el activo circulante consistente en el papel comercial denominado Trade Credit, que se encuentra respaldado por la empresa Atwood Richards Inc., a partir del día siguiente de la homologación del presente convenio de conformidad con el artículo 317 en relación con el artículo 403 de la Ley de Quiebras y Suspensión de Pagos.

SEGUNDA.- Los créditos comunes no causarán interés alguno, de conformidad con el artículo 128 fracción II de la Ley de Quiebras y Suspensión de Pagos.

TERCERA.- Los créditos quedarán garantizados, con el activo circulante consistente en el papel comercial denominado Trade Credit, y desde este momento se designa como depositario de los mismos a Adwood Richard Inc., que es la empresa que los respalda.

CUARTA.- Las deudas de moneda extranjera serán pagadas al tipo de cambio de la fecha del presente convenio, es decir, del día veinticinco de abril de dos mil dos, en la inteligencia que para los acreedores ausentes, deberán presentar primeramente su demanda de reconocimiento de crédito para su discusión."

Dándose el presente en la ciudad de Tlalnepantla, México, a los cuatro días del mes de junio del año dos mil dos. Doy fe.

Para su publicación por tres veces consecutivas en el **Diario Oficial de la Federación** y en el periódico La Prensa.

Primer Secretario de Acuerdos

Lic. Jorge Casimiro López

Rúbrica.

(R.-162881)

Estados Unidos Mexicanos
Secretaría de Hacienda y Crédito Público
Servicio de Administración Tributaria
Administración General de Recaudación
Administración Local de Recaudación de Acapulco
Departamento de Control de Créditos
322-SAT-12-I-B-

RFC: ROGA651029 Crédito: H-174317

NOTIFICACION POR EDICTO

La Administración Local de Recaudación de Acapulco, controla el crédito fiscal número H-174317, derivado del pliego de responsabilidades 002/2001, en cantidad de \$66,201.49, (sesenta y seis mil doscientos un peso 49/100 M.N), fincado por las Autoridades de la Inspección y Contraloría General del Ejercito y Fuerza Aérea de la Secretaría de la Defensa Nacional en forma directa al Capitán Segundo de Administración, con puesto o cargo de Comandante del Servicio de Alimentación del Centro de Adiestramiento de Operaciones en Selva y Anfibias (Xtomoc, Q. Roo.) Alfonso Rodríguez García, con domicilio en Unidad Habitacional Mil. número 34, edificio B departamento 1, sito en calles Efraín Aquilar y Andrés Quintana Roo (Chetumal Q.R.).

Toda vez que tanto la Administración Local de Recaudación de Chetumal, Q. Roo. como la similar de Acapulco, no les fue posible notificar en forma personal el pliego de responsabilidades de referencia, ya que en el domicilio señalado se encuentra habitado por otro miembro de la Defensa Nacional, de acuerdo con los informes de asunto no diligenciado de fechas 28 de marzo y 5 de abril de 2001, rendidos por notificadores adscritos a la primer Administración y de fechas 7 y 9 de noviembre de 2001, rendidos por notificadores adscritos a la Segunda Administración. Por lo que con fundamento en los artículos 1o., 2o., 4o., 7o., fracciones I, VII y XIII y 8 fracción III, primero y tercero Transitorios todos ellos de la Ley del Servicio de Administración Tributaria, publicada en el Diario Oficial de la Federación el 15 de diciembre de 1995, en vigor a partir del 1 de julio de 1997; artículos 1o., 2o. y 22 fracción II, en relación con el numeral 20 fracciones XXII y XXXI; artículo 39 apartado A de Acapulco, con sede en Acapulco de Juárez; artículo primero, cuarto y octavo Transitorios, del Reglamento Interior del Servicio de Administración Tributaria, publicado en el citado Diario Oficial el 22 de marzo de 2001, vigente a partir del día siguiente de su publicación y artículo 20., segundo párrafo, numeral 43 del Acuerdo por el que señala el nombre, sede y circunscripción territorial de las Unidades Administrativas del Servicio de Administración Tributaria, publicado en el Diario Oficial de la Federación el 31 de agosto de 2000, vigente a partir del día siguiente al de su publicación, modificado mediante diverso publicado en el mismo órgano oficial el 23 de agosto de 2001, vigente a partir del día siguiente al de su publicación, así como en los artículos 134 fracción IV y 140 del Código Fiscal de la Federación vigente, se procede a notificar por edictos durante tres días consecutivos, la resolución cuyo resumen a continuación se indica:

Miércoles 26 de junio de 2002 DIARIO OFICIAL (Primera Sección) 99

Nombre: Alfonso Rodríguez García.

R.F.C.: ROGA-651029 Pliego de responsabilidades número: 002/2001

Monto: \$66,201.49 (sesenta y seis mil doscientos un peso

49/100 M.N)

Concepto: (Pliego de responsabilidades)

Fecha de fincamiento: 7 de marzo de 2001.

Dependencia emisora: Autoridades de la Inspección y Contraloría General del

Ejercito

y Fuerza Aérea de la Secretaría de la Defensa Nacional.

RESUMEN

"Se fincó el pliego de antecedentes al C. Alfonso Rodríguez García, por las irregularidades atribuidas en su carácter de Comandante del Servicio de Alimentación del Centro de Adiestramiento de Operaciones en Selva y Anfibias (Xtomoc Q. Roo; por contravenir en el manejo de la partida presupuestal "2201" de Capítulo 2000 (Alimentación de personas) y quien incurrió en el delito castrense de diserción el cuatro de mayo del año 2000, contrayendo adeudos con diversos proveedores por un importe total de \$66,201.49, (sesenta y seis mil doscientos un peso 49/100 M.N.) y que constituye la responsabilidad. Queda a disposición del C. Alfonso Rodríguez García, copia simple de la resolución completa que se le notifica por este medio, en la Administración Local de Recaudación de Acapulco.

Atentamente

Ciudad de México, D.F., a 24 de junio de 2002.

Sufragio Efectivo. No Reelección.

El Administrador Local de Recaudación de Acapulco

Cuauhtémoc Berdeja Rivas

Rúbrica.

(R.- 163150)

Estados Unidos Mexicanos

Secretaría de Contraloría y Desarrollo Administrativo Subsecretaría de Atención Ciudadana y Normatividad Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal.

Oficio UNAOPSPF/309/DS/0566/2002

Expediente DS/19-4/2000.

EDICTO

Grupo Industrial Aple, S.A. de C.V.

Presente

Con fundamento en los artículos 46 primer párrafo 59 y 60, fracción I de la Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público; 69 de su Reglamento; publicados en el Diario Oficial de la Federación el 4 de enero de 2000 y 20 de agosto de 2001; 2, 35, fracción I, 70, fracciones II y VI, 72, 73 y 76 de la Ley Federal de Procedimiento Administrativo, publicada en el mismo órgano de difusión federal el 4 de agosto de 1994 y sus reformas; 1, 18, 26 y 37, fracción XXV de la Ley Orgánica de la Administración Pública Federal; publicada en el Diario Oficial de la Federación el 28 de diciembre de 1994;1, 2 y 22, fracción IX del Reglamento Interior de la Secretaría de Contraloría y Desarrollo Administrativo, Publicado en el Diario Oficial de la Federación el 16 de julio de 2001; primero fracción II del Acuerdo mediante el cual se adscriben orgánicamente las unidades administrativas correspondientes a la Secretaría de Contraloría y Desarrollo Administrativo y se establece la subordinación jerárquica de servidores públicos previstos en el Reglamento Interior de la misma, divulgado en el Diario Oficial de la Federación el 7 de septiembre de 2001; le notificamos el inicio del procedimiento para determinar posibles infracciones a la Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público, e imponerle, en su caso, las sanciones administrativas que regulan los artículos 46 primer párrafo 59 y 60, fracción I de dicho ordenamiento, al no haberse presentado a formalizar dentro del plazo de 20 días naturales, el contrato relativo a la partida 2, correspondiente al

mantenimiento preventivo y correctivo de máquinas de escribir, calculadoras y fax, derivada de la licitación pública nacional número 16131001-005/00, que le fue adjudicado por la entonces Secretaría de Medio Ambiente, Recursos Naturales y Pesca.

Por tal motivo, tiene 15 días hábiles contados a partir del día siguiente al en que surta efectos la presente notificación, para exponer dentro de dicho plazo lo que a su derecho convenga, y en su caso, aportar las pruebas que estime pertinentes, ante la Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal, ubicada en el noveno piso, ala sur, del edificio que tiene destinado la Secretaría de Contraloría y Desarrollo Administrativo, sito en la avenida de los Insurgentes Sur 1735, colonia Guadalupe Inn, código postal 01020, Delegación Álvaro Obregón, en México, Distrito Federal, en donde además podrá consultar el expediente del presente asunto. Asimismo, se le apercibe que si en dicho plazo no lo hace, precluirá su derecho en los términos del artículo 288 del Código Federal de Procedimientos Civiles, de aplicación supletoria, y esta Unidad Administrativa procederá a dictar la resolución correspondiente.

Por otra parte, en el caso, de que su domicilio fiscal se encuentre asentado en algún estado de la República Mexicana en términos de lo establecido por los artículos 305, 306 y 316 del Código Federal de Procedimientos Civiles, de aplicación supletoria, deberá señalar domicilio en el Distrito Federal para oír y recibir notificaciones, apercibido de que en caso de no hacerlo, las subsecuentes se harán por rotulón.

Así lo proveyó y firma, el Titular de la Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal.

Sufragio Efectivo, No Reelección. México, D.F., a 14 de junio de 2002.

Guillermo Haro Bélchez

Rúbrica.

(R.- 163157)

Estados Unidos Mexicanos

Secretaría de Contraloría y Desarrollo Administrativo

Subsecretaría de Atención Ciudadana y Normatividad

Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal

Oficio UNAOPSPF/309/DS/0619/2002

Expediente DS/692/99

NOTIFICACION POR EDICTO

Construcciones Aries, S.A. de C.V.

Presente

Con fundamento en los artículos; 41 fracción VI, y 92, fracción I, de la Ley de Adquisiciones y Obras Públicas; Quinto Transitorio de la Ley de Obras Públicas y Servicios Relacionados con las Mismas; 2, 35, fracción I, 70, fracciones II y VI, 72, 73 y 76 de la Ley Federal de Procedimiento Administrativo; 1, 18, 26 y 37, fracción XXV, de la Ley Orgánica de la Administración Pública Federal; Octavo Transitorio del Decreto que reforma, adiciona y deroga diversas disposiciones de la Ley Orgánica de la Administración Pública Federal; 1, 2 y 22, fracción IX, del Reglamento Interior de la Secretaría de Contraloría y Desarrollo Administrativo, se le notifica a esa sociedad mercantil, el inicio del procedimiento para determinar posibles infracciones a la Ley de Adquisiciones y Obras Públicas, y en su caso, imponerle las sanciones que regulan los artículos 87 y 88, primer párrafo, de dicho ordenamiento, ya que existen elementos para establecer que esa sociedad mercantil probablemente proporcionó información falsa y actuó con dolo durante el finiquito del contrato de obra pública número PRSPR-80/98DMX que tenía celebrado con Pemex Refinación, para la realización de la obra civil y electromecánica para la rehabilitación de las líneas de contraincendio, casa de bombas C.I. y sistemas de espreas, áreas 1, 2 y 3, en el interior de la refinería General Lázaro Cárdenas, en Minatitlán, Veracruz, al haber exhibido como parte de la documentación relativa al material que se había comprometido a entregar a esa entidad, el Certificado de Prueba de Fábrica número 950002345, mismo que resultó ser apócrifo, con lo cual se ubicaría en el supuesto de la fracción VI del artículo 41, en relación con el 87 y 88, primer párrafo, de la Ley de Adquisiciones y Obras Públicas.

Por tal motivo, tiene quince días hábiles contados a partir del día siguiente al en que surta efectos la presente notificación para exponer dentro de dicho plazo lo que a su derecho convenga, y en su caso, aporte las pruebas que estime pertinentes ante la Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal, ubicada en el noveno piso, ala sur, del edificio que tiene destinado la Secretaría de Contraloría y Desarrollo Administrativo, sito en avenida de los Insurgentes Sur 1735, colonia Guadalupe Inn, código postal 01020, Delegación Alvaro Obregón, en esta Ciudad, en donde además podrá consultar el expediente sobre el presente asunto, apercibiéndole que si en dicho plazo no lo hace, precluirá su derecho en términos del artículo 288 del Código Federal de Procedimientos Civiles, de aplicación supletoria y, esta Unidad Administrativa procederá a dictar la resolución correspondiente.

Asimismo, de conformidad con los artículos 305, 306 y 316 del Código Federal de Procedimientos Civiles, de aplicación supletoria, deberá señalar domicilio en el Distrito Federal para oír y recibir notificaciones, apercibido que de no hacerlo las subsecuentes se harán por rotulón.

Así lo proveyó y firma, el Titular de la Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal.

Sufragio Efectivo, No Reelección. México, D.F., a 13 de junio de 2002. Guillermo Haro Belchez Rúbrica.

(R.- 163158)

Estados Unidos Mexicanos

Secretaría de Contraloría y Desarrollo Administrativo

Subsecretaría de Atención Ciudadana y Normatividad

Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal

Oficio UNAOPSPF/309/DS/0567/2002

Expediente DS/21-4/2000.

EDICTO

Compañía Mexicana de Consumibles, S.A. de C.V.

Presente

Con fundamento en los artículos 46, primer párrafo, 59 y 60, fracción I de la Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público; 69 de su Reglamento; publicados en el Diario Oficial de la Federación el 4 de enero de 2000 y 20 de agosto de 2001; 2, 35, fracción I, 70, fracciones II y VI, 72, 73 y 76 de la Ley Federal de Procedimiento Administrativo, publicada en el mismo órgano de difusión federal el 4 de agosto de 1994 y sus reformas; 1, 18, 26 y 37, fracción XXV de la Ley Orgánica de la Administración Pública Federal; publicada en el Diario Oficial de la Federación el 28 de diciembre de 1994;1, 2 y 22, fracción IX del Reglamento Interior de la Secretaría de Contraloría y Desarrollo Administrativo; Publicado en el Diario Oficial de la Federación el 16 de julio de 2001; primero fracción II del Acuerdo mediante el cual se adscriben orgánicamente las unidades administrativas correspondientes a la Secretaría de Contraloría y Desarrollo Administrativo y se establece la subordinación jerárquica de servidores públicos previstos en el Reglamento Interior de la misma, divulgado en el Diario Oficial de la Federación el 7 de septiembre de 2001; le notificamos el inicio del procedimiento para determinar posibles infracciones a la Ley de Adquisiciones, Arrendamientos y Servicios del Sector Público, e imponerle, en su caso, las sanciones administrativas que regulan los artículos 46 primer párrafo, 59 y 60 fracción I de dicho ordenamiento, al no haberse presentado a formalizar dentro del plazo de 20 días naturales, el contrato relativo a la partida 88 para la adquisición de tijeras escolar punta roma número 5 por la cantidad de 2,767 piezas, correspondiente a la licitación pública nacional número 11150025-001-00, que le fue adjudicado por el Consejo Nacional de Fomento Educativo.

Por tal motivo, tiene 15 días hábiles contados a partir del día siguiente al en que surta efectos la presente notificación, para exponer dentro de dicho plazo lo que a su derecho convenga, y en su caso, aportar las pruebas que estime pertinentes, ante la Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal, ubicada en el noveno piso, ala sur, del edificio que tiene destinado la Secretaría de Contraloría y Desarrollo Administrativo, sito en la avenida de los Insurgentes Sur 1735, colonia Guadalupe Inn, código postal 01020, Delegación Alvaro Obregón, en México, Distrito Federal, en donde además podrá consultar el expediente del presente asunto. Asimismo, se le apercibe que si en dicho plazo no lo hace, precluirá su derecho en los términos del artículo 288 del Código Federal de Procedimientos Civiles, de aplicación supletoria, y esta Unidad Administrativa procederá a dictar la resolución correspondiente.

Por otra parte, en el caso, de que su domicilio fiscal se encuentre asentado en algún estado de la República Mexicana en términos de lo establecido por los artículos 305, 306 y 316 del Código Federal de Procedimientos Civiles, de aplicación supletoria, deberá señalar domicilio en el Distrito Federal para oír y recibir notificaciones, apercibido de que en caso de no hacerlo, las subsecuentes se harán por rotulón.

Así lo proveyó y firma, el Titular de la Unidad de Normatividad de Adquisiciones, Obras Públicas, Servicios y Patrimonio Federal.

Sufragio Efectivo, No Reelección.

México, D.F. a 14 de junio de 2002.

Guillermo Haro Bélchez

Rúbrica.

(R.- 163160)

Estados Unidos Mexicanos Gobierno del Estado Libre y Soberano de Morelos **Poder Judicial** H. Tribunal Superior de Justicia

EDICTO

Persona moral denominada Fondo Opción, S.A. de C.V.

En el lugar donde se encuentre.

Ante la Sala Auxiliar de este Tribunal Abel Campos Franco representante común de Simay Belleza, S.A., Salvador Agustín Arrangoiz Morán y Pablo Ustarroz Jiménez, promovió juicio de amparo contra la resolución de treinta y uno de octubre de dos mil uno, dictada en el toca 180/00-8-15, teniendo usted el carácter de tercero perjudicado en dicho juicio de amparo y toda vez que se desconoce su domicilio, es que se le emplaza por medio de edictos, en cumplimiento a lo ordenado en los autos de treinta de enero y veintidós de mayo del presente año, dictados en el cuaderno de amparo formado con motivo de la demanda de garantías promovida por el quejoso de mérito, para que en el término de treinta días, contados a partir del día siguiente al de la última publicación de este edicto, comparezca ante el Tribunal Colegiado del Décimo Octavo Circuito que por turno corresponde conocer de la demanda de amparo de mérito, a hacer valer lo que a su derecho convenga y señale domicilio en esta ciudad para oír y recibir notificaciones, apercibido que de no hacerlo, las subsecuentes notificaciones aun las de carácter personal se le harán por medio de lista que se fije en los estrados de este Honorable Tribunal. Se le hace saber que queda a su disposición copia de la demanda de amparo correspondiente en la Secretaría de Amparos Civiles de este Tribunal.

Para su publicación por tres veces de siete en siete días, en el Diario Oficial de la Federación y en el diario El Excélsior, que se editan en la ciudad de México, Distrito Federal.

Atentamente

Sufragio Efectivo. No Reelección.

Cuernavaca, Mor., a 3 de junio de 2002.

El Magistrado Presidente de la Sala Auxiliar del Tribunal Superior de Justicia del Estado

Lic. Wilfrido López Luna

Rúbrica.

La Secretaria de Amparos Civiles

Lic. Yolanda Estrada Santana

Rúbrica.

(R.- 163184)

ARZATE Y BARRON ASOCIADOS, S.C.

CONVOCATORIA

Por medio de la presente y con fundamento en el artículo décimo de los estatutos sociales se convoca a los socios de Arzate y Barrón Asociados, Sociedad Civil a la asamblea general extraordinaria que se llevará a cabo en el domicilio social sito en Diagonal Patriotismo número 8 piso 10, colonia Hipódromo Condesa, Delegación Cuauhtémoc, en México, D.F., a las 10:00 horas del día 19 de julio del año en curso, bajo el siguiente:

ORDEN DEL DIA

I.- Instalación de asamblea.

II.- Lista de asistencia.

III.- Propuesta para disolver la Sociedad.

IV.- Nombramiento de liquidador.

V.- Designación de delegado especial.

Atentamente

México, D.F., a 10 de junio de 2002.

Presidente

Nemesia Esther Barrón Fuentes

Rúbrica.

(R.- 163185)

Estados Unidos Mexicanos Poder Judicial de la Federación

Juzgado Décimo de Distrito en Coatzacoalcos, Ver.

Rosa María Toto Herández y Jesús Hernández Salinas.

Terceros perjudicados.

En los autos del juicio de amparo número 750/2001, promovido por Juan José Orozco Márguez, el secretario del Juzgado Décimo de Distrito en el Estado de Veracruz, en funciones de Juez de Distrito en sustitución del titular, con residencia en la ciudad de Coatzacoalcos, Veracruz, ordenó emplazarlos por medio de edictos por desconocerse su domicilio, los cuales se publicarán por tres veces de siete en siete días, en el Diario Oficial de la Federación, Excélsior y Diario del Istmo, así como los estrados de este tribunal, haciéndole saber que está a su disposición en la Secretaría de este Juzgado la copia simple de la demanda de amparo; que tienen la vía expedita para comparecer a este tribunal a deducir sus derechos, si a sus intereses conviene y que la audiencia constitucional se celebrará el día siete de junio de dos mil dos, a las once horas con cinco minutos.

Coatzacoalcos, Ver., a 28 de mayo de 2002.

El C. Secretario del Juzgado Décimo de Distrito en el Estado de Veracruz

Lic. Pedro Martínez Zenteno

Rúbrica.

(R.- 163187)

Estados Unidos Mexicanos

Secretaría de Economía

Dirección General de Inversión Extranjera

Dirección de Asuntos Jurídicos y de la Comisión Nacional de Inversiones Extranjeras

No. de Oficio: 315.02.- Exp.: 70404-C.- Reg.: 11415.

Asunto: Se autoriza inscripción en el Registro Público de Comercio.

Biofilm, S.A.

Bosque de Duraznos No. 69, Desp. 1005, torre B

Col. Bosques de las Lomas

11700, México, D.F.

At'n.: C. Guillermo Umaña Muñoz.

Me refiero a su escrito recibido el 29 de abril de 2002, mediante el cual solicita a esta Dirección General se autorice a Biofilm, S.A., sociedad de nacionalidad colombiana, la inscripción de sus estatutos sociales y demás documentos constitutivos en el Registro Público de Comercio, en virtud del establecimiento de una sucursal en la República Mexicana, misma que tendrá por objeto principal la venta, importación, exportación, distribución, y/o actividades de agencia, a propósito de películas de polipropileno biorientado en todas sus formas y derivados, así como bolsas, empaques, envolturas terminadas o semiprocesadas, inclusive los que tengan como materia prima principal elementos

semejantes o sustitutos de la película de polipropileno biorientado o de cualquier otro material que se llegue a desarrollar por la industria de plásticos o químicos en general.

Una vez analizadas las manifestaciones contenidas en el escrito de referencia, se le comunica lo

- 1. Se deja sin efectos la autorización de esta Dirección General contenida en el oficio número 315.02.4158, de fecha 24 de abril de 2002.
- 2. Esta Dirección General, con fundamento en los artículos 17, fracción I y 17A de la Ley de Inversión Extranjera, 250 y 251 de la Ley General de Sociedades Mercantiles, autoriza a Biofilm, S.A. para llevar a cabo la inscripción de sus estatutos sociales y demás documentos constitutivos en el Registro Público de Comercio de la entidad federativa correspondiente.

Esta autorización se emite en el entendido de que la sucursal en comento no podrá adquirir el dominio directo sobre bienes inmuebles ubicados en la zona restringida a que hace referencia el artículo 2o., fracción VI de la Ley de Inversión Extranjera, ni adquirir bienes inmuebles ubicados fuera de dicha zona u obtener las concesiones a que se refiere el artículo 10 A de la propia Ley de Inversión Extranjera, salvo que celebre ante la Secretaría de Relaciones Exteriores, en estos dos últimos casos, el convenio previsto por el artículo 27, fracción I de la Constitución Política de los Estados Unidos Mexicanos y obtenga, de la citada dependencia, el permiso que señala el artículo 10 A de la ley aludida.

Asimismo, la sucursal en cuestión no podrá realizar ninguna de las actividades y adquisiciones reservadas o con regulación específica señaladas en los artículos 5o., 6o., 7o., 8o., 9o. y sexto transitorio de la Ley de Inversión Extranjera, o establecidas en otros cuerpos normativos, salvo que en los casos previstos expresamente en dichos ordenamientos obtenga la resolución favorable correspondiente.

Por último, se le recuerda que su representada deberá dar cumplimiento a lo establecido por el artículo 32 de la Ley de Inversión Extranjera y demás disposiciones aplicables, relativas a la inscripción y reporte periódico ante el Registro Nacional de Inversiones Extranjeras.

Lo anterior, se resuelve y comunica con fundamento en los preceptos jurídicos invocados, así como en los artículos 34, fracción XII de la Ley Orgánica de la Administración Pública Federal, 19, fracción VII del Reglamento Interior de la Secretaría de Economía, 11, fracción III, inciso c) del acuerdo delegatorio de facultades de la Secretaría de Comercio y Fomento Industrial, y quinto transitorio del Decreto por el que se reforman, adicionan y derogan diversas disposiciones de la Ley Orgánica de la Administración Pública Federal, de la Ley Federal de Radio y Televisión, de la Ley General que establece las Bases de Coordinación del Sistema Nacional de Seguridad Pública, de la Ley de la Policía Federal Preventiva y de la Ley de Pesca.

Atentamente

Sufragio Efectivo, No Reelección,

México, D.F., a 23 de mayo de 2002.

El Director de Asuntos Jurídicos y de la Comisión Nacional de Inversiones Extranjeras

Lic. David Quezada Bonilla

Rúbrica.

(R.- 163192)

FINANCIERA NACIONAL AZUCARERA, S.N.C.

INSTITUCION DE BANCA DE DESARROLLO

AVISO A LOS TENEDORES DE BONOS BANCARIOS DE DESARROLLO

FINASA 2-95

En cumplimiento a lo establecido en la cláusula décima del acta de emisión, hacemos de su conocimiento que la tasa anual de interés bruto que devengarán los bonos bancarios de desarrollo de Financiera Nacional Azucarera, S.N.C., FINASA 2-95, por el octagésimo octavo periodo comprendido del 20 de junio al 18 de julio de 2002, será de 8.15% sobre el saldo insoluto de los bonos en

Asimismo, comunicamos que a partir del 20 de junio de 2002, en el domicilio de la S.D. Indeval, S.A. de C.V., Institución para el Depósito de Valores: Paseo de la Reforma número 255 3er. piso, México, D.F. se pagarán los intereses correspondientes al octagésimo séptimo periodo comprendido del 23 de mayo al 20 de junio de 2002, contra entrega del cupón número 87.

México, D.F., a 18 de junio de 2002.

Financiera Nacional Azucarera, S.N.C.

Institución de Banca de Desarrollo (En Liquidación) Rúbrica.

(R.- 163200)

FINANCIERA NACIONAL AZUCARERA, S.N.C.

INSTITUCION DE BANCA DE DESARROLLO

AVISO A LOS TENEDORES DE BONOS BANCARIOS DE DESARROLLO

FINASA 5-99

En cumplimiento a lo establecido en la cláusula octava del acta de emisión, hacemos de su conocimiento que la tasa anual de interés bruto que devengarán los bonos bancarios de desarrollo de Financiera Nacional Azucarera, S.N.C., FINASA 5-99, por el trigésimo octavo periodo comprendido del 20 de junio al 18 de julio de 2002, será de 8.62% sobre el saldo insoluto de los bonos en circulación. Asimismo, comunicamos que a partir del 20 de junio de 2002, en el domicilio de la S.D. Indeval, S.A. de C.V., Institución para el Depósito de Valores: Paseo de la Reforma número 255 3er. piso, México, D.F. se pagarán los intereses correspondientes al trigésimo séptimo periodo comprendido del 23 de mayo al 20 de junio de 2002.

México, D.F., a 19 de junio de 2002. Financiera Nacional Azucarera, S.N.C. Institución de Banca de Desarrollo (En Liquidación) Rúbrica.

(R.- 163201)

Estados Unidos Mexicanos Tribunal Superior de Justicia del Distrito Federal México Juzgado Décimo Segundo de lo Civil Secretaría B Expediente 738/01

EDICTO

En los autos del juicio relativo a las diligencias de cancelación y reposición de títulos el ciudadano Juez Décimo Segundo de lo Civil de la ciudad de México, Distrito Federal.

Dictó una sentencia en dichas diligencias promovido por Barranco y García Luis Felipe en contra de Grupo Idesa, S.A. de C.V. que a la letra dice: México, Distrito Federal, a quince de abril del año dos mil dos.

Vistos para resolver en definitiva los autos del procedimiento especial de cancelación y reposición de títulos nominativos promovido por Barranco y García Luis Felipe en contra de Grupo Idesa, S.A. de C.V. expediente 738/01/ Considerando... Por lo expuesto y fundado se:... PRIMERO.- Se ha tramitado en debida forma el juicio especial de cancelación y reposición de título nominativo consecuencia. SEGUNDO.- Se decreta la cancelación de los títulos número 21, que representan 15,532 acciones de la número 3'577,622 a la número 3'593,153 parte variable y título número 57 que ampara 3,826 acciones de la número 4'729,619 a la número 4'733,444 parte variable de la empresa emisora Grupo Idesa, S.A. de C.V. y a favor de la sucesión; actora a bienes del señor Luis Felipe Barranco y García como consecuencia deberá reponérsele con emisión de los títulos a nombre de la sucesión actora que ampare la propiedad dichas acciones arriba señaladas. TERCERO.- Publique por una sola vez en el Diario Oficial de la Federación los puntos resolutivos de este fallo. CUARTO.- Notifique. Así definitivamente juzgando lo resolvió y firma el ciudadano Juez Décimo Segundo de lo Civil licenciado Carlos Miguel Jiménez Mora, ante el ciudadano secretario de acuerdos que da fe. Dos firmas ilegibles. México, D.F., a 16 de mayo de 2002.

La C. Secretaria de Acuerdos

Norma Patricia Ortega Roca

Rúbrica.

Poder Judicial de la Federación Juzgado Segundo de Distrito en el Estado San Luis Potosí

EDICTO

A los acreedores de: Unión de Crédito

Regional, Sociedad Anónima de Capital Variable

En el expediente número 9/2001 relativo al procedimiento de concurso mercantil de la Unión de Crédito Regional, Sociedad Anónima de Capital Variable, la Juez Segundo de Distrito en el Estado, el día veintiocho de febrero del año dos mil dos, dictó sentencia definitiva en la que se declara en concurso mercantil a dicha sociedad, retrotrayendo sus efectos al tres de junio del año dos mil uno; se declara abierta la etapa de conciliación y se ordena que durante ésta se suspenda todo mandamiento de embargo o ejecución contra bienes y derechos de la concursada, excepto los contenidos en el artículo 65 de la Ley de Concursos Mercantiles; tiene efectos de arraigo para los liquidadores, y/o representantes y/o funcionarios responsables de la administración de la concursada, quienes no podrán separarse de su domicilio sin dejar apoderado instruido y expensado; se ordena a la Comisión Nacional Bancaria y de Valores designe Conciliador y a éste que inicie el procedimiento de reconocimiento de créditos, lo que se hace del conocimiento de los acreedores de la concursada para que aquellos que así lo deseen, soliciten el reconocimiento de sus créditos. La publicación de este edicto surte efectos de notificación para todos los acreedores de la concursada.

Para su publicación por dos veces consecutivas en el Diario Oficial de la Federación y en el periódico El Pulso de esta Ciudad.

San Luis Potosí, S.L.P., a 8 de mayo de 2002.

El Secretario del Juzgado Segundo

de distrito en el estado.

Lic. Marcos Mario García Carreto

Rubrica.

(R.- 163214)

Estados Unidos Mexicanos Poder Judicial de la Federación Juez Segundo de Distrito en Materia Civil en el Estado de Jalisco Guadalajara, Jal. **EDICTO**

Juicio de Garantías 708/2001-VI, promovido por Banco Inverlat, S.A., a través de su apoderado Gilberto Macias Flores, contra actos del Juez Sexto de lo Mercantil de esta ciudad y otra autoridad, por ignorarse domicilio de la tercera perjudicada Ana Gabriela Delgadillo Sánchez, sea emplazada por edictos. Señalándose nueve horas del día veintiuno de mayo próximo, para celebración de audiencia constitucional, quedando a disposición copias de Ley en la Secretaría del Juzgado. Hágasele saber que deberá presentarse al procedimiento dentro de treinta días contados a partir de última publicación. Asimismo, que de no comparecer a este procedimiento a señalar domicilio para recibir notificaciones, se le practicará por lista, aun las personales, con fundamento en artículo 28 fracción II, de la Ley de Amparo.

Para publicarse por tres veces de siete en siete días, tanto en el Diario Oficial de la Federación, como en el Informador.

Atentamente

Guadalajara, Jal., a 11 de febrero de 2002.

La Secretario del Juzgado Segundo de Distrito en Materia Civil en el Estado

Lic. Graciela Pérez González

Rúbrica.

(R.- 163217)

Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación Delegación en el Estado de Campeche **CONVOCATORIA 01**

La Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, a través de la Delegación Estatal en Campeche, cumpliendo con lo establecido en el articulo 134 Constitucional; 79 de la Ley General de Bienes Nacionales y capítulo III de las Normas para la Administración y Baja de Bienes Muebles de las Dependencias de la Administración Pública Federal, convoca a las personas físicas y morales a participar en la licitación publica número SAGARPA-CAM-LP-01-2002, de conformidad con lo siguiente

DIARIO OFICIAL

No. de licitación	Costo de	Fecha límite para	Inspección de los	Acto de apertura	Acto de
	las	adquirir bases	bienes	de ofertas	adjudicación
	bases				(fallo)
SAGARPA-	\$500.00	Del 26 de junio al	Del 26 de junio al	10 de julio de 2002	11 de julio de
CAM-LP-		9 de julio de 2002	9 de julio de 2002	11:00 horas	2002
01/2002		de 9:00 a 14:00	de 9:00 a 14:00		10:00 horas
		horas	horas		

No. contr ol	Cant.	Unidad	Descripción general	Precio mínimo de venta
1	1	Pza.	Automóvil de cuatro puertas número de serie: 7LB11- 17334 Mca. Nissan Mod.1987	
2	1	Pza.	Automóvil de dos puertas tipo Golf número de serie: 1GLM902915 Mca. V.W. Mod.1990	\$ 3,128.00
3	1	Pza.	Camioneta tipo pick up número de serie: NM568048 Mca. Dodge Mod. 1992	\$ 12,068.40
4	1	Pza.	Automóvil Mca. Nissan Mod. 1989 tipo vagoneta número de serie: 9WLB12-05431	\$ 11,183.40
5	1	Pza.	Camioneta tipo pick up Mca. Dodge Mod. 1986 número de serie: L6-00625	\$ 6,683.00
6	1	Pza.	Camioneta T/Pick up Mca. Dodge Mod.1985 número de serie: L5-28212	\$ 6,727.50
7	1	Pza.	Camioneta T/Pick up Mca. Dodge Mod. 1993 número de serie: PM127716	\$ 12,787.50
8	1	Pza.	Camioneta T/Estacas Mca. Dodge Mod.1985 número de serie: L5-24887	\$ 4,537.50
9	1	Pza.	Automóvil T/Sedán dos puertas Mca. V.W. Mod.1991 número de serie: 11M0069893	\$ 7,099.00
10	1	Pza.	Automóvil T/Sedán dos puertas Mca. V.W. Mod.1991 número de serie: 11M0058250	\$ 8,015.00
11	1	Pza.	Camioneta T/Pick up Mca. Dodge Mod.1990 número de serie: LM-028992	\$ 9,474.30
12	1	Pza.	Automóvil T/Sedán de dos puertas serie número 11J0003944 Mca. V.W. Mod.1988	\$ 6,142.50
13	1	Pza.	Automóvil T/Sedán de dos puertas serie número 11M0058255 Mca. V.W. Mod.1991	\$ 8,358.50
14	1	Pza.	Automóvil T/Sedán de dos puertas serie número 11M0058235 Mca. V.W. Mod. 1991	\$ 8,015.00
15	1	Pza.	Automóvil T/Sedán de dos puertas serie número 11M0069896 Mca. V.W. Mod.1991	\$ 8,198.20
16	1	Pza.	Automóvil T/Sedán de dos puertas serie número 11M0069591 Mca. V.W. Mod. 1991	\$ 8,015.00
17	1	Pza.	Automóvil T/Sedán de dos puertas serie número 11M0069879 Mca. V.W. Mod. 1991	\$ 8,770.70
18	1	Pza.	Vehículo T/Combi serie número 21M0000211 Mca. V.W. Mod. 1991	\$ 22,869.00

19	1	Pza.	Camioneta T/Estacas serie número 0720-00929 Mca. Nissan Mod. 1990	\$ 12,636.00
20	1	Pza.	Camioneta tipo pick up Mca. Dodge Mod. 1990 serie LM009231	\$ 12,537.00
21	1	Pza.	Camioneta tipo pick up Mca. Nissan Mod. 1990 serie 0G720-01459	\$ 13,952.70
22	1	Pza.	Camioneta tipo pick up Mca. Ford Mod. 1992 serie AC1YU-35053	\$ 19,796.00
23	1	Pza.	Camioneta tipo pick up Mca. Nissan Mod. 1989 Serie 9720-02124	\$ 12,620.70

Lote	Descripción	Cantidad	Peso aprox.	Valor mínimo x/kgr.	Importe total valor mínimo
1	Desecho ferroso vehicular	6	4000 KGR.	0.6391	\$ 2,556.40

Lote	Descripción	Cantidad	Valor mínimo avalúo
2	Conmutador telefónico automático Mca Ericsson serie BSC2SC55482	1	\$ 3,396.00 30.00
	Proyector múltiple Mca. Mitsubish		

Lote	Descripción	Cantidad	Peso aprox.	Valor mínimo x/kgr.	Importe total valor mínimo
3	Desecho ferroso de segunda de mobiliario de oficina y equipo diverso		300 KGR.	0.3778	\$ 113.34

Los interesados podrán adquirir las bases, en la Unidad de Recursos Materiales y Servicios Generales de la Delegación Estatal ubicada en avenida Gobernadores número 291, colonia Santa Lucia, en Campeche, Cam., en días hábiles, cubriendo su importe con cheque certificado o de caja a favor de la Tesorería de la Federación por un importe de \$500.00 (quinientos pesos 00/100 M.N.), siendo esto requisito indispensable para participar en la licitación. Las bases podrán ser revisadas previamente a su pago, así como en la página electrónica de la Dependencia: www.sagarpa.gob.mx

Los bienes muebles diversos y el desecho ferroso vehicular se licitaran por lote, únicamente los vehículos serán licitados por unidad, cuya verificación física de los mismos, se efectuara en días hábiles en las instalaciones de la Delegación Estatal ubicada en avenida Gobernadores número 291, colonia Santa Lucia, y en calle Galena número 43 colonia San Román, en Campeche, Cam., presentando copia del recibo de compra de bases.

Los participantes deberán inscribir sus ofertas el día 10 de julio de 2002, de 9:00 a 11:00 horas, debiendo cubrir los requisitos señalados en las bases y el deposito de garantía con cheque certificado o de caja a favor de la Tesorería de la Federación por el 10% del precio mínimo de venta.

La inscripción, el acto de apertura de ofertas y fallo de la misma se efectuaran en las instalaciones en la sala de juntas de la Delegación Estatal, ubicada en avenida Gobernadores número 291, colonia Santa Lucia, código postal 24020, Campeche, Cam.

No podrán participar las personas que se encuentren en alguno de los supuestos del artículo 8 fracción XX de la Ley Federal de Responsabilidades Administrativas de los Servidores Públicos. Campeche, Cam., a 26 de junio de 2002.

Delegado Estatal

Liconsa, S.A. de C.V. Gerencia Metropolitana Sur

LICITACION PUBLICA NACIONAL

En observancia a la Constitución Política de los Estados Unidos Mexicanos en su artículo 134, de conformidad con la Ley General de Bienes Nacionales y lo dispuesto en las Normas para la Administración y Baja de Bienes Muebles de las Dependencias de la Administración Pública Federal, se convoca a los interesados en participar en la licitación pública de carácter Nacional para la Enajenación de los Bienes en Desuso conforme a lo siguiente:

No. licitación	Costo de las bases	Fecha límite para adquirir bases	cceso al sitio londe se incuentran los iienes en lesuso		cto de apertura le ofertas	Acto de fallo
GMS/002/2 002	\$925.00	5/07/02	25 junio al 5 de Julio de 2002 de 9:30 a 16:30	2002	8 de julio de 2002 11:00 horas	10 de julio de 2002 11:00 horas

Parti da	Descripción	Precio mínimo de avalúo	Cantidad	Unidad de medida
1	Bienes en desuso consistente en: mobiliario, montacargas, equipo de cómputo, maquinaria y equipo		1	Lote
2	Bienes en desuso consistente en: equipo de transporte y refacciones varias	\$89,194.06	1	Lote

^{*} Las bases de la licitación se encuentran disponibles para consulta y venta en el Departamento de Almacenes de la Gerencia Metropolitana Sur de Liconsa, S.A. de C.V. ubicada en calle Santa Catarina número 2 colonia Santa Catarina, código postal 56619, Municipio Valle de Chalco Solidaridad, Estado de México con el siguiente horario: del 25 de junio al 5 de julio de 2002 de 9:30 a 16:30 horas en días hábiles, así mismo se encuentran para su consulta en la página electrónica: www.liconsa.gob.mx

- * El costo de las bases es de: \$925.00 (novecientos veinticinco pesos 00/100 M.N.), la comprobación del pago de las bases es requisito indispensable para participar en la licitación.
- * La forma de pago es: en las instalaciones de la convocante en efectivo, cheque certificado o de caja, a pagarse en la caja general de la Gerencia Metropolitana Sur, ubicada en el domicilio antes citado.
- * Acceso al sitio donde se encuentran los bienes será del 25 de junio al 5 de julio de 2002 de 9:30 a 16:30 horas, en días hábiles en el domicilio citado con antelación.
- * La junta de aclaraciones se llevará a cabo el día 2 de julio de 2002, a las 11:00 horas en la sala de capacitación de la Gerencia Metropolitana Sur, ubicada en: calle Santa Catarina número 2 colonia Santa Catarina, código postal 56619. Municipio Valle de Chalco Solidaridad, Estado de México.
- * El Acto de registro de participantes, será el día 8 de julio de 2002 e iniciará a las 10:30 horas; y la apertura de ofertas dará inicio en punto de las 11:00 horas, del mismo día, después de ésta hora no se permitirá el acceso a ningún licitante; el evento se llevará a cabo en la sala de capacitación de la Gerencia Metropolitana Sur, ubicada en el domicilio antes citado.
- * El fallo será el día 10 de julio de 2002 a las 11:00 horas, en el domicilio citado con antelación.
- * La moneda en que deberán cotizarse las proposiciones será: peso mexicano.
- * Lugar del retiro de los bienes será dentro de las Instalaciones de la Gerencia Metropolitana Sur de Liconsa, S.A. de C.V., conforme a lo establecido en las bases respectivas de la licitación.
- * Retiro de los bienes: dentro de los 25 días hábiles posteriores a la fecha de fallo.
- * Garantía de seriedad de ofertas: deberá presentar cheque certificado o de caja a favor de Liconsa, S.A. de C.V. por el 10% del monto del valor de cada lote.
- * Las condiciones contenidas en las bases de la licitación, así como las proposiciones presentadas por los licitantes por ningún motivo serán negociadas.

Mpio. Valle de Chalco Solidaridad, Edo. de Méx., a 25 de junio de 2002.

Subgerente de Administración y Finanzas

Lic. Agustín Culebro Casillas

Rúbrica.

(R.- 163264)

SEGUROS ATLAS, S.A.

ASAMBLEA GENERAL ORDINARIA DE ACCIONISTAS

CONVOCATORIA

Por acuerdo del Consejo de Administración en sesión celebrada el 15 de mayo de 2002, se convoca a los señores accionistas de Seguros Atlas, S.A. a la Asamblea General Ordinaria que se llevará a cabo el día miércoles 10 de julio de 2002, a las 11:00 horas en las oficinas de la sociedad, ubicadas en la calle de Córdoba número 42 4o. piso, colonia Roma en esta Ciudad, para tratar los asuntos contenidos en el siguiente:

ORDEN DEL DIA

- I. Designación de escrutadores.
- II. Declaratoria de apertura de la Asamblea.
- III. Elección de miembros del Consejo de Administración y de comisarios, propietarios y suplentes, por serie de acciones.
- IV. Designación de delegados especiales que den cumplimiento y formalicen las resoluciones tomadas por la Asamblea.
- V. Redacción, lectura y aprobación en su caso, del acta de la Asamblea.

Los Accionistas podrán asistir personalmente o hacerse representar por apoderado mediante carta poder.

Para tener derecho a asistir a la Asamblea, no requerirán los accionistas efectuar el depósito de sus acciones, ya que se acreditará la propiedad de las mismas con la inscripción que de ellas se tenga en el libro de registro de acciones que se lleva en la empresa.

México, D.F., a 21 de junio de 2002.

Secretario del Consejo de Administración

Lic. Jose Luis Mendez Lacarra

Rúbrica.

(R.- 163265)

CONSEJO MEXICANO DE CIRUGIA GENERAL, A.C.

CONVOCATORIA

El cuerpo directivo del Consejo Mexicano de Cirugía General, A.C., de acuerdo al artículo vigésimo tercero de los estatutos que lo rigen convoca a sus consejeros de la República Mexicana a la Asamblea General Anual Ordinaria, que se realizará en el Hotel Fiesta Americana de la ciudad de México, Distrito Federal, a las 8:00 horas, el domingo 14 de julio de 2002, con el siguiente:

ORDEN DEL DIA

- a) Nombramiento de escrutadores y relación de asistentes
- b) Lectura del acta anterior
- c) Informe del tesorero
- d) Informe académico y estadístico del examen 2002
- e) Informe del comité de revisión de expedientes
- f) Informe del comité de recertificación
- g) Informe del comité de difusión
- h) Informe del comité de revisión de estatutos
- i) Informe del presidente
- j) Elección de nuevos consejeros
- k) Asuntos generales

Atentamente

México, D.F., a 13 de junio de 2002.

Vice Presidente Presidente

Dr. Gilberto López Betancourt Dr. J. Lorenzo de la Garza V.

> Rúbrica. Rúbrica.

> > (R.- 163266)

MATERIALES TARASCOS, S.A. DE C.V.

AVISO DE FUSION

Mediante asamblea general extraordinaria de accionistas de Materiales Tarascos, S.A. de C.V., celebrada el 17 de junio de 2002, se tomaron entre otras, las siguientes **RESOLUCIONES:**

- Se aprueba en forma expresa la fusión de Materiales Tarascos, S.A. de C.V. como sociedad fusionante, con Rotoplas Plásticos Inyectados, S.A. de C.V., como sociedad fusionada.
- Se aprueba que al momento de que surta efectos la fusión, Materiales Tarascos, S.A. de C.V. subsistirá como sociedad fusionante, y dejará de existir Rotoplas Plásticos Inyectados, S.A. de C.V. por tener el carácter de sociedad fusionada.
- Se acepta la transferencia del total de los activos y pasivos de la sociedad fusionada Rotoplas Plásticos Inyectados, S.A. de C.V. a favor de la sociedad, sin reserva ni limitación alguna, tal como se encuentren.

Los bienes que se transmiten a Materiales Tarascos, S.A. de C.V., propiedad de Rotoplas Plásticos Inyectados, S.A. de C.V. se fijan a valor en libros para efectos contables, pero para efectos fiscales a su valor pendiente de depreciar en los términos que señala la Ley del Impuesto Sobre la Renta.

- Se acuerda que Materiales Tarascos, S.A. de C.V. como sociedad fusionante recibe la totalidad de los activos de Rotoplas Plásticos Inyectados, S.A. de C.V., mismos que pasarán a incrementar su patrimonio.
- Se acuerda que Materiales Tarascos, S.A. de C.V., se sustituye en todos los derechos, garantías y privilegios de todas las relaciones jurídicas en las que Rotoplas Plásticos Inyectados, S.A. de C.V., sea parte de todo cuanto de hecho y derecho le corresponda y que se sustituya en todas y cada una de las obligaciones que en la actualidad tiene Rotoplas Plásticos Inyectados, S.A. de C.V., ya sean reales o contingentes, y adquiere el compromiso de liquidar la totalidad de sus pasivos, cubriendo a cada uno de los acreedores de Rotoplas Plásticos Inyectados, S.A. de C.V., el importe de sus créditos.

Asimismo, se acuerda que Materiales Tarascos, S.A. de C.V., asuma la obligación de pago de los pasivos de Rotoplas Plásticos Inyectados, S.A. de C.V., por lo que se extinguen totalmente dichos pasivos cuya obligación de pago pesaba sobre Rotoplas Plásticos Inyectados, S.A. de C.V.

- Se acuerda que para regular los efectos de la fusión entre Materiales Tarascos, S.A. de C.V. como sociedad fusionante; con Rotoplas Plásticos Inyectados, S.A. de C.V. como sociedad fusionada, sirve de base el Balance General de la sociedad realizado al 31 de mayo de 2002, que refleja la situación financiera de la sociedad fusionante Materiales Tarascos, S.A. de C.V.
- Se acuerda aumentar el capital social en su parte variable de Materiales Tarascos, S.A. de C.V., en virtud de la fusión acordada, en cantidad de \$50,000.00 (cincuenta mil pesos 00/100 M.N.), una vez que surta efectos la misma, el que deberá de ser registrado en la clase II series A y B de acciones, cantidad proveniente de Rotoplas Plásticos Inyectados, S.A. de C.V.

Una vez que haya surtido efectos la fusión, cancélense los títulos de acciones que amparan el capital social de la sociedad, y emítanse nuevos títulos que amparen el aumento decretado, con la inclusión de 50,000 (cincuenta mil) acciones clase II divididas en 25,000 (veinticinco mil) acciones serie A y 25,000 (veinticinco mil) acciones serie B, con un valor nominal de \$1.00 (un peso 00/100 M.N.), cada una. Se instruye al secretario del Consejo de Administración, el realizar los asientos correspondientes en el libro de registro de acciones y en el libro de variaciones de capital.

Canjéense con la entrega de cada acción de las que son propietarios los accionistas de Rotoplas Plásticos Inyectados, S.A. de C.V., la misma cantidad de acciones clase II series A y B, según corresponda, representativas del capital social de Materiales Tarascos, S.A. de C.V.

- Se acuerda que la fusión decretada en esta Asamblea, surtirá efectos a partir de la fecha de inscripción de la escritura pública en la que consten los acuerdos de fusión en el Registro Público de la Propiedad y del Comercio correspondiente.

Asimismo, se acuerda que a partir de la fecha de esta asamblea, la sociedad comunicará a todas las personas físicas o morales acreedores de Rotoplas Plásticos Inyectados, S.A. de C.V., así como a las autoridades correspondientes, que ha asumido las obligaciones a cargo de dicha sociedad fusionada, mismas que serán cubiertas por Materiales Tarascos, S.A. de C.V., en su carácter de sociedad fusionante.

- Se acuerda que en cumplimiento a lo dispuesto por el artículo 223 de la Ley General de Sociedades Mercantiles, y dado que el domicilio social de la sociedad es la ciudad de México, Distrito Federal, publíquese en la Gaceta Oficial del Distrito Federal o en el Diario Oficial de la Federación, el acuerdo de fusión tomado en esta asamblea, así como el sistema establecido para la extinción del pasivo de Rotoplas Plásticos Inyectados, S.A. de C.V., y los balances de las sociedades al 31 de mayo de 2002, e inscríbase el presente acuerdo de fusión en el Registro Público de la Propiedad y de Comercio correspondiente.

DIARIO OFICIAL

México, D.F., a 18 de junio de 2002.

Delegado de la Asamblea

Sr. Rafael Borobio Martínez

Rúbrica.

MATERIALES TARASCOS, S.A. DE C.V.

BALANCE DE FUSION

AL 31 DE MAYO DE 2002

(cifras en pesos)

~	H	

Circulante	
Disponible	7,386,099.75
Suma circulante	7,386,099.75
Fijo	
Inmuebles y equipo	3,689,945.64
Otros	23,052,645.95
Suma Fijo	<u>26,742,591.59</u>
Total de activo	<u>34,128,691.34</u>
Pasivo	
A corto plazo	
Cuentas por pagar	30,517,772.63
Suma corto plazo	30,517,772.63
Total pasivo	30,517,772.63
Capital	
Capital social	1,000.00
Otras cuentas de capital	3,609,918.71
Total capital contable	<u>3,610,918.71</u>

Gerente de Administración Miguel Calixto Gonzalez

Total pasivo y capital

Rúbrica.

(R.- 163268)

34,128,691.34

ROTOPLAS PLATISCOS INYECTADOS, S.A. DE C.V.

AVISO DE FUSION Y SISTEMA DE EXTINCION DE PASIVOS

Mediante asamblea general extraordinaria de accionistas de Rotoplas Plásticos Inyectados, S.A. de C.V., celebrada el 17 de junio de 2002, se tomaron entre otras las siguientes **RESOLUCIONES:**

- Se aprueba en forma expresa la fusión de Rotoplas Plásticos Inyectados, S.A. de C.V. como sociedad fusionada; con Materiales Tarascos, S.A. de C.V., como sociedad fusionante.
- Se aprueba que al momento de que surta efectos la fusión dejará de existir Rotoplas Plásticos Inyectados, S.A. de C.V., por tener el carácter de sociedad fusionada, y subsistirá Materiales Tarascos, S.A. de C.V., como sociedad fusionante.
- Se aprueba el transferir totalmente los activos y pasivos de la sociedad, en favor de Materiales Tarascos, S.A. de C.V., sin reserva ni limitación alguna, tal como se encuentren.

Los bienes que se transmiten a Materiales Tarascos, S.A. de C.V., propiedad de Rotoplas Plásticos Inyectados, S.A. de C.V. se fijan a valor en libros para efectos contables, pero para efectos fiscales a su valor pendiente de depreciar en los términos que señala la Ley del Impuesto Sobre la Renta.

La sociedad entrega la totalidad de los activos a Materiales Tarascos, S.A. de C.V., mismos que pasarán a incrementar el patrimonio de esta última.

- Se acuerda que Materiales Tarascos, S.A. de C.V., se sustituya en todos los derechos, garantías y privilegios de todas las relaciones jurídicas en las que Rotoplas Plásticos Inyectados, S.A. de C.V., sea parte de todo cuanto de hecho y derecho le corresponda y que se sustituya en todas y cada una de las obligaciones que en la actualidad tiene Rotoplas Plásticos Inyectados, S.A. de C.V., ya sean reales o contingentes, y adquiere el compromiso de liquidar la totalidad de sus pasivos, cubriendo a cada uno de los acreedores de Rotoplas Plásticos Inyectados, S.A. de C.V., el importe de sus créditos.
- Asimismo, se acuerda que Materiales Tarascos, S.A. de C.V., asuma la obligación de pago de los pasivos de Rotoplas Plásticos Inyectados, S.A. de C.V., por lo que se extinguen totalmente dichos pasivos cuya obligación de pago pesaba sobre Rotoplas Plásticos Inyectados, S.A. de C.V.
- Se acuerda que para regular los efectos de la fusión entre Rotoplas Plásticos Inyectados, S.A. de C.V. como sociedad fusionada; con Materiales Tarascos, S.A. de C.V. como sociedad fusionante, sirve de base el Balance General de la sociedad realizado al 31 de mayo de 2002, y que refleja la situación financiera de la sociedad fusionada Rotoplas Plásticos Inyectados, S.A. de C.V.
- Se acuerda solicitar a la Secretaría de Materiales Tarascos, S.A. de C.V., entregue a los accionistas de Rotoplas Plásticos Inyectados, S.A. de C.V., los títulos de acciones que representen la modificación al capital social de la misma por motivo de la fusión acordada, mismos que se les deberá de entregar de forma proporcional, canjeando los títulos de que cada uno de los accionistas sea propietario en Rotoplas Plásticos Inyectados, S.A. de C.V.
- Se acuerda que la fusión decretada en esta asamblea surtirá efectos a partir de la fecha de inscripción de la escritura pública en la que consten los acuerdos de fusión en el Registro Público de la Propiedad y del Comercio correspondiente.

Asimismo, se acuerda que a partir de la fecha de esta asamblea, la sociedad comunicará a todas las personas físicas o morales que son sus acreedores, así como a las autoridades correspondientes, que Materiales Tarascos, S.A. de C.V., ha asumido las obligaciones a cargo de la sociedad, en su carácter de sociedad fusionante, y que ésta última se encargará de cubrirlas.

A fin de que la fusión acordada en este acto surta sus efectos a la fecha de inscripción en el Registro Público de la Propiedad y de Comercio que corresponda, se acuerda en este acto que de haber créditos a favor de todos y cada uno de los acreedores de Rotoplas Plásticos Inyectados, S.A. de C.V., les sean pagados de inmediato a los que así lo soliciten, para cuyo efecto hágase saber a aquellos acreedores que no hubieren dado su consentimiento expreso mediante la publicación a que se refiere la siguiente Resolución, que el monto total de sus créditos se encuentra a su disposición en las oficinas de la sociedad.

- Se acuerda que en cumplimiento a lo dispuesto por el artículo 223 de la Ley General de Sociedades Mercantiles, y dado que el domicilio social de la sociedad es la ciudad de México, Distrito Federal, publíquese en la Gaceta Oficial del Distrito Federal o en el Diario Oficial de la Federación, el acuerdo de fusión tomado en esta asamblea, así como el sistema establecido para la extinción de su pasivo, y el balance de la sociedad al 31 de mayo de 2002, e inscríbase el presente acuerdo de fusión en el Registro Público de la Propiedad y de Comercio correspondiente.

En tanto no surta sus efectos la fusión, la sociedad se limitará a realizar exclusivamente aquellas actividades que sean inherentes, propias y necesarias para la gestión ordinaria de sus negocios.

La sociedad deberá de presentar sus declaraciones de impuestos y avisos pertinentes a las autoridades fiscales así como administrativas y cumplirá normalmente con todas las obligaciones que las leyes le imponen hasta en tanto no surta legalmente sus efectos la fusión.

Al momento en que se consume la fusión, cesarán en sus funciones los Organos de Administración y de Vigilancia de la sociedad.

México, D.F., a 18 de junio de 2002.

Delegado de la Asamblea

Sr. Rafael Borobio Martínez

Rúbrica.

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Primera Sección) 114
BALANCE DE FUSION		
AL 31 DE MAYO DE 2002.		
(cifras en pesos)		
Activo		
Circulante		
Disponible		49,366,521.35
Inventarios		<u>8,300,020.34</u>
Suma circulante		57,666,541.69
Fijo		
Inmuebles y equipo		<u>15,726,525.58</u>
Suma fijo		15,726,525.58
Diferido		
Cargos diferidos		2,288,431.06
Suma diferido		<u>2,288,413.06</u>
Total de activo		<u>75,681,480.33</u>
Pasivo		
A corto plazo		
Cuentas por pagar		<u>27,597,774.35</u>
Suma corto plazo		27,597,774.35
Total pasivo		27,597,774.35
Capital		
Capital social		50,000.00
Otras cuentas		48,033,705.98
Total capital contable		<u>48,083,705.98</u>
Total pasivo y capital		<u>75,681,480.33</u>
Gerente de Administración		
Miguel Calixto Gonzalez		
Rúbrica.		
		(R 163270)
IDEA PURPURA SA DE CV		
BALANCE DELIQUIDACION AL 31 DE MAYO	D DE 2002	
Activo		
Bancos	<u>176,671.00</u>	
Total del activo	<u>176,671.00</u>	
Capital Pasultado de ejercicios anteriores	100,000.00 <u>76,674.00</u>	
Resultado de ejercicios anteriores	10,014.00	

B C Total del capital 176.674.00

México, D.F., a 5 de junio de 2002.

Representante Legal SR. Isaac Cohen Alfie

Rúbrica.

(R.- 163282)

SOCIEDAD GENERAL DE ESCRITORES DE MÉXICO S.G.C. DE I.P.

MIEMBRO ORDINARIO DE LA CONFEDERACION INTERNACIONAL DE SOCIEDADES DE AUTORES Y **COMPOSITORES CISAC**

CONVOCATORIA

Por acuerdo del Consejo Directivo de la Sociedad General de Escritores de México, S.G.C. de I.P., se

Asamblea General Ordinaria que tendrá lugar el lunes 22 de julio de 2002, a las 19:00 horas, en su sede, sita en José María Velasco número 59, colonia San José Insurgentes, Delegación Benito Juárez, de esta ciudad, de conformidad con el siguiente:

ORDEN DEL DÍA

- 1. Nombramiento de escrutadores.
- 2. Verificación de quórum.

- 3. Lectura y aprobación de la síntesis del acta de la Asamblea anterior.
- 4. Modificación al presupuesto del año 2002, aprobado en la asamblea del 14 de enero del año en
- 5. Modificación al balance del año 2001.
- 6. Aprobación de la reorganización administrativa.
- 7. Informe del Comité de Vigilancia.
- 8. Aprobación de nuevos socios.
- 9. Asuntos generales.

De acuerdo con lo dispuesto en la fracción VIII del artículo 205 de la Ley Federal del Derecho de Autor y el artículo 25 de los estatutos de esta sociedad de gestión colectiva, no se podrán adoptar acuerdos respecto de los asuntos que no figuren en el orden del día.

México, D.F., a 14 de junio de 2002.

Presidente

Víctor Hugo Rascón Banda

Rúbrica.

(R.- 163283)

PRODUCTOS INTERNACIONALES MABE, S.A. DE C.V. ZAPETA DEL NORTE S.A. DE C.V. AVISO DE FUSIÓN

La asamblea general extraordinaria de accionistas de la sociedad, celebrada el día 30 de mayo de 2002, aprobó la fusión de la empresa denominada Productos Internacionales Mabe, S.A. de C.V. con otra empresa denominada Zapeta del Norte, S.A. de C.V., siendo la fusionante la primera de ellas y desapareciendo por ende esta última, quedando el patrimonio, los pasivos y el capital social a cargo de Productos Internacionales Mabe, S.A. de C.V.

A efecto de dar cumplimiento a lo dispuesto por los artículos del 222 al 226 de la Ley General de Sociedades Mercantiles, a continuación se publica un extracto de los acuerdos de la fusión:

- 1. Se acordó llevar a cabo la fusión de la sociedad denominada Productos Internacionales Mabe, S.A. de C.V., como fusionante y otra empresa del grupo denominada Zapeta del Norte, S.A. de C.V. como fusionada. Esta fusión se llevará a cabo con base a sus estados financieros practicados al 31 de mayo de 2002.
- 2. Se acordó la fusión de Zapeta del Norte, S.A. de C.V. y su patrimonio, a efecto de que todo su pasivo y capital sea absorbido de conformidad al balance de la fusión, practicado el 31 de mayo de 2002 que se publica conjuntamente con este aviso, a la sociedad fusionante Productos Internacionales Mabe, S.A. de C.V., cuyo domicilio social será en la Ciudad de Puebla, Estado de Puebla. Por lo tanto, el activo, pasivo y capital que le correspondía a la sociedad fusionada, serán transmitidos por ministerio de Ley mediante la comparecencia del delegado correspondiente ante notario público para protocolizar el acta de asamblea en la que se establece la fusión de las dos sociedades y la cual modificara también en la parte conducente los estatutos sociales que regirán la vida de Productos Internacionales Mabe, S.A. de C.V. como sociedad fusionante.
- 3. La Denominación de la empresa subsistente o fusionante será: Productos Internacionales Mabe, S.A. de C.V.
- 4. Asimismo, se hace saber a los señores accionistas que todos los activos y pasivos, así como todos los derechos y obligaciones que tenga la sociedad fusionada Zapeta del Norte, S.A. de C.V. pasarán a ser parte de la fusionante Productos Internacionales Mabe, S.A. de C.V. Por lo tanto, la sociedad fusionada transmite en forma universal su patrimonio a la sociedad fusionante y en consecuencia el patrimonio de la sociedad fusionante se vería incrementado con el patrimonio de la fusionada.
- 5. Se acordó que entre las partes y para todos los efectos legales, contables, fiscales a que haya lugar, la fusión de la sociedad surta plenos efectos a partir de las 0:00 horas del día 1 de junio de 2002 y ante terceros una vez que transcurrido un plazo de 45 días naturales, contados a partir de las publicaciones de la inscripción en el Registro Público de la Propiedad, Sección Comercio, a la que se refiere el artículo 224 y 225 de la Ley General de Sociedades Mercantiles.

El texto completo de las resoluciones adoptadas por la asamblea, así como sus anexos, se encuentran a disposición de los señores accionistas y acreedores en el domicilio de la sociedad, durante un plazo de 45 días naturales, contados a partir de la fecha de publicación y de que se efectúe la inscripción en el Registro Publico de la Propiedad, Sección Comercio, en la Ciudad de Puebla, Estado de Puebla.

Puebla, Pue., a 30 de mayo de 2002.

Delegado de la Asamblea

Rubén Fernando Madero González

Rúbrica.

PRODUCTOS INTERNACIONALES MABE S.A. DE C.V. ESTADO DE SITUACION FINANCIERA CONSOLIDADO AL 31 DE MAYO DE 2002

PRODUCTOS INTERNACIONALES

PRODUCTOS

INTERNACIONALES

IN I ERNACIONALES			
	MABE S.A. DE C.V.ZA	IPETA DEL NORTE S.A	A. DE C.V.MABE S.A. DE C.V.
	BALANCE AL	BALANCE ALBA	LANCE CONSOLIDADO AL
;	31 DE MAYO DE 200231	DE MAYO DE 2002	31 DE MAYO DE 2002
Activos			
Activos circulantes			
Efectivo e Inversiones tempe	orales \$ 25,371,552.00	\$ 9,436,852.90	\$ 34,836,251.13
Cuestas por cobrar			
Clientes	\$ 403,154,790.00	\$ 133,755,175.93	\$ 527,317,636.20
Deudores diversos	\$ 48,406,762.00	\$ 2,385,926.43	\$ 62,493,869.02
Compañías filiales	\$ 317,751,624.00	\$ 79,953,864.55	\$ 321,351,624.20
Inventarios			
Materia prima	\$ 167,632,570.00	\$ 65,837,892.63	\$ 233,470,462.90
Producto terminado	\$ 116,528,106.00	\$ 51,001,415.55	\$ 162,421,110.50
Producción en proceso	\$ -	\$ 93,922.73	\$ 93,922.73
Otros	\$ 50,579,902.00	\$ 16,518,449.63	\$ 66,512,224.40
Pagos anticipados	\$ 23,547,192.00	\$ 27,900,771.50	\$ 51,625,630.94
Total activos circulantes	\$ 1,152,972,498.00	\$ 386,884,271.85	\$ 1,460,122,732.02
Maquinaria y otros activos	\$ 265,825,722.00	\$ 131,752,195.72	\$ 397,577,916.81
Fijos			
Pagos anticipados	\$ 11,969,847.00	\$ -	\$ 11,969,847.83
Gastos de instación y de		•	
Constitución-neto	\$ 482,124.00	\$ -	\$ 482,122.79
Depósitos en garantía			
y otros activos	\$ 300,769.00	\$ 368,945.40	\$ 669,713.93
Inversiones en acciones	\$ 14,492,148.00	\$ 20,216,873.28	\$ 34,709,020.99
Activos totales	\$ 1,446,043,108.00	\$ 539,222,286.25	\$ 1,905,531,354.37
Pasivo y capital			
Pasivo a corto plazo			
Proveedores	\$ 391,953,857.00	\$ 91,815,029.60	\$ 479,282,855.57
Acreedores diversos	\$ 3,674,588.00	\$ 2,744,290.42	\$ 8,915,468.37
Compañías filiales	\$ 59,815,798.00	\$ 62,168,047.41	\$ 40,545,461.00
Acreedores bancarios	\$ 39,010,840.00	\$ 40,607,695.91	\$ 45,772,897.88
Impuestos por pagar		\$ 740,751.78	\$ 6,213,849.59
Cuentas por pagar	\$ 3,124,868.00	\$ 5,809,859.95	\$ 44,962,653.19
I.S.R. y P.T.U.	\$ 15,488,564.00	. , ,	\$ 19,681,293.54
Otros pasivos y provisiones	\$ 16,406,667.00	\$ 2,962,001.31	\$ 17,186,404.19
Total pasivo a corto plazo	\$ 529,475,182.00	\$ 206,847,676.38	\$ 662,560,883.33
Prima de antigüedad	\$ 875,130.00	\$ 663,066.20	\$ 1,538,196.00
Préstamos bancarios	\$ 15,095,022.00	\$ 3,204,467.21	\$ 18,299,488.70
Emisión de obligaciones	\$ 70,000,000.00	. , ,	\$ 70,000,000.00
Pasivo diferido	\$ 222,766,221.00	\$ 94,010,860.00	\$ 316,777,081.07
Pasivo total	\$ 838,211,555.00	\$ 304,726,069.79	\$ 1,069,175,649.10
	. , , , ,	. , -,	. , ., ., .,.

Miércoles 26 de junio de 2002	DIAR	IO OFICIAL	(Primera Sección) 117				
Capital contable							
Capital social	\$ 37,948,307.00	\$ 11,250,250.00	\$ 49,198,557.00				
Prima por aumento capital		\$ -					
Reserva legal	\$ 2,039,625.00	\$ 90,966.68	\$ 2,130,591.61				
Utilidades acumuladas	\$ 582,474,122.00	\$ 145,211,601.84	\$ 723,050,880.03				
Resultado del periodo	\$ 55,917,462.00	\$ 17,268,836.73	\$ 55,945,311.63				
Resultado por fusión			\$ 11,268,922.51				
Actualización de las cuentas d	lel						
Capital contable	\$ 461,609,351.00	\$ 131,608,835.75	\$ 612,732,346.79				
Resultado tenencia Act. no Mo	n\$ 346,221,669.00	-\$ 25,169,054.54	-\$ 386,270,039.30				
Efecto acumulado de I.S.R. dif	erido-\$ 185,935,645.0	00 -\$ 45,765,220.00	-\$ 231,700,865.00				
Total capital contable	\$ 607,831,553.00	\$ 234,496,216.46	\$ 836,355,705.27				
Suma pasivo más capital	\$ 1,446,043,108.00	\$ 539,222,286.25	\$ 1,905,531,354.37				
Representante Legal							
Rubén Fernando Madero Gon:	zález						
Rúbrica.							
			(R 163288)				
Estados Unidos Mexicanos							
Poder Judicial de la Federació	Poder Judicial de la Federación						
Juzgado Quinto de Distrito en	uzgado Quinto de Distrito en el Estado						

EDICTO

Elvia Díaz Robledo. Donde se encuentre

Tapachula de Cordova y Ordoñez, Chips.

En el Juicio de Amparo número 74/2001, promovido por Elvia Díaz Roblero, contra actos del Juez del Ramo Civil y Actuario Adscrito a dicho Juzgado, ambos con residencia en Huixtla, Chiapas, por auto de esta fecha se le mandó emplazar, como en efecto lo hago, por medio de edictos que se publicarán por tres veces de siete en siete días, en el Diario Oficial de la Federación y en uno de los periódicos diarios de mayor circulación en la Republica Mexicana, así como en uno que se edite en el Estado de Chiapas, para que dentro del término de treinta días, contados a partir del siguiente al de la ultima notificación, se apersone a este juicio en su carácter de tercera perjudicada en la secretaria de este Juzgado, en la que además, quedará a su disposición copia simple de la demanda de garantías.

Y para su Publicación por tres veces, de siete en siete días, en el Diario Oficial de la Federación, en un periódico de mayor circulación en la República, Así como en uno que se edite en este Estado, expido el presente en la Ciudad de Tapachula de Córdova y Ordóñez, Chiapas, a los veintisiete días del mes de noviembre de dos mil uno.

La Secretaria del Juzgado 5o. de Distrito en el Estado de Chiapas.

Lic. Elsa Eline Nucamendi Ruiz

Rúbrica.

(R.- 163319)

Gobierno del Distrito Federal Secretaría del Medio Ambiente

CONVOCATORIA PARA LA EVALUACION TECNICA DE DISPOSITIVOS DOMESTICOS AHORRADORES DE AGUA EN EL DISTRITO FEDERAL

Ing. Guillermo Calderón Aguilera, Director General de Regulación y Gestión Ambiental del Agua, Suelo y Residuos (DGRGAASR) de la Secretaria del Medio Ambiente del Gobierno del Distrito Federal, con fundamento en lo dispuesto por los artículos 7o., 8o. y 9o. de la Ley General del Equilibrio Ecológico y la Protección al Ambiente; 1o., 2o., 8o. y 12o. fracción IX del Estatuto de Gobierno del Distrito Federal; artículos 1o., 6o., 15, fracción XVII y XXVII, 105 fracción IV y V, 106 fracción IV, 107 fracción II y 200 de la Ley Ambiental del Distrito Federal; y 7o., inciso C fracción IV.2; 55 fracciones III, IV, VI,VII y XXII del Reglamento Interior de la Administración Pública del Distrito Federal, y

CONSIDERANDO

I. Que el desarrollo acelerado de la Ciudad de México está asociado al incremento progresivo del consumo de agua, lo cual ha originado la sobreexplotación del acuífero y el déficit hídrico del mismo, lo que a su vez ha contribuido al hundimiento de la Ciudad, al daño del suelo y la vegetación, y a la perturbación del equilibrio de los ecosistemas.

- II. Que el Gobierno del Distrito Federal, a través de la Secretaría del Medio Ambiente (SMA), lleva a cabo programas y proyectos orientados a revertir la tendencia de deterioro ambiental originada por los factores anteriores, y que uno de estos es el Programa de Uso Eficiente y Ahorro de Agua en el Distrito Federal (PUEAA-DF), el cual pretende contribuir a la disminución real del déficit hídrico del acuífero y a un desarrollo sustentable en la Ciudad de México.
- III. Que el Programa contempla entre sus acciones la sustitución de dispositivos actualmente instalados en baños y cocinas, específicamente regaderas, aireadores en tarjas, y válvulas de llenado y descarga de tanques sanitarios de casas habitación y unidades habitacionales, por accesorios de alta eficiencia, con el objeto de reducir el consumo de agua que hoy en día se tiene en las viviendas de la Ciudad de México.
- IV. Que para la evaluación y selección de los accesorios ahorradores de agua se ha elaborado un protocolo de pruebas, diseñado exprofeso para el Programa, que incluye el cumplimiento de la normatividad vigente para este tipo de dispositivos.

Tengo a bien emitir la siguiente:

CONVOCATORIA

GDF/SMA/DGRGAASR/PUEAA-DF/01/2002

BASES

PRIMERA.- La convocatoria está dirigida a todas las empresas y personas físicas o morales del sector privado que sean fabricantes, distribuidoras o comercializadoras de regaderas para aseo personal, aireadores de uso en tarjas de tipo doméstico, y válvulas de llenado y descarga de tanques sanitarios de tipo doméstico, que estén interesadas en formar parte del padrón autorizado por la SMA de fabricantes y distribuidores de accesorios ahorradores para el Programa de Uso Eficiente y Ahorro de Agua en el D.F.

SEGUNDA.- No podrán participar las empresas, personas físicas o morales del sector privado a quienes en los últimos cinco años anteriores a la fecha de esta convocatoria, se les haya revocado la posibilidad de participar en programas de ahorro de agua o similares, por alguna de las causales contenidas en esta convocatoria.

TERCERA.- El protocolo de pruebas al que serán sometidos los dispositivos presentados por los participantes, incluye las normas NOM-002-EDIF-1993, NOM-008-CNA-1998 y NMX-C-415-ONNCE-1999, así como una evaluación del caudal en función de la presión. Las pruebas serán realizadas por el Laboratorio de Ingeniería Experimental de la Dirección General de Construcción y Operación Hidráulica de la Secretaría de Obras y Servicios. Asimismo, la etapa de evaluación, selección y registro en el padrón autorizado por la SMA tanto de accesorios como de distribuidores será vigilada por una entidad no gubernamental que supervisará el proceso. El protocolo citado podrá ser consultado por los interesados en el domicilio señalado en la cláusula quinta de esta convocatoria.

CUARTA .- Los accesorios que cumplan satisfactoriamente las bases de la presente convocatoria, además de cumplir con el protocolo de pruebas aplicable a cada accesorio establecido para el Programa de Uso Eficiente y Ahorro de Agua en el D.F., integrarán el padrón de accesorios ahorradores autorizado por la SMA, el cual incluirá a los fabricantes y distribuidores autorizados para el Programa citado.

QUINTA .- Las empresas interesadas en participar deberán recoger los formatos de solicitud de inscripción a la presente convocatoria los días 4 y 5 de julio de 2002 de 10:00 a 15:00 horas, en las oficinas de la Dirección de Proyectos de Agua, Suelo y Residuos sita en Jalapa 15, 9o. piso, colonia Roma, Delegación Cuauhtémoc, código postal 06700.

SEXTA.- Los participantes deberán entregar la solicitud de inscripción a la presente convocatoria, los días 11 y 12 de julio de 2002 de 10:00 a 15:00 horas, en las oficinas de la Dirección de Proyectos de Agua, Suelo y Residuos, anexando lo siguiente:

I. Formato de solicitud de inscripción.

II. Relación de accesorios que presenta para su evaluación.

III. Constancia(s) de distribuidor autorizado.

IV. Formato con datos de cada accesorio presentado.

V. Hoja con información técnica y precios en el mercado de cada accesorio presentado.

VI. Tres piezas de cada modelo presentado para evaluación.

VII. Formato de carta de aceptación de los términos establecidos en la presente convocatoria GDF/SMA/DGRGAASR/ PUEAA-DF/01/2002, para la inscripción a la etapa de evaluación, selección y registro en el padrón autorizado por la SMA tanto de accesorios Ahorradores de Agua como de fabricantes y distribuidores para el Programa de Uso Eficiente y Ahorro de Agua en el D.F.

SEPTIMA.- La DGRGAASR conservará el original del formato de inscripción y entregará una copia al participante.

OCTAVA.- Para el cotejo de la información en el momento de la entrega de la solicitud deberá presentar los originales de la documentación señalada en el numeral III de la cláusula sexta.

NOVENA.- En caso de no cumplir en tiempo y forma con cualquiera de los requisitos de la solicitud, se tendrá por no presentada.

DECIMA.- El convocante se reserva el derecho de solicitar información adicional y realizar visitas técnicas al laboratorio o empresas participantes.

DECIMA PRIMERA.- Los participantes deberán manifestar en la solicitud de inscripción, bajo protesta de decir verdad, que los accesorios señalados en la base primera de la presente convocatoria pueden ser calificados como dispositivos ahorradores de agua.

DECIMA SEGUNDA.- La solicitud de inscripción a la presente convocatoria no obliga al Gobierno del Distrito Federal a utilizar los accesorios en la etapa de implantación del Programa. Asimismo, la resolución que determine la convocante con relación a la autorización o rechazo del registro será inapelable.

DECIMA TERCERA.- La vigencia del registro tendrá validez mientras no sea modificada la normatividad vigente, referida en la base tercera de esta convocatoria.

DECIMA CUARTA.- Al finalizar el proceso de evaluación técnica, la convocante publicará el fallo en el Diario Oficial de la Federación y en la Gaceta del Distrito Federal de los accesorios ahorradores de agua, así como de los fabricantes y distribuidores que integrarán el padrón autorizado por la SMA para el Programa de Uso Eficiente y Ahorro de Agua en el D.F.

DECIMA QUINTA.- Todo lo no previsto en las presentes bases, será resuelto por la entidad convocante. México, D.F., a 25 de junio de 2002.

Por el Gobierno del Distrito Federal

Secretaría del Medio Ambiente

Director General de Regulación y Gestión

Ambiental del Agua, Suelo y Residuos

Ing. Guillermo Calderón Aguilera

Rúbrica.

(R.- 163344)

RAICES SAN LUIS, S.A. DE C.V.

BALANCE GENERAL FINAL DE LIQUIDACION AL 30 DE MAYO DE 2002

Activos 0.00

Total del activo 0.00

Pasivos 0.00 Capital contable 0.00 Total pasivo y capital 0.00

Atentamente

27 de mayo de 2002. Apoderado Legal

Lic. Oscar Silva Vargas

Rúbrica.

(R.- 163364)

HIDALGO BIENES RAICES, S.A. DE C.V.

BALANCE GENERAL FINAL DE LIQUIDACION AL 30 DE MAYO DE 2002

Activos	0.00
Total del activo	0.00
Pasivos	0.00
Capital contable	0.00
Total pasivo y capital	0.00

Atentamente

27 de mayo de 2002. Apoderado Legal

Lic. Oscar Silva Vargas

Rúbrica.

148

149

Otras participaciones

Intermediarios de reaseguro y reafianzamiento

(R.- 163365)

			(14. 100000)
ASEGUE	RADORA HIDALGO S.A.		
INSTITU	ICION NACIONAL DE SEGUROS		
BALANC	CE GENERAL AL 31 DE DICIEMBRE DE 2001		
(cifras e	en pesos constantes)		
100	Activo		
110	Inversiones		\$ 14,202,620,307.93
111	Valores y operaciones con productos derivados	\$13,621,007,160.25	
112	Valores	13,621,007,160.25	
113	Gubernamentales	11,027,762,109.46	
114	Empresas privadas	2,288,392,556.03	
115	Tasa conocida	1,996,617,613.54	
116	Renta variable	291,774,942.49	
117	Valuación neta	145,089,977.18	
118	Deudores por intereses	159,762,517.58	
119 (-)	Estimación para castigos	-	
120	Operaciones con productos derivados	<u>-</u>	
121	Préstamos	330,152.68	
122	Sobre pólizas	330,152.68	
123	Con garantía	-	
124	Quirografarios	-	
125	Descuentos y redescuentos	-	
126	Cartera vencida	1.00	
127	Deudores por intereses	-	
128 (-)	Estimación para castigos	(1.00)	
129	Inmobiliarias	581,282,995.00	
130	Inmuebles	64,237,393.50	
131	Valuación neta	631,434,027.11	
132 (-)	Depreciación	(114,388,425.61)	
133	Inversiones para obligaciones laborales al retiro		421,400,392.43
134	Disponibilidad		58,556,736.36
135	Caja y bancos	58,556,736.36	
136	Deudores		1,273,028,791.61
137	Por primas	1,024,572,522.30	
138	Agentes y ajustadores	1,842,823.90	
139	Documentos por cobrar	117,866,429.57	
140	Préstamos al personal	136,582,772.05	
141	Otros	39,668,441.54	
142 (-)	Estimación para castigos	(47,504,197.75)	
143	Reaseguradores y reafianzadores		598,361,304.21
144	Instituciones de seguros y fianzas	330,813,989.93	
145	Depósitos retenidos	-	
146	Participación de reaseguradores por siniestros pe	ndientes 267,546,971.95	5
147	Participación de reaseguradores por riesgos en cu	urso 342.33	
4.40	Other a patient and a second		

	0 ,		
150	Participación de reafianzadores en la Ry	a. de fianzas en vigor	
151	Otros activos		241,255,589.17
152	Mobiliario y equipo	92,978,865.27	
153	Activos adjudicados	10,445,337.00	
154	Diversos	90,764,407.35	

mera Sección) 121	CIAL (PII	oles 26 de junio de 2002 DIARIO	
	61,878,295.38	Gastos amortizables	155
	(14,811,315.83)	Amortización	56 (-)
	-	Productos derivados	57
\$ 16,795,223,121		Suma del activo	
		Pasivo	00
\$ 13,225,443,911		Reservas técnicas	10
	\$ 10,167,232,689.08	De riesgos en curso	11
	10,077,211,519.45	Vida	12
	90,021,169.63	Accidentes y enfermedades y daños	13
		Fianzas en vigor	14
	2,771,554,499.13	De obligaciones contractuales	15
	812,955,876.40	Por siniestros y vencimientos	16
	1,336,352,311.47	Por siniestros ocurridos y no reportados	17
	232,098,060.71	Por dividendos sobre pólizas	18
	30,681,202.56	Fondos de seguros en administración	19
	359,467,047.99	Por primas en deposito	20
	286,656,723.60	De previsión	21
	284,798,394.55	Previsión	22
	-	Riesgos catastróficos	23
	-	Contingencia	24
	1,858,329.05	Especiales	25
421,398,937		Reserva para obligaciones laborales al retir	26
199,068,651		Acreedores	27
	61,354,777.68	Agentes y ajustadores	28
	-	Fondos en administración de perdidas	29
	-	Acreedores por responsabilidades de fianza	30
137,713,873		Diversos	31
74,631,263		Reaseguradores y reafianzadores	32
	26,538,276.24	Instituciones de seguros y fianzas	33
	48,092,987.30	Depósitos retenidos	34
	· · · · · -	Otras participaciones	35
	-	rmediarios de reaseguro y reafianzamiento	36 Inter
	-	raciones con productos derivados	
250,209,196		Otros pasivos	38
, ,	ersonal 146,649,709.16	Provisiones para participación de utilidades	39
	5,790,340.00	Provisiones para el pago de impuestos	40
	82,786,392.90	Otras obligaciones	41
	14,982,754.26	Créditos diferidos	42
\$ 14,170,751,960	, ,	Suma del pasivo	
 		Capital	00
\$ 1,077,644,354		Capital o fondo social pagado	10
+ 1,011,011,011	\$ 1,077,644,354.29	Capital o fondo social	11
	-	Capital o fondo no suscrito	12 (-)
	_	Capital o fondo no exhibido	13 (-)
	_	Acciones propias recompradas	14 (-)
	atoria a capital	Obligaciones subordinadas de conversión o	15
525,952,859	atoria a vapitai	Reservas	16
020,002,000	445,776,791.68	Legal	17
	-TJ, 110, 131.00	Para adquisición de acciones propias	18
	80,176,067.68	Otras	19
	00,170,007.00	Olido	20
1 /57 370		Superávit por valuación	
1,457,370		Superávit por valuación Subsidiarias	20 21

Miér	coles 26 de junio de 2002	DIARIO OFICIAL	(Primera Sección)	122
323	Resultados de ejercicios ante	eriores	10,40	9,301.40
324	Resultado del ejercicio		1,274,17	7,318.99
325	Exceso o insuficiencia en la a	ctualización del capital contable	<u>(265,170</u>	,042.36)
	Suma del capital		\$ 2,624,47	<u>1,161.70</u>
	Suma del pasivo y capital		<u>\$ 16,795,22</u>	<u>3,121.71</u>
800	Orden			
810	Valores en depósito	\$ 4	1,062,956.42	
820	Fondos en administración	5	5,527,546.28	
830	Responsabilidades por fianz	as en vigor		
840	Garantías de recuperación po	or fianzas expedidas		
850	Reclamaciones recibidas per	ndientes de comprobación		
860	Reclamaciones contingente			
870	Reclamaciones pagadas			
880	Recuperación de reclamacion	nes pagadas		
890	Pérdida fiscal por amortizar	1,084	4,812,287.00	
900	Reserva por constituir para o	bligaciones laborales al retiro		
910	Cuentas de registro	\$ 4,092	2,777,401.86	
920	Operaciones con productos d	lerivados		

El presente balance se formuló con las reglas dictadas por la Comisión Nacional de Seguros y Fianzas, encontrándose correctamente reflejadas, en su conjunto, las operaciones efectuadas por la Institución hasta la fecha mencionada, las cuales se realizaron con apego a sanas prácticas institucionales y a las normas legales y administrativas aplicables y fueron registradas en las cuentas que corresponden conforme al catálogo oficial en vigor, habiendo sido valorizados los saldos en moneda extranjera conforme a las disposiciones emitidas por dicha Comisión.

El capital pagado no incluye cantidad alguna en moneda nacional originada por la capitalización del superávit por valuación de inmuebles.

Dentro de los rubros de inmuebles y de mobiliario y equipo, no existen cantidades por concepto de activos adquiridos en arrendamiento financiero.

Este balance ha sido dictaminado por la C.P. Martha González Caballero, socia del despacho Ruiz, Urquiza y Cía., S.C., y las reservas técnicas fueron dictaminadas por el Act. Alberto Elizarraras Zuluaga, socio del despacho de Actuarios y Consultores TBA, S.C.

México, D.F., a 28 de enero de 2002.

Director General

Dr. Fausto Alzati Araiza

Rúbrica.

Subdirector General de Finanzas

C.P. Víctor Araiza Martínez

Rúbrica.

Director de Contabilidad

C.P. Miguel Alfaro Sánchez

Rúbrica.

Comisario

Lic. Eduardo Romero Ramos

Rúbrica.

Este balance fue revisado con base en la documentación y elementos aportados por la sociedad, en los términos del artículo 105 de la Ley General de Instituciones y Sociedades Mutualistas de Seguros. La autenticidad y veracidad de sus cifras queda bajo la responsabilidad de los funcionarios que lo suscriben.

(R.- 163367)

Gobierno del Distrito Federal

CONVOCATORIA A PLEBISCITO SOBRE LA CONSTRUCCION DE LOS SEGUNDOS NIVELES EN EL VIADUCTO Y EL PERIFERICO, QUE SE REALIZARA EL 22 DE SEPTIEMBRE DE 2002

Andrés Manuel López Obrador, Jefe de Gobierno del Distrito Federal, con fundamento en lo dispuesto por los artículos 122, apartado C, Base Segunda, fracción II, incisos a), b) y f) de la Constitución Política de los Estados Unidos Mexicanos; 21, 22, 23, fracción VI, 67, fracciones II, III y XXX y 68 del Estatuto de Gobierno del Distrito Federal; 1o., 3o. fracción I, 9o., fracción III, 10, fracción II, 12, fracción I, 13, 14, 15,17, 18, 20, 21, 22 y 23 de la Ley de Participación Ciudadana del Distrito Federal; y 1o., inciso c), 3o., 4o., inciso a), 52, 134, 135, 137, 140 y 141 del Código Electoral del Distrito Federal; y

CONSIDERANDO

Que para ordenar y mejorar la vialidad en la Ciudad de México, es indispensable la construcción de treinta y cuatro kilómetros de segundos niveles o pisos en viaducto y periférico. Sostenemos que, independientemente de lo que estamos haciendo y haremos en el futuro para ordenar el crecimiento de la Ciudad, mejorar y ampliar la red de transporte público de pasajeros; agilizar la circulación vial por medio de la construcción de distribuidores viales, puentes y adecuaciones geométricas, modernizar el sistema de semáforos, hacer valer el reglamento de tránsito y fomentar la educación vial; de todas maneras se requiere aumentar la superficie de rodamiento de las principales vías de acceso controlado de la ciudad, para promover el ordenamiento vial, disminuir los congestionamientos, la contaminación y pérdida de tiempo y recursos.

Que, en ambos sentidos de circulación, los tramos del Periférico de Sur a Norte, del Distribuidor Luis Cabrera hasta Avenida del Conscripto y el Distribuidor Lomas de Sotelo, así como del Viaducto Miguel Alemán de Poniente a Oriente, del Periférico hasta la Calzada Ignacio Zaragoza constituyen vialidades estratégicas que ya han rebasado su capacidad durante las horas de máxima demanda. En estas vialidades la velocidad promedio, en estas horas, es entre trece y veinte kilómetros por hora y la construcción de esta obra permitiría transitar a velocidades superiores a cuarenta kilómetros por hora, reduciendo así tiempos de traslado y emisiones contaminantes con lo que se beneficia a toda la población de la Ciudad de México. Tan sólo con la primera etapa, el ahorro se calcula en 4.17 millones de horas / hombre y 19 millones de litros de gasolina.

Que cada vez es más difícil construir o ampliar vialidades, mediante procedimientos de expropiación; de ahí que resulte fundamental la construcción de esta obra utilizando el derecho de vía sin afectaciones a propietarios y al suelo de conservación.

Que no obstante la importancia de esta obra, reconocemos que se han hecho cuestionamientos por parte de algunos sectores de la sociedad y que hay oposición al respecto. La obra no cuenta con el apoyo de los diputados locales del PRI y el PAN en la Asamblea Legislativa, donde se autoriza el presupuesto.

Que un grupo de ciudadanos en uso de sus derechos, me han solicitado por escrito que someta esta decisión a plebiscito.

Que la democracia no se limita a la elección de representantes, a las reglas de la competencia electoral y al funcionamiento normal de los poderes, sino que hay que avanzar en la democracia participativa, compartiendo el poder y las responsabilidades, para cumplir con el principio de mandar obedeciendo.

Que en razón de lo anterior, convoco a las ciudadanas y los ciudadanos del Distrito Federal a plebiscito, para que decidan sobre la construcción de treinta y cuatro kilómetros de segundos niveles en ambos sentidos de circulación en el Periférico de Sur a Norte, entre el Distribuidor Luis Cabrera y Avenida del Conscripto y el Distribuidor Lomas de Sotelo y en el Viaducto Miguel Alemán de Poniente a Oriente, desde el Periférico hasta la Calzada Ignacio Zaragoza; conforme a las siguientes:

BASES

PRIMERA.- La pregunta conforme a la cual los ciudadanos expresarán su aprobación o rechazo de la decisión que se somete a plebiscito, será:

- ¿ Está a favor o en contra de que se construyan segundos pisos a Viaducto y Periférico?
- a) Estoy a favor. b) Estoy en contra.

SEGUNDA.- Los efectos de la aprobación o rechazo de la obra que se somete a la decisión de la ciudadanía, serán:

La opción que obtenga la mayoría de la votación válidamente emitida y ésta corresponda cuando menos a la tercera parte, de los ciudadanos inscritos en el padrón electoral del Distrito Federal, tendrá efecto vinculatorio para el Jefe de Gobierno del Distrito Federal, quien deberá acatar la decisión de la ciudadanía.

DIARIO OFICIAL

En caso de que la opción "Estoy a favor" obtenga el mayor número de votos en el plebiscito, la obra deberá realizarse. En consecuencia, solicitaré a la Asamblea Legislativa del Distrito Federal, el presupuesto necesario para el año próximo, así como el compromiso de garantizar la suficiencia presupuestal para los años posteriores hasta su conclusión, en el 2005.

En caso de que gane la opción "Estoy en contra", esta obra no podrá ser realizada por la presente administración del Distrito Federal.

TERCERA.- El día de la votación será el domingo 22 de septiembre de 2002. Los centros de votación abrirán a las ocho horas y cerrarán a las dieciocho horas, salvo que aún se encuentren ciudadanos formados para votar, en cuyo caso se cerrarán hasta que termine de votar el último de ellos. Los centros de votación podrán cerrar antes de la hora indicada, cuando hubieren votado todos los ciudadanos incluidos en la lista nominal.

CUARTA.- Podrán votar todos aquellos ciudadanos del Distrito Federal que cuenten con la credencial de elector, expedida por lo menos sesenta días antes del plebiscito.

QUINTA.- La organización del plebiscito se llevará a cabo por el Instituto Electoral del Distrito Federal, conforme a la distribución de competencias que prevé el Código Electoral del Distrito Federal, atendiendo a la naturaleza de este proceso de participación ciudadana.

SEXTA.- Los plazos de preparación de este plebiscito, serán los siguientes:

- a) La instalación de los órganos electorales encargados de organizar el plebiscito, se realizará a más tardar dentro de los veinte días posteriores a la expedición de la presente.
- b) Las reglas generales de las campañas a favor o en contra de la obra que se somete a plebiscito, se emitirán dentro de los treinta días posteriores a la publicación de la presente Convocatoria.
- c) La determinación de la ubicación de los centros de votación deberá llevarse a cabo a más tardar a los cuarenta días posteriores a la publicación de esta Convocatoria.
- d) La integración de las mesas directivas de los centros de votación deberá realizarse a más tardar quince días antes del día del plebiscito.

Los plazos no previstos en esta convocatoria, serán determinados por el Consejo General del Instituto Electoral del Distrito Federal, con base en los criterios establecidos en el Código Electoral del Distrito Federal.

SEPTIMA.- El Consejo General del Instituto Electoral del Distrito Federal promoverá la difusión de la consulta de conformidad con los criterios aplicables a este proceso.

OCTAVA.- El desarrollo de la jornada y el cómputo de la votación emitida, así como la declaración de los efectos del plebiscito, de acuerdo a la opción que haya obtenido la mayoría de los votos emitidos se sujetará, en lo conducente, a las reglas previstas en la Ley de Participación Ciudadana del Distrito Federal, el Código Electoral del Distrito Federal, en lo que resulten aplicables a este proceso de participación ciudadana.

NOVENA.- Los aspectos no previstos en esta Convocatoria serán resueltos por el Instituto Electoral del Distrito Federal, conforme al Estatuto de Gobierno del Distrito Federal, la Ley de Participación Ciudadana del Distrito Federal, el Código Electoral del Distrito Federal, y demás ordenamientos aplicables.

Se expide la presente convocatoria en la Residencia Oficial del Jefe de Gobierno del Distrito Federal, en la Ciudad de México, a 18 de junio de 2002.

El Jefe de Gobierno del Distrito Federal

Andrés Manuel López Obrador

Rúbrica.

SEGUNDA SECCION SECRETARIA DE ECONOMIA

(Viene de la página 74 de la Primera Sección)

Magnitud Alcance Eléctrica		Incertidumbre k=2	
Tensión en corriente alterna	1 mV a 33 mV		
Generación	10 Hz a 45 Hz	± 0,32%	
	45 Hz a 10 kHz	± 0,16%	
	10 kHz a 20 kHz	± 0,20%	
	20 kHz a 50 kHz	± 0,24%	
	50 kHz a 100 kHz	± 0,35%	
	100 kHz a 500 kHz	± 0,92%	
	33 mV a 330 mV		
	10 Hz a 45 Hz	± 0,21%	
	45 Hz a 10 kHz	± 0,044%	
	10 kHz a 20 kHz	± 0,082%	
	20 kHz a 50 kHz	± 0,13%	
	50 kHz a 100 kHz	± 0,23%	
	100 kHz a 500 kHz	± 0,62%	
	330 mV a 3,3 V		
	10 Hz a 45 Hz	± 0,12%	
	45 Hz a 10 kHz	± 0,025%	
	10 kHz a 20 kHz	± 0,064%	
	20 kHz a 50 kHz	± 0,12%	
	50 kHz a 100 kHz	± 0,23%	
	100 kHz a 500 kHz	± 0,47%	
Tensión en corriente alterna	3,3 V a 33 V		
Generación	10 Hz a 45 Hz	± 0,12%	
	45 Hz a 10 kHz	± 0,032%	
	10 kHz a 20 kHz	± 0,068%	
	20 kHz a 50 kHz	± 0,16%	
	50 kHz a 100 kHz	± 0,23%	
	33 V a 330 V		
	45 Hz a 1 kHz	± 0,040%	
	1 kHz a 10 kHz	± 0,066%	
	10 kHz a 20 kHz	± 0,078%	
	330 V a 1 000 V		
	45 Hz a 1 kHz	± 0,045%	
	1 kHz a 5 kHz	± 0,16%	
	5 kHz a 10 kHz	± 0,19%	
Intensidad de corriente	30 μA a 330 μA		
en corriente alterna	10 Hz a 20 Hz	± 0,25%	
Generación	20 Hz a 45 Hz	± 0,13%	
	45 Hz a 1 kHz	± 0,16%	
	1 kHz a 5 kHz	± 0,35%	
	5 kHz a 10 kHz	± 1,0%	
	0,33 mA a 3,3 mA		
	10 Hz a 20 Hz	± 0,16%	
	20 Hz a 45 Hz	± 0,085%	

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 126
	45 Hz a 1 kHz	± 0,085%
	1 kHz a 5 kHz	± 0,16%
	5 kHz a 10 kHz	± 0,47%
	3,3 mA a 33 mA	
	10 Hz a 20 Hz	± 0,16%
	20 Hz a 45 Hz	± 0,085%
	45 Hz a 1 kHz	± 0,077%
	1 kHz a 5 kHz	± 0,16%
	5 kHz a 10 kHz	± 0,47%
	33 mA a 330 mA	
	10 Hz a 20 Hz	± 0,16%
	20 Hz a 45 Hz	± 0,085%
	45 Hz a 1 kHz	± 0,077%
	1 kHz a 5 kHz	± 0,16%
	5 kHz a 10 kHz	± 0,47%
	0,330 A a 2,2 A	
	10 Hz a 45 Hz	± 0,16%
	45 Hz a 1 kHz	± 0,077%
	1 kHz a 5 kHz	± 0,59%
	2,2 A a 11 A	
	45 Hz a 65 Hz	± 0,061%
	_	

65 Hz a 500 Hz 0,5 kHz a 1 kHz

11 A a 550 A 45 Hz a 65 Hz

± 0,092%

± 0,27%

± 0,43%

Simulación de corriente alterna **

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Simulación de Capacitancia	330 a 500 pF	± 1,9%
	0,500 pF a 1,1 pF	± 1,1%
	1,1 pF a 3,3 nF	± 0,62%
	3,3 nF a 11 nF	± 0,46%
	11 nF a 33 nF	± 0,43%
	33 nF a 110 nF	± 0,26%
	110 nF a 330 nF	± 0,26%
	330 nF a 1,1 µF	± 0,26%
	1,1 µF a 3,3 µF	± 0,34%
	3,3 μF a 11 μF	± 0,34%
	11 μF a 33 μF	± 0,38%
	33 μF a 110 μF	± 0,46%
	110 μF a 330 μF	± 0,61%
	330 μF a 1,1 mF	± 0,80%
Capacitancia con Década	50 pF a 1 μF	± 0,51%
Potencia en corriente continua	3 mA a 9 mA	± 0,031%
Generación	9 mA a 33 mA	± 0,023%
33 mV a 1000 V	33 mA a 90 mA	± 0,031%
	90 mA a 330 mA	± 0,023%
	330 mA a 0,9 A	± 0,062%
	0,9 A a 2,2 A	± 0,047%
	2,2 A a 4,5 A	± 0,093%

^{**} Exclusivamente para ampérmetros de gancho.

Microles 20 de julio de 2002	DIAKIO OFICIAL	(Seguilda Seccion) 127
	4,5 A a 11 A	± 0,070%
Potencia en corriente alterna	3 mA a 9 mA	± 0,31%
Generación	9 mA a 33 mA	± 0,19%
33 mV a 330 mV	33 mA a 90 mA	± 0,27%
FP=1	90 mA a 330 mA	± 0,19%
60 Hz	330 mA a 0,9 A	± 0,27%
	0,9 A a 2,2 A	± 0,19%
	2,2 A a 4,5 A	± 0,27%
	4,5 A a 11 A	± 0,19%
	3 mA a 9 mA	± 0,19%
	9 mA a 33 mA	± 0,12%
	33 mA a 90 mA	± 0,19%
330 mV a 1 000 V	90 mA a 330 mA	± 0,12%
T	330 mA a 0,9 A	± 0,19%
T	0,9 A a 2,2 A	± 0,12%
T	2,2 A a 4,5 A	± 0,16%
T	4,5 A a 11 A	± 0,12%
Simulación de Resistencia Eléctrica	1 a 11 Ω	± 0,066%
Generación	11 Ω a 33 Ω	± 0,045%
T	33 Ω a 110 Ω	± 0,018%
	110 Ω a 330 Ω	± 0,011%
	330 Ω a 1,1 kΩ	± 0,012%
	1,1 kΩ a 3,3 kΩ	± 0,0085%
	3,3 kΩ a 11 kΩ	± 0,012%
	11 kΩ a 33 kΩ	± 0,0085%
	33 kΩ a 110 kΩ	± 0,013%
	110 kΩ a 330 kΩ	± 0,011%
	330 kΩ a 1,1 MΩ	± 0,016%
	1,1 MΩ a 3,3 MΩ	± 0,013%
	3,3 MΩ a 11 MΩ	± 0,050%
	11 MΩ a 33 MΩ	± 0,078%
	33 MΩ a 110 MΩ	± 0,40%
	110 MΩ a 330 MΩ	± 0,40%
Resistencia Eléctrica, corriente	150 μΩ	± 0,14%
de prueba	200 μΩ	± 0,12%
Generación	300 μΩ	± 0,10%
10 A corriente continua	400 μΩ	± 0,10%
Resistencia Eléctrica, máxima corriente de prueba		
Generación 1 a 10 A corriente continua	1 mΩ a 10 mΩ	± 0,10%
1 A corriente continua	10 mΩ a 100 mΩ	± 0,04%
Resistencia Eléctrica, máxima tensión de prueba Generación		20,0170
1 000 V corriente continua	100 kΩ a 100 MΩ	± 0,010%
1 000 V corriente continua	100 MΩ a 10 GΩ	± 0,010% ± 2,0%
1 000 V comente continua	100 IVIS2 & 10 GS2	± ∠,U /0

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 128
Simulación de temperatura RTD	-200 a -190°C	± 0,19°C
Pt 3916 100 Ω	-190 a 0°C	± 0,040°C
	0 a 260°C	± 0,070°C
	260 a 400°C	± 0,080°C
	400 a 600°C	± 0,18°C
	600 a 630°C	± 0,040°C
Pt 385 100 Ω	-200 a 0°C	± 0,040°C
	0 a 100°C	± 0,050°C
	100 a 300°C	± 0,070°C
	300 a 400°C	± 0,080°C
	400 a 630°C	± 0,090°C
	630 a 800°C	± 0,18°C
Pt 3926 100 Ω	-200 a 0°C	± 0,040°C
	0 a 100°C	± 0,050°C
	100 a 300°C	± 0,070°C
	300 a 400°C	± 0,080°C
	400 a 630°C	± 0,090°C
Pt 385 200 Ω	-190 a -80°C	± 0,020°C
	-80 a 100°C	± 0,030°C
	100 a 260°C	± 0,040°C
	260 a 300°C	± 0,090°C
	300 a 400°C	± 0,10°C
	400 a 600°C	± 0,11°C
	600 a 630°C	± 0,12°C
Pt 385 500 Ω	-190 a -80°C	± 0,031°C
Pt 385 1 000 Ω	-80 a 100°C	± 0,039°C
	100 a 260°C	± 0,047°C
	260 a 400°C	± 0,062°C
	400 a 600°C	± 0,070°C
	600 a 630°C	± 0,085°C
PtNi 385 120 Ω	-80 a 0°C	± 0,062°C
(Ni 120)	0 a 100°C	± 0,062°C
	100 a 260°C	± 0,11°C
Cu 427 10 W	-100 a 260°C	± 0,23°C
Simulación de temperatura	600 a 800°C	± 0,34°C
Termopar tipo B	800 a 1 000°C	± 0,26°C
	1 000 a 1 550°C	± 0,23°C
	1 550 a 1 820°C	± 0,26°C
Sensor tipo termopar C	0 a 150°C	± 0,23°C
	150 a 650°C	± 0,20°C
	650 a 1 000°C	± 0,24°C
	1 000 a 1 800°C	± 0,39°C
	1 800 a 2 316°C	± 0,65°C
Sensor tipo termopar E	-250 a -100°C	± 0,39°C
	-100 a -25°C	± 0,12°C
	-25 a 350°C	± 0,11°C
	350 a 650°C	± 0,12°C
	650 a 1 000°C	± 0,16°C
Sensor tipo termopar J	-210 a -100°C	± 0,21°C
	-100 a -30°C	± 0,12°C
	-30 a 150°C	± 0,11°C
	150 a 760°C	± 0,13°C
	760 a 1 200°C	± 0,18°C
Sensor tipo termopar K	-210 a -100°C	± 0,26°C
	-100 a -30°C	± 0,14°C
	-30 a 150°C	± 0,12°C
	150 a 760°C	± 0,20°C
	760 a 1 200°C	± 0,31°C

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección)
Sensor tipo termopar L	-200 a -100°C	± 0,29°C
	-100 a 800°C	± 0,20°C
	800 a 900°C	± 0,13°C
Sensor tipo termopar N	-200 a - 100°C	± 0,31°C
	-100 a - 25°C	± 0,17°C
	-25 a 120°C	± 0,15°C
	120 a 410°C	± 0,14°C
	410 a 1 300°C	± 0,21°C
Sensor tipo termopar R	0 a 250°C	± 0,44°C
	250 a 400°C 400 a 1 000°C	± 0,27°C
	1 000 a 1 767°C	± 0,26°C ± 0,31°C
Canaar tina tarmanar C		
Sensor tipo termopar S	0 a 250°C 250 a 1 000°C	± 0,37°C
	1 000 a 1 400°C	± 0,28°C ± 0,29°C
	1 400 a 1 7400 C	± 0,29 C ± 0,36°C
Sensor tipo termopar T	-250 a -150°C	± 0,49°C
Sensor tipo termopar i	-250 a - 150 C -150 a 0°C	± 0,49 C ± 0,19°C
	0 a 120°C	± 0,10°C
	120 a 400°C	± 0,11°C
Sensor tipo termopar U	-200 a 0°C	± 0,49°C
censor upo terrilopar o	0 a 600°C	± 0,19°C
Tensión en corriente continua	10 mV a 100 mV	± 58 ppm
Medición	100 mV a 1 V	± 28 ppm
Wedicion		
	1 V a 10 V	± 25 ppm
_	10 V a 100 V	± 29 ppm
	100 V a 1 000 V	± 26 ppm
Intensidad de corriente	10 μΑ α 300 μΑ	± 0,097%
en corriente continua	300 μA a 3 mA	± 0,053%
Medición	3 mA a 30 mA	± 0,053%
	30 mA a 300 mA	± 0,053%
	300 mA a 3 A	± 0,093%
	3 A a 4 A	± 0,30%
	4 A a 10 A	± 0,40%
Tensión en corriente alterna	10 mV a 300 m V	10,1070
Medición	50 Hz a 200 Hz	± 0,33%
	200 Hz a 10 kHz	± 0,18%
	300 mV a 3 V	_ 0,1070
	500 Hz a 200 Hz	± 0,33%
	200 Hz a 10 kHz	± 0,18%
-	3 V a 30 V	± 0,1070
		0.000/
	50 Hz a 200 Hz 200 Hz a 10 kHz	± 0,33% ± 0,18%
		± 0,18%
	30 V a 300 V	2 222/
	50 Hz a 200 Hz	± 0,33%
<u> </u>	200 Hz a 10 kHz	± 0,18%
	40 V a 400 V	4.407
	45 Hz a 1 kHz	<u>+</u> 1,1%
	400 V a 1 000 V	
	45 Hz a 1 kHz	± 1,4%
Intensidad de corriente	10 μΑ α 300 μΑ	± 0,93%
en corriente alterna	45 Hz a 10 kHz	
Medición	300 μA a 3 mA	± 0,63%
	45 Hz a 10 kHz	

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 130
	3 mA a 30 mA 45 Hz a 10 kHz	± 0,63%
	30 mA a 300 mA	± 0,63%
_	45 Hz a 10 kHz 300 mA a 3 A	± 0,63%
	45 Hz a 10 kHz	
	400 mA a 4 000 mA 45 Hz a 2 kHz	± 1,1%
	4 000 mA a 10 A 45 Hz a 2 kHz	± 1,2%
Alta Tensión	1 000 V a 5 000 V	± 1,0%
corriente continua/corriente alterna	2 000 V a 10 000 V	± 1,0%
60 Hz	5 000 V a 25 000 V	± 1,0%
Medición	10 000 V a 50 000 V	± 1,0%
Resistencia Eléctrica	10 Ω a 100 Ω	± 0,010%
Medición	100 Ω a 1 kΩ	± 0,0070%
Método Directo	1 kΩ a 10 kΩ	± 0,0070%
	10 kΩ a 100 kΩ	± 0,0068%
	100 kΩ a 1 MΩ	± 0,011%
	1 MΩ a 10 MΩ	± 0,046%
	10 MΩ a 100 MΩ	± 1,8%
Resistencia Eléctrica	150 μΩ a 200 μΩ	± 0,14%
Corriente de prueba	200 μΩ a 300 μΩ	± 0,12%
10 A corriente continua	300 μΩ a 400 μΩ	± 0,093%
Método Indirecto	400 μΩ a 1 mΩ	± 0,10%
	1 mΩ a 10 mΩ	± 0,10%
	10 mΩ a 100 mΩ	± 0,040%
Resistencia Eléctrica	1 ΜΩ a 10 ΜΩ	± 0,10%
Tensión de Prueba 1 000 V	10 MΩ a 50 MΩ	± 0,20%
Corriente continua	50 MΩ a 100 MΩ	± 0,30%
Medición	100 MΩ a 200 MΩ	± 0,60%
Método Indirecto	200 MΩ a 1 GΩ	± 4,6%
	1 GΩ a 3 GΩ	± 3,5%
	$3~\mathrm{G}\Omega$ a $5~\mathrm{G}\Omega$	± 2,3%
	5 GΩ a 10 GΩ	± 2,6%
	10 GΩ a 30 GΩ	± 4,6%
	30 GΩ a 100 GΩ	± 2,3%
	100 GΩ a 250 GΩ	± 4,6%
Simulación de temperatura RTD Medición		
Pt 3916 100 Ω	-200 a -190°C	± 0,30°C
	-190 a 0°C	± 0,30°C
	0 a 630°C	± 0,50°C
Pt 385 100 Ω	-200 a 0°C	± 0,30°C
	0 a 400°C 400 a 800°C	± 0,50°C ± 0,80°C
Pt 392 100 Ω	-200 a 0°C	± 0,30°C
F1 392 100 12	0 a 630°C	± 0,50°C
Pt 385 200 Ω,	-200 a 0°C	± 0,30°C
500 Ω, 1 000 Ω	0 a 400°C	± 0,50°C
	400 a 630°C	± 0,80°C

Ni 672 (120 Ω)	-80 a 260°C	± 0,30°C	

Signatarios autorizados:

Ing. Ernesto Andrade Jiménez Ing. Javier Cárdenas Rodríguez

Ing. Luis Cárdenas Rodríguez Téc. Javier Andrade Pérez

Métrica, S.A. de C.V. Ing. Moisés Rivera Rocha Alfonso Reyes No. 2620

Fraccionamiento Bernardo Reyes 64280, Monterrey, Nuevo León Teléfono: (81) 8370 26 00 Fax: (81) 8370 44 67

Dirección de correo electrónico: roberto@metrica.com.mx

Acreditación: E-34 Vencimiento: 2002-05-16

Magnitud Eléctrica	Intervalo	Incertidumbre ^{1,2}
Generación		
Tensión en corriente continua	33 mV a 330 mV	± 54 ppm
	330 mV a 3,3 V	± 40 ppm
	3,3 V a 33 V	± 40 ppm
	33 V a 330 V	± 44 ppm
	330 V a 1 000 V	± 44 ppm
Resistencia eléctrica	1,1 Ω a 11 Ω	± 0,052%
	11 Ω a 33 Ω	± 0,033%
	$33~\Omega$ a $110~\mathrm{k}\Omega$	± 0,014%
	110 Ω a 330 Ω	± 0,0093%
	330 k Ω a 1,1 Ω	± 0,0112%
	1,1 k Ω a 3,3 k Ω	± 0,008%
	3,3 k Ω a 11 k Ω	± 0,011%
	11 kΩ a 33 kΩ	± 0,0084%
	33 kΩ a 110 kΩ	± 0,013%
	110 kΩ a 330 kΩ	± 0,011%
	330 kΩ a 1,1 MΩ	± 0,013%
	1,1 MΩ a 3,3 MΩ	± 0,013%
	3,3 M Ω a 11 M Ω	± 0,050%
	11 MΩ a 33 MΩ	± 0,079%
	33 M Ω a 110 M Ω	± 0,39%
	110 MΩ a 330 MΩ	± 0,39%
Intensidad de corriente continua	0,33 mA a 3,3 mA	± 0,011%
	3,3 mA a 33 mA	± 0,0084%
	33 mA a 330 mA	± 0,0086%
	330 mA a 2,2 A	± 0,025%
	2,2 A a 11 A	± 0,049%
Tensión en corriente alterna	3,3 mV a 33 mV	
	10 Hz a 45 Hz	± 0,32%
	45 Hz a 10 kHz	± 0,16%
	10 kHz a 20 kHz	± 0,20%
	20 kHz a 50 kHz	± 0,24%
	50 kHz a 100 kHz	± 0,35%
	100 kHz a 500 kHz	± 0,92%

DIA	RIO	OFI	CIA	T

33 mV a 330 mV 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 50 kHz 50 kHz a 100 kHz 30 mV a 3,3 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 20 kHz 10 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 100 kHz 3,3 V a 33 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 50 kHz 20 kHz a 50 kHz 20 kHz a 100 kHz 3,3 V a 33 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 100 kHz 20 kHz a 20 kHz 20 kHz a 50 kHz	Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 132
10 Hz a 45 Hz		33 mV a 330 mV	
45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 50 kHz 50 kHz a 100 kHz 10 kHz a 100 kHz 10 kHz a 100 kHz 10 kHz a 10 kHz 10 kHz a 10 kHz 20 kHz a 10 kHz 10 kHz a 20 kHz 20 kHz a 50 kHz 20 kHz a 20 kHz 20 kHz a 10 kHz 10 kHz a 20 kHz 20 kHz a 10 kHz 10 kHz a 10 kHz 10 kHz a 10 kHz 10 kHz a 10 kHz 20 kHz a 50 kHz 20 kHz a 10 kHz 10 kHz a 10 kHz 10 kHz a 10 kHz 10 kHz a 10 kHz 20 kHz a 10 kHz 20 kHz a 5 kHz 20 kHz a 5 kHz 5 kHz a 1 kHz 1 kHz a 5 kHz 20 kHz a 5 kHz 20 kHz a 5 kHz 20 kHz a 45 kHz 20 kHz a 45 kHz 20 kHz a 5 kHz 20 kHz 2			± 0.21%
10 kHz a 20 kHz			
20 kHz a 50 kHz			
SO kHz a 100 kHz			
100 kHz a 500 kHz 330 mV a 3,3 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz b 50 kHz 50 kHz a 100 kHz 100 kHz a 500 kHz 20 kHz a 500 kHz 100 kHz a 500 kHz 20 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 100 kHz 21 kHz a 10 kHz 21 kHz a 10 kHz 22 kHz a 50 kHz 250 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 20 kHz 21 kHz a 10 kHz 21 kHz a 5 kHz 21 kHz 21 kHz a 5 kHz 21 kH			
330 mV a 3,3 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 50 kHz 20 kHz a 100 kHz 3,3 V a 33 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz 20 kHz a 50 kHz 10 kHz 20 kHz a 50 kHz 20 kHz a 50 kHz 10 kHz 20 kHz a 50 kHz 20 kHz a 50 kHz 10 kHz 20 kHz a 50 kHz 20 kHz a 50 kHz 20 kHz a 50 kHz 20 kHz a 10 kHz 10 kHz 20 kHz a 10 kHz 20 kHz a 10 kHz 20 kHz a 10 kHz 10 kHz 20 kHz a 10 kHz 10 kHz 10 kHz 10 kHz a 10 kHz 10 kHz 10 kHz a 5 kHz 10 kHz 10 kHz a 5 kHz 10 kHz 10 kHz 20 Hz a 45 Hz 20 Hz a 45 Hz 20 Hz a 10 kHz 10 kHz 20 Hz a 10 kHz 10 kHz 20 Hz a 10 kHz 10 kHz 20 Hz a 45 kZ 20 Hz			
10 Hz a 45 Hz			± 0,02 /6
45 Hz a 10 kHz			
10 kHz a 20 kHz 20 kHz a 50 kHz 20 kHz a 50 kHz 40,12% 50 kHz a 100 kHz 100 kHz a 500 kHz 3,3 V a 33 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 20 kHz 20 kHz a 50 kHz 40,033% 10 kHz a 20 kHz 20 kHz a 50 kHz 50 kHz a 100 kHz 50 kHz a 100 kHz 50 kHz a 100 kHz 1 kHz a 10 kHz 1 kHz a 10 kHz 1 kHz a 10 kHz 20 kHz 20 kHz 20 kHz 33 V a 330 V 45 Hz a 1 kHz 1 kHz a 20 kHz 20 kHz 20 kHz 20 kHz 21 kHz			
20 kHz a 50 kHz ± 0,12% 50 kHz ± 0,23% 100 kHz a 500 kHz ± 0,47% 3,3 V a 33 V 10 Hz a 45 Hz ± 0,033% 10 kHz a 20 kHz ± 0,033% 10 kHz a 20 kHz ± 0,013% 10 kHz a 20 kHz ± 0,16% 50 kHz a 100 kHz ± 0,16% 50 kHz a 100 kHz ± 0,041% 33 V a 330 V 45 Hz a 1 kHz ± 0,041% ± 0,066% 10 kHz a 20 kHz ± 0,078% 330 V a 1 000 V 45 Hz a 1 kHz ± 0,045% ± 0,078% 330 V a 1 000 V 45 Hz a 1 kHz ± 0,045% ± 0,16% 5 kHz a 10 kHz ± 0,19% 10 kHz a 20 Hz ± 0,19% 10 kHz a 20 Hz ± 0,19% 10 kHz a 20 Hz ± 0,13% ± 0,15% 5 kHz a 10 kHz ± 0,045% ± 1,0% 10 kHz a 20 Hz ± 0,055% 5 kHz a 10 kHz ± 0,055% 5 kHz a 10 kHz ± 0,085% 45 Hz a 1 kHz ± 0,085% 45 Hz a 1 kHz ± 0,085% 45 Hz a 1 kHz ± 0,047% 3,3 mA a 33 mA 10 Hz a 20 Hz ± 0,047% 3,3 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,047% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,065% ± 0,065% ± 0,077%		45 Hz a 10 kHz	± 0,02%
So kHz a 100 kHz		10 kHz a 20 kHz	
100 kHz a 500 kHz 3,3 V a 33 V 10 Hz a 45 Hz 45 Hz a 10 kHz 20 kHz 20 kHz 20 kHz 20 kHz 33 V a 330 V 45 Hz a 100 kHz 10 kHz a 20 kHz 50 kHz a 100 kHz 21 kHz a 10 kHz 22 kHz 22 kHz 23 V a 330 V 45 Hz a 10 kHz 24 0 kHz 25 kHz 26 kHz 27 kHz a 10 kHz 28 kHz 28 kHz 29 kHz 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 20 kHz 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 20 kHz 20 Hz 20 Hz a 45 Hz 20 Hz 20 Hz 20 Hz a 45 Hz 20 Hz		20 kHz a 50 kHz	± 0,12%
3,3 V a 33 V 10 Hz a 45 Hz 45 Hz a 10 kHz 10 kHz a 20 kHz 20 kHz a 50 kHz 50 kHz a 100 kHz 33 V a 330 V 45 Hz a 1 kHz 1 kHz a 10 kHz 20 kHz a 50 kHz 50 kHz a 10 kHz 1 kHz a 20 kHz 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 20 Hz a 45 Hz 5 kHz a 10 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 33 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 33 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 40,085%		50 kHz a 100 kHz	± 0,23%
10 Hz a 45 Hz		100 kHz a 500 kHz	± 0,47%
10 Hz a 45 Hz		3 3 V a 33 V	
45 Hz a 10 kHz		•	+ 0.12%
10 kHz a 20 kHz			
20 kHz a 50 kHz 50 kHz a 100 kHz 50 kHz a 100 kHz 233 V a 330 V 45 Hz a 1 kHz 1 kHz a 10 kHz 2 t 0,041% 1 kHz a 20 kHz 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 2 t 0,16% 5 kHz a 10 kHz 2 t 0,16% 5 kHz a 10 kHz 2 t 0,16% 5 kHz a 10 kHz 2 t 0,19% Intensidad de corriente alterna 30 μA a 330 μA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 10 kHz 2 t 0,16% 1 kHz a 5 kHz 5 kHz a 10 kHz 2 t 1,0% 0,33 mA a 3,3 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 46 Hz a 10 kHz 47 Hz a 10 kHz 47 Hz a 10 kHz 48 Hz a 10 kHz 48 Hz a 10 kHz 49 Hz a 10 kHz 40 Hz			
33 V a 330 V 45 Hz a 1 kHz 1 kHz a 10 kHz 2 t 0,041% 1 kHz a 20 kHz 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 2 t 0,16% 5 kHz a 10 kHz 2 t 0,13% Intensidad de corriente alterna 30 μA a 330 μA 10 Hz a 20 Hz 20 Hz a 45 Hz 1 kHz a 5 kHz 2 t 0,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 2 t 0,085% 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 45			· ·
33 V a 330 V 45 Hz a 1 kHz 1 kHz a 10 kHz 20 kHz 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 10 kHz 2 ± 0,078% 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz 20 Hz a 45 Hz 2 ± 0,16% 5 kHz a 10 kHz 20 Hz ± 0,16% 1 kHz a 5 kHz 2 ± 0,16% 20 Hz a 45 Hz 2 ± 0,16% 1 kHz a 5 kHz 2 ± 0,16% 20 Hz a 45 Hz 20 Hz a 45 kHz 20			
## Hz a 1 kHz ## ± 0,041% ## ± 0,066% ## ± 0,066% ## ± 0,066% ## ± 0,066% ## ± 0,066% ## ± 0,077% ## ± 0,066% ## ± 0,077% ## ± 0,045% ## ± 0,045% ## ± 0,045% ## ± 0,16% ## ± 0,16% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,199% ## ± 0,169% ## ± 0,169% ## ± 0,169% ## ± 0,169% ## ± 0,169% ## ± 0,169% ## ± 0,169% ## ± 0,0859% ## ± 0,0859% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,085% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ## ± 0,077% ##			± 0,2376
1 kHz a 10 kHz			
10 kHz a 20 kHz 330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 2 t 0,16% 5 kHz a 10 kHz 30 μA a 330 μA 10 Hz a 20 Hz 20 Hz a 45 Hz 4 t 0,18% 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,18% 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,18% 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,085% 4 5 Hz a 1 kHz 4 t 0,085% 4 5 kHz a 10 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,085% 4 5 kHz a 10 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,085% 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,085% 4 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,077% 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,077% 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 t 0,077% 33 mA a 330 mA 10 Hz a 20 Hz 5 kHz a 10 kHz 5 kHz a			
330 V a 1 000 V 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 40,16% 1 kHz a 5 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 1 kHz a 5 kHz 5 kHz a 20 Hz 20 Hz a 20 Hz 20 Hz a 20 Hz 45 Hz a 10 kHz 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 10 kHz 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 45 Hz a 10 kHz 45 Hz a 1 kHz 45 Hz a 10 kHz 45 Hz a 1 kHz 45 Hz a		1 kHz a 10 kHz	± 0,066%
1 kHz a 1 kHz		10 kHz a 20 kHz	± 0,078%
45 Hz a 1 kHz		330 V a 1 000 V	
1 kHz a 5 kHz			+ 0.045%
Intensidad de corriente alterna 30 μA a 330 μA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 20 Hz 20 Hz a 45 Hz 4 0,35% 5 kHz a 10 kHz 20 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 40,085% 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 3,3 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 40,085% 1 kHz a 5 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 10 kHz 33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 40,085% 45 Hz a 10 kHz 20 Hz a 45 Hz 40,085% 45 Hz a 10 kHz 20 Hz a 45 Hz 40,085% 45 Hz a 10 kHz 20 Hz a 45 Hz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 40,085%			The state of the s
Intensidad de corriente alterna 30 μA a 330 μA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 0,13% 4 1,0% 0,33 mA a 3,3 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz a 45 Hz 45 Hz a 10 kHz 3,3 mA a 33 mA 10 Hz a 20 Hz 5 kHz a 10 kHz 20 Hz a 45 Hz 4 0,16% 5 kHz a 10 kHz 3,3 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 4 0,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 4 0,16% 5 kHz a 1 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 10,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 10,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 10,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 20 Hz a 45 Hz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 40,085%			
10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 10 kHz 20 Hz a 45 Hz 5 kHz a 10 kHz 20 Hz a 45 Hz 5 kHz a 10 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 45 0,085% 45 Hz a 1 kHz 45 0,085% 45 Hz a 10 kHz 45 Hz a 1 kHz 45 0,077% 33 mA a 330 mA 10 Hz a 20 Hz 5 kHz a 10 kHz 20 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 40,085%			2 0,1070
20 Hz a 45 Hz 45 Hz a 1 kHz 45 Hz a 1 kHz 45 Hz a 5 kHz 5 kHz a 10 kHz 20 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 40,085% 45 Hz a 10 kHz 3,3 mA 10 Hz a 20 Hz 20 Hz 40,16% 5 kHz a 10 kHz 3,3 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 10 kHz 20 Hz a 45 Hz 45	Intensidad de corriente alterna		
45 Hz a 1 kHz			
1 kHz a 5 kHz			
5 kHz a 10 kHz			
0,33 mA a 3,3 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 20 Hz a 45 Hz 40,085% 1 kHz a 5 kHz 5 kHz a 10 kHz 3,3 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 5 kHz 5 kHz 6 10,16% 5 kHz a 10 kHz 45 Hz a 1 kHz 40,077% 1 kHz a 5 kHz 5 kHz 6 10,16% 5 kHz a 10 kHz 40,16% 5 kHz a 10 kHz 40,085% 45 Hz a 45 Hz 40,16% 5 kHz a 10 kHz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 40,085% 45 Hz a 1 kHz 40,085%			
10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 3,3 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 45 Hz a 1 kHz 1 kHz a 5 kHz 1 kHz a 5 kHz 1 kHz a 5 kHz 2 tho,16% 5 kHz a 10 kHz 2 tho,085% 4 tho 1 kHz 4 tho,077% 1 kHz a 5 kHz 5 kHz a 10 kHz 2 tho,16% 5 kHz a 10 kHz 2 tho,16% 5 kHz a 10 kHz 4 tho,16% 5 kHz a 10 kHz 4 tho,16% 5 kHz a 10 kHz 6 kHz a 10 kHz 7 kHz a 10 kHz 7 kHz a 10 kHz 8 kHz a 10		5 kHz a 10 kHz	± 1,0%
20 Hz a 45 Hz		0,33 mA a 3,3 mA	
20 Hz a 45 Hz			± 0.16%
45 Hz a 1 kHz			
1 kHz a 5 kHz			
5 kHz a 10 kHz ± 0,47% 3,3 mA a 33 mA 10 Hz a 20 Hz ± 0,16% 20 Hz a 45 Hz ± 0,085% 45 Hz a 1 kHz ± 0,077% 1 kHz a 5 kHz ± 0,16% 5 kHz a 10 kHz ± 0,47% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,16% 20 Hz a 45 Hz ± 0,085% 45 Hz a 1 kHz ± 0,085%			
3,3 mA a 33 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 5 kHz a 10 kHz 33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz ± 0,16% ± 0,47% 32 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz ± 0,085% ± 0,077%			
10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 1 kHz a 5 kHz 33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 10 kHz 34 to 1,077% 45 to 1,077% 46 to 1,077% 47 to 1,077% 48 to 1,077% 49 to 1,085% 40 to 1,085% 40 to 1,085% 40 to 1,077%			_ 3, , 0
20 Hz a 45 Hz		*	
45 Hz a 1 kHz			
1 kHz a 5 kHz			
5 kHz a 10 kHz ± 0,47% 33 mA a 330 mA 10 Hz a 20 Hz ± 0,16% 20 Hz a 45 Hz ± 0,085% 45 Hz a 1 kHz ± 0,077%			
33 mA a 330 mA 10 Hz a 20 Hz 20 Hz a 45 Hz 45 Hz a 1 kHz 23 mA a 330 mA ± 0,16% ± 0,085% ± 0,077%			
10 Hz a 20 Hz ± 0,16% 20 Hz a 45 Hz ± 0,085% 45 Hz a 1 kHz ± 0,077%		5 kHz a 10 kHz	± 0,47%
10 Hz a 20 Hz ± 0,16% 20 Hz a 45 Hz ± 0,085% 45 Hz a 1 kHz ± 0,077%		33 mA a 330 mA	
20 Hz a 45 Hz ± 0,085% 45 Hz a 1 kHz ± 0,077%			± 0.16%
45 Hz a 1 kHz ± 0,077%			
			•
			The state of the s
5 kHz a 10 kHz ± 0,47%		O KITZ A TU KITZ	± 0,47%
330 mA a 2,2 A		•	
10 Hz a 45 Hz ± 0,16%		10 Hz a 45 Hz	± 0,16%
45 Hz a 1 kHz ± 0,077%		45 Hz a 1 kHz	± 0,077%
1 kHz a 5 kHz ± 0,59%		1 kHz a 5 kHz	± 0,59%

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 133
	2,2 A a 11 A	
	45 Hz a 65 Hz	± 0,061%
	65 Hz a 500 Hz	± 0,092%
	500 Hz a 1 kHz	± 0,27%
Capacitancia	100 pF a 1 μF	± 0,05%
	1,1 μF a 3,3 μF	± 0,34%
	3,3 µF a 11 µF	± 0,34%
	11 μF a 33 μF	± 0,38%
	33 μF a 110 μF	± 0,46%
	110 μF a 330 μF	± 0,61%
	330 µF a 1,1 mF	± 0,80%
Angulo de fase (φ)	5° a 10°	± 0,016%
Frecuencia de 45 Hz a 65 Hz	10° a 15°	± 0,039%
	15° a 20°	± 0,054%
	20° a 25°	± 0,078%
	25° a 30°	± 0,093%
	30° a 35°	± 0,12%
	35° a 40°	± 0,14%
	40° a 45°	± 0,17%
	45° a 50°	± 0,20%
	50° a 55°	± 0,24%
	55° a 60°	± 0,29%
	60° a 65°	± 0,35%
	65° a 70°	± 0,44%
	70° a 75°	± 0,56%
	75° a 80°	± 0,76%
	80° a 85°	± 1,2%
	85° a 90°	± 2,3%
Potencia en corriente continua	33 mV a 1 000 V	0.00040/
	3 mA a 9 mA	± 0,0084%
	9 mA a 33 mA	± 0,0073%
	33 mA a 90 mA	± 0,0089%
	90 mA a 330 mA	± 0,0074%
	330 mA a 0,9 A 0,9 A a 2,2 A	± 0,021% ± 0,020%
	2,2 A a 1,5 A	± 0,020 % ± 0,041%
	1,5 A a 11 A	± 0,038%
Potencia en corriente alterna	33 mV a 330 mV	10,00070
FP=1.00	3 mA a 9 mA	± 0,082%
Frecuencia de 45 a 65 Hz	9 mA a 33 mA	± 0,069%
	33 mA a 90 mA	± 0,082%
	90 mA a 330 mA	± 0,069%
	330 mA a 0,9 A	± 0,088%
	0,9 A a 2,2 A	± 0,077%
	2,2 A a 1,5 A	± 0,072%
	1,5 A a 11 A	± 0,058%
	300 mV a 1 020 V	
		1
	3 mA a 9 mA	± 0,077%
1	3 mA a 9 mA 9 mA a 33 mA	± 0,077% ± 0,063%
		· ·
	9 mA a 33 mA	± 0,063%
	9 mA a 33 mA 33 mA a 90 mA	± 0,063% ± 0,077%
	9 mA a 33 mA 33 mA a 90 mA 90 mA a 330 mA	± 0,063% ± 0,077% ± 0,063%
	9 mA a 33 mA 33 mA a 90 mA 90 mA a 330 mA 330 mA a 0,9 A	± 0,063% ± 0,077% ± 0,063% ± 0,083%

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 134
Simulación eléctrica de temperatura	-190°C a -80°C	± 0,031°C
Sensor tipo RTD	-80°C a 0°C	± 0,039°C
Pt 385 100 Ω	0°C a 100°C	± 0,047°C
Pt 3926 100 Ω	100°C a 300°C	± 0,054°C
Pt 3916 100 Ω*	300°C a 400°C	± 0,070°C
*No aplica al último intervalo	400°C a 630°C	± 0,078°C
	630°C a 800°C	± 0,18°C
Pt 385 200 Ω	-190°C a -80°C	± 0.016°C
1 1 000 200 32	-80°C a 0°C	± 0,031°C
	0°C a 100°C	± 0,031°C
	100°C a 300°C	± 0,039°C
	300°C a 400°C	± 0,101°C
	400°C a 630°C	± 0,109°C
Dt 005 500 O		·
Pt 385 500 Ω	-190°C a -80°C	± 0,0078°C
Pt 385 1 000 Ω	-80°C a 0°C	± 0,023°C
	0°C a 100°C	± 0,031°C
	100°C a 300°C	± 0,039°C
	300°C a 400°C	± 0,054°C
	400°C a 630°C	± 0,054°C
Simulación eléctrica de temperatura		
Sensor tipo RTD	-80°C a 0°C	± 0,062°C
PiNi 385 120 Ω (Ni120)	0°C a 100°C	± 0,062°C
	100°C a 260°C	± 0,109°C
Cu 427 10 W	-80°C a 0°C	± 0,23°C
Gu 427 10 W	0°C a 100°C	± 0,23 °C
	100°C a 260°C	± 0,23 °C
Sensor tipo termopar B	600°C a 800°C	± 0,34°C
	800°C a 1 000°C	± 0,26°C
	1 000°C a 1 550°C	± 0,23°C
	1 550°C a 1 820°C	± 0,26°C
Sensor tipo termopar C	0°C a 150°C	± 0,23°C
·	150°C a 650°C	± 0,20°C
	650°C a 1 000°C	± 0,24°C
	1 000°C a 1 800°C	± 0,39°C
	1 800°C a 2 316°C	± 0,65°C
Sancar tipa tarmanar E	-250°C a -100°C	± 0,39°C
Sensor tipo termopar E	-100°C a -25°C	± 0,39 C ± 0,12°C
	-100°C a -25°C -25°C a 350°C	± 0,12°C ± 0,11°C
	350°C a 650°C 650°C a 1 000°C	± 0,12°C
		± 0,16°C
Sensor tipo termopar J	-210°C a -100°C	± 0,19°C
	-100°C a -30°C	± 0,12°C
	-30°C a 150°C	± 0,11°C
	150°C a 760°C	± 0,13°C
	760°C a 1 200°C	± 0,18°C
Sensor tipo termopar K	-210°C a -100°C	± 0,26°C
Concor apo termopar it	-100°C a -30°C	± 0,14°C
	-30°C a 150°C	± 0,14°C ± 0,12°C
	150°C a 760°C	± 0,12 C ± 0,20°C
	760°C a 1 200°C	
		± 0,31°C
Sensor tipo termopar L	-200°C a -100°C	± 0,29°C
	-100°C a 800°C	± 0,20°C
	800°C a 900°C	± 0,13°C

Tritereoles 20 de junio de 2002		(Begunda Beccion) 155
Sensor tipo RTD Sensor tipo termopar N	-200°C a -100°C -100°C a -25°C -25°C a 120°C 120°C a 410°C 410°C a 1 300°C	± 0,31°C ± 0,17°C ± 0,15°C ± 0,14°C ± 0,21°C
Sensor tipo termopar R	0°C a 250°C 250°C a 400°C 400°C a 1 000°C 1 000°C a 1 767°C	± 0,44°C ± 0,27°C ± 0,26°C ± 0,31°C
Sensor tipo termopar S	0°C a 250°C 250°C a 1 000°C 1 000°C a 1 400°C 1 400°C a 1 767°C	± 0,37°C ± 0,28°C ± 0,29°C ± 0,36°C
Sensor tipo termopar T	-250°C a -150°C -150°C a 0°C 0°C a 120°C 120°C a 400°C	± 0,49°C ± 0,19°C ± 0,10°C ± 0,11°C
Sensor tipo termopar U	-200°C a 0°C 0°C a 600°C	± 0,49°C ± 0,19°C
Frecuencia	0,01 Hz a 120 Hz 120 Hz a 1,2 kHz 1,2 kHz a 10 kHz 10 kHz a 12 kHz 12 kHz a 120 kHz 120 kHz a 1,2 MHz 1,2 MHz a 2 MHz	± 26 ppm ± 20 ppm ± 20 ppm ± 20 ppm ± 20 ppm ± 19 ppm ± 19 ppm

Expresados a un nivel de confianza de aproximadamente de 95%.

Responsables técnicos:

Ing. Moisés Rivera Rocha

Miércoles 26 de junio de 2002

Téc. Alfonso Guerra Velázquez

Control y Proceso, S.A. de C.V. Ing. Francisco Javier Fajardo Díaz Jaripeo No. 5 interior 7 Villas de la Hacienda

52929, Atizapán de Zaragoza, Estado de México

Teléfono y fax: (55) 5887 2110

Dirección de correo electrónico: contproc@prodigy.net.mx

Acreditación: E-35 Vencimiento: 2002-12-18

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Generación Tensión en corriente continua	0 a 100 mV 100 mV a 10 V 1 V a 10 V	± 0,011% * ± 0,011% * ± 0,011% *
Vóltmetros	0 mV a 100 mV 100 mV a 10 V 1 V a 10 V	± 0,011% * ± 0,011% * ± 0,011% *
Intensidad de corriente	0 mA a 20 mA 20 mA a 50 mA	± 0,020% * ± 0,035% *
Resistencia	0 Ω a 190 Ω	± 0,12% *
Medición Simulación de temperatura Termopar tipo J	-150°C a -1°C 0°C a 1 200°C	± 0,5°C ± 0,3°C
Termopar tipo K	-200°C a -101°C -100°C a 1 372°C	± 1°C ± 0,5°C

La incertidumbre expresada es la mejor del intervalo, así que el laboratorio debe emitir informes con incertidumbre mayor o igual pero no menores a las expresadas en este documento.

Termopar tipo T	-100°C a 49°C 50°C a 400°C	± 0,5°C ± 0,3°C
Generación Simulación de temperatura Termopar tipo J	-150°C a -1°C 0°C a 1 200°C	± 0,5°C ± 0,3°C
Termopar tipo K	-200°C a -101°C -100°C a 1 372°C	± 1°C ± 0,5°C
Termopar tipo T	-200°C a -101°C -100°C a 49°C 50°C a 400°C	± 1°C ± 0,5°C ± 0,3°C

^{*}Es la mejor del intervalo.

Responsable técnico:

Ing. Francisco Fajardo Díaz

Robert Bosch, S.A. de C.V. Ing. José Manuel López García Robert Bosch No. 405 Col. Zona Industrial Toluca 50070, Toluca, Estado de México Teléfono: (7) 279 23 00

Fax: (7) 279 23 39

Dirección de correo electrónico: armando.valdez@mx.bosch

Acreditación: E-36 Vencimiento: 2002-12-19

Magnitud Eléctrica	Alcance	Incertidumbre ^{1,2}
Generación		
Tensión en corriente continua	100 mV a 329,99 mV	54 ppm
	330 mV a 3,29 V	40 ppm
	3,3 V a 32,9 V	40 ppm
	33 V a 329,99 V	44 ppm
	100 V a 1 000 V	44 ppm
Simulación de temperatura		
Sensor tipo termopar T	-50°C a 0°C	0,24°C
	0°C a 120°C	0,16°C
	120°C a 400°C	0,14°C
Sensor tipo termopar K	-50°C a -25°C	0,18°C
	- 25°C a 120°C	0,16°C
	120°C a 1 000°C	0,26°C
	1 000°C a 1 372°C	0,40°C
Sensor tipo termopar J	-50°C a -30°C	0,16°C
	- 30°C a 150°C	0,14°C
	150°C a 760°C	0,17°C
	760°C a 1 200°C	0,23°C
Sensor tipo RTD	0°C a 100°C	0,07°C
Pt 385 100 Ω	100°C a 300°C	0,09°C
	300°C a 400°C	0,10°C
	400°C a 630°C	0,12°C
Pt 385 1 000 Ω	0°C a 100°C	0,04°C
	100°C a 260°C	0,05°C
	260°C a 300°C	0,06°C
	300°C a 400°C	0,07°C
	400°C a 600°C	0,07°C

DIV	DIO	OLI	CIAL
ПЛА	KIU	COL	CIAL

Tensión en corriente alterna	100 mV a 329,99 mV	<u> </u>
Tension en comente alterna	10 Hz a 45 Hz	0,21%
	45 Hz a 10 kHz	0,044%
	10 kHz a 20 kHz	0,082%
	0,33 V a 3,29 V	0,00270
	45 Hz a 10 kHz	0.032%
	10 kHz a 20 kHz	0,064%
	20 kHz a 50 kHz	•
	50 kHz a 50 kHz	0,12% 0,23%
		0,23%
	3,3 V a 32,99 V	0.0050/
	45 Hz a 10 kHz	0,025%
	10 kHz a 20 kHz	0,068%
	20 kHz a 50 kHz	0,16%
	50 kHz a 100 kHz	0,23%
Generación		
Tensión en corriente alterna	33 V a 329,99 V	
	45 Hz a 1 kHz	0,040%
	1 kHz a 10 kHz	0,066%
	330 V a 750 V	
	45 Hz a 1 kHz	0,047%
Intensidad de corriente continua	100 nA a 3,29 mA	0,011%
	3,3 mA a 32,99 mA	0,008%
	33 mA a 329,99 mA	0,009%
	330 mA a 2,19 A	0,025%
	2,2 A a 11 A	0,049%
Intensidad de corriente alterna	3,3 mA a 32,99 mA	
	45 Hz a 1 kHz	0,077%
	33 mA a 329,99 mA	-7-
	45 Hz a 1 kHz	0,077%
	0,33 A a 2,19 A	3,317,3
	45 Hz a 1 kHz	0,088%
		0,00070
	2,2 A a 10 A 45 Hz a 65 Hz	0,062%
	65 Hz a 500 Hz	0,062%
	500 Hz a 1 kHz	0,093%
5		·
Resistencia eléctrica	10 Ω a 10,99 Ω	0,07%
	11 Ω a 32,99 Ω	0,04%
	33 Ω a 109,99 Ω	0,018%
	110 Ω a 329,99 Ω	0,011%
	330 kΩ a 1,09 kΩ	0,011%
	1,1 kΩ a 3,29 kΩ	0,008%
	3,3 kΩ a 10,99 kΩ	0,011%
	11 kΩ a 32,99 kΩ	0,008%
	33 kΩ a 109,99 kΩ	0,013%
	110 kΩ a 329,99 kΩ	0,011%
	330 kΩ a 1,09 MΩ	0,016%
	1,1 MΩ a 3,29 MΩ	0,013%
	3,3 ΜΩ α 10,99 ΜΩ	0,050%
	11 MΩ a 32,99 MΩ	0,079%
	33 MΩ a 109,99 MΩ	0,39%
	110 MΩ a 330 MΩ	0,39%

20 kHz a 50 kHz

50 kHz a 100 kHz

40 Hz a 1 kHz

1 kHz a 20 kHz

V40 Hz a 1 kHz

100 μΑ

1 mA

10 mA

100 mA

1 A

45 Hz a 1 kHz

100 Hz a 5 kHz

5 kHz a 20 kHz

45 Hz a 100 Hz

100 Hz a 1 kHz

10 Ω

 100Ω

 $1 \, \mathrm{k}\Omega$

10 k Ω

100 k Ω

1 MΩ 10 MΩ

100 M Ω

 $1 \, \mathsf{G} \Omega$

100 V

1 000 V

10 mA a 100 mA

1 A

0,032%

0,082%

0,022%

0,022%

0,042%

28 ppm

25 ppm

25 ppm

40 ppm

0,12%

0,080%

0,050%

0,080%

0.10%

0,12%

20 ppm

17 ppm

11 ppm

11 ppm

11 ppm 17 ppm

60 ppm

0,051%

0,50%

²La incertidumbre expresada es la mejor del intervalo así que el laboratorio pudiera emitir informes con incertidumbre mayores pero no menores a las expresadas en este documento.

Responsables técnicos:

Intensidad de corriente continua

Intensidad de corriente alterna

Resistencia eléctrica

Ing. José Manuel López García

Téc. Raúl Cid Sánchez

Ing. Ricardo Sánchez G.

Odilón Espinoza Trinidad José Manuel Ruiz Pozas Abel Salazar No. 214 Col. Sánchez Colín

50150, Toluca, Estado de México Teléfono y fax: (2) 70 68 91

Acreditación: E-37 Vencimiento: 2003-03-20

Magnitud Eléctrica	Alcance	Incertidumbre k=2*
Generación	2 mV a 20 mV	± 0,036% L
Tensión en corriente continua	20 mV a 200 mV	± 98 ppm
	200 mV a 2 V	± 72 ppm
	2 V a 20 V	± 70 ppm
	20 V a 200 V	± 69 ppm
	200 V a 1100 V	± 70 ppm
Generación	10 μA a 200 μA	± 0,038% L
Intensidad de corriente continua	0,2 mA a 2 mA	± 0,032% L
	2 mA a 20 mA	± 0,032% L
	20 mA a 200 mA	± 0,032% L
	0,2 A a 2 A	± 0,032% L
Generación	50 Hz a 10 kHz	
Tensión en corriente alterna	1 mV a 20 mV	± 0,35% L
	20 mV a 200 mV	± 0,092% L
	0,2 V a 2 V	± 0,066% L
	2 V a 20 V	± 0,064% L
	20 V a 200 V	± 0,064% L
	200 V a 1100 V	± 0,064% L
Generación	50 Hz a 1 kHz	
Intensidad de corriente alterna	10 μA a 200 μA	± 0,01% L
	0,2 mA a 2 mA	± 0,094% L
	2 mA a 20 mA	± 0,093% L
	20 mA a 200 mA	± 0,094% L
	0,2 A a 2 A	± 0,093% L
Generación	1 Ω	± 0,023% L
Resistencia eléctrica	10 Ω	± 0,012% L
(Valores fijos)	100 Ω	± 58 ppm
	1 kΩ	± 58 ppm
	10 kΩ	± 58 ppm
	100 kΩ	± 58 ppm
	1 MΩ	± 0,012% L
	10 ΜΩ	± 0,058% L

^{*}Las incertidumbres indicadas son las mejores de cada intervalo, para un nivel de confianza de aproximadamente del 95%.

Responsables técnicos:

José Manuel Ruiz Pozas

Odilón Espinoza Trinidad

Roberto Galván Rivera

Dimec Laboratorios, S. de R.L. de C.V. Ing. Marco Antonio Alvarez Vázquez Libramiento Oriente No. 5 interior 14299

Col. Parque Industrial

22440, Tijuana, Baja California

Teléfono: (66) 21 53 65 Fax:(66) 21 53 83 Acreditación: E-38

Vencimiento: 2003-03-20

(Segunda Sección)

 $\pm 0,04\% L$

65 Hz a 1 kHz

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 141
Generación resistencia	10 Ω a 32,999 Ω	± 0,030% L
	$33~\Omega$ a $329,999~\Omega$	± 0,010% L
	330 Ω a 3,29999 k Ω	± 0,010% L
	$3,3~\mathrm{k}\Omega$ a $32,9999~\mathrm{k}\Omega$	± 0,010% L
	33 k Ω a 329,999 k Ω	± 0,013% L
	330 kΩ a 3,29999 MΩ	± 0,013% L
	3,3 M Ω a 10,9 M Ω	± 0,065% L
	11 MΩ a 32,9999 MΩ	± 0,10% L
	33 M Ω a 109 M Ω	± 0,50% L
	110 MΩ a 330 MΩ	± 0,50% L
Medición	30 mV a 300 mV	± 0,020% L
Tensión en corriente continua	300 mV a 3 V	± 0,020% L
	3 V a 30 V	± 0,020% L
	30 V a 300 V	± 0,020% L
	300 V a 1000 V	± 0,18% L
Medición	33 mV a 300 mV	
Tensión en corriente alterna	50 Hz a 100 Hz	± 0,51% L
	100 Hz a 10 kHz	± 0,34% L
	300 mV a 3 V 50 Hz a 100 Hz	± 0,49% L
	100 Hz a 10 kHz	± 0,49% L ± 0,29% L
	3 V a 30 V	_ = 0,=0 /0 =
	50 Hz a 100 Hz	± 0,49% L
	1 kHz a 10 kHz	± 0,29% L
	30 V a 300 V	
	50 Hz a 100 Hz	± 0,53% L
	1 kHz a 10 kHz 300 V a 1 kV	± 0,36% L
	50 Hz a 5 kHz	± 0,90% L
Medición	0,1 mA a 300 mA	± 0,16% L
Intensidad corriente continua	300 mA a 1 A	± 0,18% L
	1 A a 3 A	± 1,0% L
	3 A a 10 A	± 0,4% L
Intensidad de corriente alterna	0,33 mA a 300 mA	
	50 Hz a 2 kHz	± 0,86% L
lata a sida dala a suria ata alta ma	2 kHz a 10 kHz	± 0,77% L
Intensidad de corriente alterna	300 mA a 3 A 50 Hz a 2 kHz	± 1,0% L
	2 kHz a 10 kHz	± 1,5% L
	3 A a 10 A	,,,,,,
	50 Hz a 2 kHz	± 1,2% L
Resistencia	10 Ω a 30 Ω	± 0,05% L
	$30~\Omega$ a $300~\Omega$	± 0,02% L
	300 Ω a 3 kΩ	± 0,02% L
	3 kΩ a 30 kΩ 30 kΩ a 300 kΩ	± 0,02% L ± 0,02% L
	300 kΩ a 3 MΩ	± 0,02% L
	3 ΜΩ α 30 ΜΩ	± 0,15% L
	30 MΩ a 40 MΩ	± 0,20% L
Simulación de temperatura Termopar tipo T	-100°C a 0°C 0°C a 400°C	± 0,6°C ± 0,3°C
Simulación de temperatura Termopar tipo K	-100°C a 400°C 400°C a 1000°C	± 0,3°C ± 0,5°C
Simulación de temperatura	-100°C a 500°C	± 0,3°C
Termopar tipo J		·
Simulación de temperatura	-50°C a 0°C	± 0,30°C
RTD Pt385,100W	0°C a 400°C 400°C a 600°C	± 0,5°C ± 0,8°C
	400 C a 000 C	± 0,0 C

^{*}Las incertidumbres indicadas son las mejores de cada intervalo, para un nivel de confianza de aproximadamente del 95%.

Responsables técnicos:

Ing. Marco A. Alvarez Vázquez

Ing. Sergio Iturbide Linares

Certificación Industrial, S.A. de C.V. Ing. Javier Segura Jiménez

Múzquiz No. 246 Col. Mitras Centro

64460, Monterrey, Nuevo León Teléfono: (81) 8333 50 02 Fax: (81) 8348 14 35 Acreditación: E-39 Vigencia: 2003-09-18

Magnitud Eléctrica	Alcance	Incertidumbre ^{1, 2} k=2
Generación	10 a 330 mV	± 54 ppm
Tensión en corriente continua	0,330 a 3,3 V	± 40 ppm
	3,3 a 33 V	± 40 ppm
	33 a 330 V	± 44 ppm
	330 a 1 000 V	± 44 ppm
Resistencia Eléctrica	1 a 11 Ω	± 0,066%
Simulación	11 a 33 Ω	± 0,045%
	33 a 110 Ω	± 0,018%
	110 a 330 Ω	± 0,011%
	0,330 a 1,1 kΩ	± 0,012%
	1,1 a 3,3 kΩ	± 0,0085%
	3,3 a 11 kΩ	± 0,012%
	11 a 33 kΩ	± 0,0085%
	33 a 110 kΩ	± 0,013%
	110 a 330 kΩ	± 0,011%
	0,330 a 1,1 MΩ	± 0,016%
	1,1 a 3,3 MΩ	± 0,013%
	$3,3$ a 11 $M\Omega$	± 0,050%
	11 a 33 MΩ	± 0,078%
	33 a 110 MΩ	± 0,40%
	110 a 330 MΩ	± 0,40%
ntensidad de corriente continua	100 μA a 3,3 mA	± 0,012%
	3,3 a 33 mA	± 0,0085%
	33 a 330 mA	± 0,0085%
	0,330 a 2,2 A	± 0,025%
	2,2 a 11 A	± 0,049%
Tensión en corriente alterna	1 mV a 33 mV	
	10 a 45 Hz	± 0,32%
	45 Hz a 10 kHz	± 0,16%
	10 a 20 kHz	± 0,20%
	20 a 50 kHz	± 0,24%
	50 a 100 kHz	± 0,35%
	100 a 500 kHz	± 0,92%
	33 a 330 mV	
	10 a 45 Hz	± 0,21%
	45 Hz a 10 kHz	± 0,044%
	10 a 20 kHz	± 0,082%
	20 a 50 kHz	± 0,13%
	50 a 100 kHz	± 0,23%

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 14
	100 a 500 kHz	± 0,62%
	330 mV a 3,3 V	
	10 a 45 Hz	± 0,12%
	45 Hz a 10 kHz	± 0,025%
	10 a 20 kHz	± 0,064%
	20 a 50 kHz	± 0,12%
	50 a 100 kHz	± 0,23%
Tensión en corriente alterna	100 a 500 kHz	± 0,47%
	3,3 a 33 V	
<u> </u>	10 a 45 Hz	± 0,12%
	45 Hz a 10 kHz	± 0,032%
<u> </u>	10 a 20 kHz 20 a 50 kHz	± 0,068%
	50 a 100 kHz	± 0,16% ± 0,23%
<u> </u>	33 a 330 V	± 0,2376
	45 Hz a 1 kHz	± 0,040%
	1 a 10 kHz	± 0,040%
	10 a 20 kHz	
	330 a 1 000 V	± 0,078%
	45 Hz a 1 kHz	± 0,045%
	1 a 5 kHz	
	5 a 10 kHz	± 0,16%
Interesided de serviente elterne		± 0,19%
Intensidad de corriente alterna	30 a 330 μA	0.050/
<u> </u>	10 a 20 Hz	± 0,25%
	20 a 45 Hz	± 0,13%
	45 Hz a 1 kHz	± 0,16%
	1 a 5 kHz	± 0,35%
	5 a 10 kHz	± 1,01%
	0,33 a 3,3 mA	
	10 a 20 Hz	± 0,16%
	20 a 45 Hz	± 0,085%
	45 Hz a 1 kHz	± 0,085%
	1 a 5 kHz	± 0,16%
	5 a 10 kHz	± 0,47%
	3,3 a 33 mA	
	10 a 20 Hz	± 0,16%
_	20 a 45 Hz	± 0,085%
	45 Hz a 1 kHz	± 0,077%
 	1 a 5 kHz	
		± 0,16%
<u> </u>	5 a 10 kHz	± 0,47%
<u> </u>	33 a 330 mA	0.4007
<u> </u>	10 a 20 Hz	± 0,16%
	20 a 45 Hz	± 0,085%
	45 Hz a 1 kHz	± 0,077%
	1 a 5 kHz	± 0,16%
	5 a 10 kHz	± 0,47%
	0,330 a 2,2 A	
	10 a 45 Hz	± 0,16%
	45 Hz a 1 kHz	± 0,077%

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 144
	1 a 5 kHz	± 0,59%
Intensidad de corriente alterna	2,2 a 11 A	
	45 a 65 Hz	± 0,061%
	65 a 500 Hz	± 0,092%
	0,500 a 1 kHz	± 0,27%
Capacitancia	330 a 500 pF	± 1,94%
	0,500 a 1,1 nF	± 1,09%
	1,1 a 3,3 nF	± 0,62%
	3,3 a 11 nF	± 0,46%
	11 a 33 nF	± 0,43%
	33 a 110 nF	± 0,26%
	110 a 330 nF	± 0,26%
	0,330 a 1,1 µF	± 0,26%
	1,1 a 3,3 µF	± 0,34%
	3,3 a 11 µF	± 0,34%
	11 a 33 μF	± 0,38%
	33 a 110 μF	± 0,46%
	110 a 330 μF	± 0,61%
	330 μF a 1,1 mF	± 0,80%
Frecuencia	0,01 a 120 Hz	± 0,0026%
	120 a 1200 Hz	± 0,0026%
	1,2 a 12 kHz	± 0,0025%
	12 a 120 kHz	± 0,0025%
	120 a 1200 kHz	± 0,0025%
	1,2 a 2 MHz	± 0,0025%
Potencia en corriente continua	3 mA a 9 mA	± 0,031%
33 mV a 1 000 V	9 mA a 33 mA	± 0,023%
	33 mA a 90 mA	± 0,031%
	90 mA a 330 mA	± 0,023%
	330 mA a 0,9 A	± 0,062%
	0,9 A a 2,2 A	± 0,047%
	2,2 A a 4,5 A	± 0,093%
	4,5 A 11 A	± 0,07%
Potencia en corriente alterna	3 mA a 9 mA	± 0,31%
33 mV a 330 mV	9 mA a 33 mA	± 0,19%
F.P.=1	33 mA a 90 mA	± 0,27%
60 Hz	90 mA a 330 mA	± 0,19%
330 mV a 1 000 V	330 mA a 0,9 A	± 0,27%
	0,9 A a 2,2 A	± 0,19%
	2,2 A a 4,5 A	± 0,27%
	4,5 A a 11 A	± 0,19%
	3 mA a 9 mA	± 0,19%
	9 mA a 33 mA	± 0,12% + 0.19%
	33 mA a 90 mA 90 mA a 330 mA	± 0,19% ± 0,12%
	330 mA a 330 mA	± 0,12% ± 0,19%
 	0,9 A a 2,2 A	± 0,19% ± 0,12%
	2,2 A a 4,5 A	± 0,12% ± 0,16%
	4,5 A a 11 A	± 0,10% ± 0,12%
Simulación Eléatrica do	4,5 A a 11 A	± 0,12%

-200 a -190 °C

± 0,19°C

Simulación Eléctrica de

Танан анамия -	100 - 0.00	- 0.0400
Temperatura	-190 a 0 °C	± 0,04°C
Pt 3916 100 Ω	0 a 260 °C	± 0,07°C
	260 a 400 °C	± 0,08°C
	400 a 600 °C	± 0,18°C
D: 005 400 0	600 a 630 °C	± 0,04°C
Pt 385 100 Ω	-200 a 0 °C	± 0,04°C
	0 a 100 °C	± 0,05°C
	100 a 300 °C	± 0,07°C
	300 a 400 °C	± 0,08°C
	400 a 630 °C	± 0,09°C
	630 a 800 °C	± 0,18°C
Pt 3926 100 Ω	-200 a 0 °C	± 0,04°C
	0 a 100 °C	± 0,05°C
	100 a 300 °C	± 0,07°C
	300 a 400 °C	± 0,08°C
	400 a 630 °C	± 0,09°C
Pt 385 200 Ω	-190 a -80 °C	± 0,02°C
	-80 a 100 °C	± 0,03°C
	100 a 260 °C	± 0,04°C
	260 a 300 °C	± 0,09°C
	300 a 400 °C	± 0,10°C
	400 a 600 °C	± 0,11°C
	600 a 630 °C	± 0,12°C
Pt 385 500 Ω	-190 a -80°C	± 0,008°C
Pt 385 1 000 Ω	-80 a 100 °C	± 0,039°C
	100 a 260 °C	± 0,047°C
	260 a 400 °C	± 0,062°C
	400 a 600 °C	± 0,070°C
	600 a 630 °C	± 0,085°C
PtNi 385 120 Ω	-80 a 0 °C	± 0,062°C
(Ni 120)	0 a 100 °C	± 0,062°C
	100 a 260 °C	± 0,11°C
Sensor Tipo RTD Cu 427 10 W	-100 a 260 °C	± 0,23°C
Sensor tipo	600 a 800 °C	± 0,34°C
Termopar B	800 a 1 000 °C	± 0,26°C
	1 000 a 1 550 °C	± 0,23°C
	1 550 a 1 820 °C	± 0,26°C
Sensor tipo	0 a 150 °C	± 0,23°C
Termopar C	150 a 650 °C	± 0,20°C
, -	650 a 1 000 °C	± 0,24°C
	1 000 a 1 800 °C	± 0,39°C
<u> </u>	1800 a 2 316 °C	± 0,65°C
Sensor tipo	-250 a -100 °C	± 0,39°C
Termopar E	-100 a -25 °C	± 0,12°C
	-25 a 350 °C	± 0,12°C
<u> </u>	350 a 650 °C	± 0,12°C
Conserting	650 a 1 000 °C	± 0,16°C
Sensor tipo	-210 a -100 °C	± 0,21°C
Termopar J	-100 a -30 °C	± 0,12°C
<u> </u>	-30 a 150 °C	± 0,11°C
_	150 a 760 °C	± 0,13°C
	760 a 1 200 °C	± 0,18°C

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 146
Sensor tipo	-210 a -100 °C	± 0,26°C
Termopar K	-100 a -30 °C	± 0,14°C
	-30 a 150 °C	± 0,12°C
	150 a 760 °C	± 0,20°C
	760 a 1 200 °C	± 0,31°C
Sensor tipo	-200 a -100 °C	± 0,29°C
Termopar L	-100 a 800 °C	± 0,20°C
	800 a 900 °C	± 0,13°C
Sensor tipo	-200 a -100 °C	± 0,31°C
Termopar N	-100 a -25 °C	± 0,17°C
	-25 a 120 °C	± 0,15°C
	120 a 410 °C	± 0,14°C
	410 a 1 300 °C	± 0,21°C
Sensor tipo	0 a 250 °C	± 0,44°C
Termopar R	250 a 400 °C	± 0,27°C
	400 a 1 000 °C	± 0,26°C
	1 000 a 1 767 °C	± 0,31°C
Sensor tipo	0 a 250 °C	± 0,37°C
Termopar S	250 a 1 000 °C	± 0,28°C
	1 000 a 1 400 °C	± 0,29°C
	1 400 a 1 767 °C	± 0,36°C
Sensor tipo	-250 a -150 °C	± 0,49°C
Termopar T	-150 a 0 °C	± 0,19°C
	0 a 120 °C	± 0,10°C
	120 a 400 °C	± 0,11°C
Sensor tipo	-200 a 0 °C	± 0,49°C
Termopar U	0 a 600 °C	± 0,19°C
Medición	20 a 200 mV	± 0,018%
Tensión en corriente continua	0,200 a 2 V	± 0,013%
	2 a 20 V	± 0,017%
	20 a 200 V	± 0,017%
	200 a 1 000 V	± 0,018%
Resistencia Eléctrica	20 a 200 Ω	± 0,080%
	0,200 a 2 kΩ	± 0,23%
	2 a 20 kΩ	± 0,028%
	20 a 200 kΩ	± 0,030%
	0,200 a 2 MΩ	± 0,039%
	2 a 20 MΩ	± 0,15%
	20 a 200 MΩ	± 0,44%
Intensidad de corriente continua	20 a 200 μA	± 0,26%
	0,2 a 2 mA	± 0,11%
	2 a 20 mA	± 0,11%
	20 a 200 mA	± 0,21%
	0,200 a 2 A	± 0,21%
	2 a 10 A	± 0,52%
Tensión en corriente alterna	20 a 200 mV	-1
	20 o 50 Hz	. 1 050/

20 a 50 Hz 0,050 a 10 kHz

10 a 20 kHz

20 a 50 kHz

50 a 100 kHz 0,200 a 200 V 20 a 50 Hz ± 1,05%

± 0,40%

± 0,70%

± 1,63% ± 5,20%

± 1,0%

	0,050 a 10 kHz	± 0,35%
	10 a 20 kHz	± 0,60%
Tensión en corriente alterna	20 a 50 kHz	± 1,50%
	50 a 100 kHz	± 3,00%
	200 a 750 V	
	20 a 50 Hz	± 1,38%
	0,050 a 10 Hz	± 0,63%
	10 a 20 kHz	± 1,27%
	20 a 50 kHz	± 2,13%
	50 a 100 kHz	± 3,53%
Intensidad de corriente alterna	20 μΑ a 200 μΑ	
	20 a 50 Hz	± 1,42%
	0,050 a 10 kHz	± 1,15%
	10 a 30 kHz	± 2,87%
	200 μA a 20 mA	
	20 a 50 Hz	± 1,05%
Intensidad de corriente alterna	0,050 a 10 kHz	± 0,85%
	10 a 30 kHz	± 2,13%
	20 mA a 2 A	
	20 a 50 Hz	± 1,01%
	0,050 a 10 kHz	± 0,81%
	2 A a 10 A	
	20 a 50 Hz	± 1,51%
	0,050 a 10 kHz	± 1,00%

Notas:

- 1.- Expresados a un nivel de confianza de aproximadamente del 95%.
- 2.- La incertidumbre expresada es la mejor del alcance, así que el laboratorio debe emitir informes con incertidumbre mayor o igual pero no menores a las expresadas en este documento.

Responsables técnicos:

Ing. Javier Segura Jiménez

Miércoles 26 de junio de 2002

Ing. Efrén Segura Jiménez

Centro de Medición y Control, S.A. de C.V. Ing. Héctor Rodríguez González

Av. Colón No. 609 Ote.

64000, Monterrey, Nuevo León

Teléfono: (8) 374 24 73 Fax: (8) 372 75 99

Dirección de correo electrónico: cemyco@sis.net.mx

Acreditación: E-40 Vencimiento: 2003-09-18

Magnitud Eléctrica	Alcance	Incertidumbre ^{1,2} (k=2)
Generación	3,3 mV a 330 mV	± 54 ppm
Tensión en corriente continua	330 mV a 3,3 V	± 40 ppm
	3,3 V a 33 V	± 40 ppm
	33 V a 330 V	± 44 ppm
	330 V a 1000 V	± 44 ppm

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 148
Resistencia eléctrica	1 Ω a 11 Ω	± 0,071%
(Simulación)	11 Ω a 33 Ω	± 0,048%
	33Ω a 110Ω	± 0,019%
	110 Ω a 330 Ω	± 0,011%
	330 kΩ a 1,1 kΩ	± 0,012%
	1,1 k Ω a 3,3 k Ω	± 0,0085%
	3,3 k Ω a 11 k Ω	± 0,012%
	11 kΩ a 33 kΩ	± 0,0085%
	33 k Ω a 110 k Ω	± 0,013%
	110 kΩ a 330 kΩ	± 0,011%
	330 k Ω a 1,1 M Ω	± 0,016%
	1,1 M Ω a 3,3 M Ω	± 0,013%
	$3,3~\mathrm{M}\Omega$ a 11 $\mathrm{M}\Omega$	± 0,051%
	11 MΩ a 33 MΩ	± 0,079%
	33 M Ω a 110 M Ω	± 0,39%
	110 M Ω a 330 M Ω	± 0,39%
Resistencia eléctrica	0,1 Ω a 1 000 Ω	± 0,1%
Décadas	10 Ω a 10 M Ω	± 0,1%
Resistencia eléctrica	1 kΩ (50V)	± 0,58%
Valores puntuales	10 kΩ (150V)	± 1,2%
(Tensión máxima aplicable)	100 kΩ (500V)	± 1,2%
	1 MΩ (1 250V)	± 1,2%
	10 MΩ (5 000V)	± 1,2%
	100 MΩ (5 000V)	± 1,2%
	1000 MΩ (5 000V)	± 1,2%
	10 GΩ (5 000V)	± 2,3%
	100 GΩ (5 000V)	± 5,8%
Intensidad de corriente continua	0,33 mA a 3,3 mA	± 0,011%
	3,3 mA a 33 mA	± 0,0084%
	33 mA a 330 mA	± 0,0086%
	330 mA a 2,2 A	± 0,025%
	2,2 A a 11 A	± 0,049%
Simulación de Intensidad de corriente continua		
Ampérmetros de gancho	11 A a 500 A	± 0,68%
Transductores de Corriente	11 A a 500 A	± 0,31%

DIA	RIO	OFI	CIAL	

Miercoles 20 de julilo de 2002	DIARIO OFICIAL	(Seguilda Seccion) 150
	3,3 mA a 33 mA	_
	10 Hz a 20 Hz	± 0,16%
	20 Hz a 45 Hz	± 0,085%
	45 Hz a 1 kHz	± 0,078%
	1 kHz a 5 kHz	± 0,16%
	5 kHz a 10 kHz	± 0,47%
	33 mA a 330 mA	2 0, 11 70
	10 Hz a 20 Hz	± 0,16%
	20 Hz a 45 Hz	1
	45 Hz a 1 kHz	± 0,085%
	1 kHz a 5 kHz	± 0,077%
	5 kHz a 10 kHz	± 0,16%
		± 0,47%
	330 mA a 2,2 A	0.470/
	10 Hz a 45 Hz	± 0,17%
	45 Hz a 1 kHz	± 0,089%
	1 kHz a 5 kHz	± 0,59%
	2,2 A a 11 A	
	45 Hz a 65 kHz	± 0,061%
	65 Hz a 500 Hz	± 0,092%
	500 Hz a 1 kHz	± 0,27%
Simulación		
Intensidad de corriente alterna	45 Hz a 60 Hz	
Amperímetros de gancho	11 A a 500 A	± 0,68%
Transductores de corriente	11 A a 500 A	± 0,32%
Frecuencia	0,01 Hz a 120 Hz	± 32 ppm
	120 Hz a 1200 Hz	± 21 ppm
	1,2 kHz a 12 kHz	± 20 ppm
	12 kHz a 120 kHz	± 19 ppm
	120 kHz a 1 200 kHz	± 19 ppm
	1,2 MHz a 2 MHz	± 19 ppm
Capacitancia	330 pF a 500 pF	± 1,9%
Сараспансіа	500 pF a 1 nF	± 1,3% ± 1,2%
	1 nF a 3,3 nF	± 0,62%
	3,3 nF a 11 nF	± 0,02 % ± 0,46%
	11 nF a 33 nF	± 0,43%
	33 nF a 110 nF	± 0,43% ± 0,26%
	110 nF a 330 nF	± 0,26% ± 0,26%
	330 nF a 1,1 µF	± 0,26% ± 0,26%
	1,1 µF a 3,3 µF	± 0,26% ± 0,34%
	3,3 µF a 11 µF	± 0,34%
	11μF a 33 μF	± 0,34 % ± 0,38%
	33 µF a 110 µF	± 0,38% ± 0,46%
	110 μF a 330 μF	± 0,46% ± 0,61%
	330 μF a 1,1 mF	± 0,80%
D.		± 0,00 /0
Potencia en corriente continua	33 mV a 1 000 V	0.00101
	3 mA a 9 mA	± 0,031%
	9 mA a 33 mA	± 0,023%
	33 mA a 90 mA	± 0,031%
	90 mA a 330 mA	± 0,023%
	330 mA a 0,9 A	± 0,062%
	0,9 A a 2,2 A	± 0,047%
	2,2 A a 4,5 A	± 0,093%
	4,5 A a 11 A	± 0,07%

DIA	ARIC	OFI	CIAL

Miercoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Seccion) 151
Potencia en	33 mV a 330 mV	
Corriente alterna	3 mA a 9 mA	± 0,31%
Factor de Potencia=1	9 mA a 33 mA	± 0,19%
Frecuencia de 45 Hz a 65 Hz	33 mA a 90 mA	± 0,27%
	90 mA a 330 mA	± 0,19%
	330 mA a 0,9 A	± 0,27%
	0,9 A a 2,2 A	± 0,19%
	2,2 A a 4,5 A	± 0,27%
	4,5 A a 11 A	± 0,19%
	,	10,1970
	330 mV a 1 000 V	
	3 mA a 9 mA	± 0,19%
	9 mA a 33 mA	± 0,12%
	33 mA a 90 mA	± 0,19%
	90 mA a 330 mA	± 0,12%
	330 mA a ± 0,9 A	± 0,19%
	0,9 A a 2,2 A	± 0,12%
	2,2 A a 4,5 A	± 0,16%
	4,5 A a 11 A	± 0,12%
Simulación eléctrica de	-200°C a -80°C	
		± 0,039°C + 0,030°C
temperatura	-80°C a 0°C 0°C a 100°C	± 0,039°C ± 0,054°C
Sensor tipo RTD		· · · · · · · · · · · · · · · · · · ·
Pt 385 100 Ω	100°C a 300°C	± 0,070°C
Pt 3926 100 Ω*	300°C a 400°C	± 0,078°C
*No aplica el último intervalo	400°C a 630°C	± 0,093°C
	630°C a 800°C	± 0,18°C
Simulación eléctrica de	-200°C a -190°C	± 0,19°C
temperatura	-190°C a -80°C	± 0,031°C
Sensor tipo RTD	-80°C a 0°C	± 0,039°C
Pt 3916 100 Ω	0°C a 100°C	± 0,047°C
	100°C a 260°C	± 0,054°C
	260°C a 300°C	± 0,062°C
	300°C a 400°C	± 0,070°C
	400°C a 600°C	± 0,078°C
	600°C a 630°C	± 0,18°C
Pt 385 200 Ω	-200°C a 100°C	± 0,031°C
1 1 000 200 22	100°C a 260°C	± 0,039°C
	260°C a 300°C	± 0,093°C
	300°C a 400°C	± 0,10°C
	400°C a 600°C	± 0,11°C
	600°C a 630°C	
		± 0,12°C
Pt 385 500 Ω	-200°C a -80°C	± 0,031°C
	-80°C a 0°C	± 0,039°C
	0°C a 100°C	± 0,039°C
	100°C a 260°C	± 0,047°C
	260°C a 400°C	± 0,062°C
	400°C a 600°C	± 0,070°C
	600°C a 630°C	± 0,085°C
Sensor tipo RTD	-200°C a -80°C	± 0,023°C
Pt 385 1 000 Ω	-80°C a 0°C	± 0,023°C
1 1 3 3 3 1 3 3 3 2 2	0°C a 100°C	± 0,025 °C
	100°C a 260°C	± 0,031 C ± 0,039°C
	260°C a 300°C	± 0,039 C ± 0,047°C
	300°C a 400°C	· · · · · · · · · · · · · · · · · · ·
		± 0,054°C
	400°C a 600°C 600°C a 630°C	± 0,054°C
		± 0,18°C
PiNi 385 120 Ω (Ni120)	-80°C a 100°C	± 0,062°C
	100°C a 260°C	± 0,11°C

Miercoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Seccion) 152
Cu 427 10 W	-100°C a 260°C	± 0,23°C
Sensor tipo termopar B	600°C a 800°C 800°C a 1 000°C 1 000°C a 1 550°C 1 550°C a 1 820°C	± 0,34°C ± 0,26°C ± 0,23°C ± 0,26°C
Sensor tipo termopar C	0°C a 150°C 150°C a 650°C 650°C a 1 000°C 1 000°C a 1 800°C 1 800°C a 2 316°C	± 0,23°C ± 0,20°C ± 0,24°C ± 0,39°C ± 0,65°C
Sensor tipo termopar E	-250°C a -100°C -100°C a -25°C -25°C a 350°C 350°C a 650°C 650°C a 1 000°C	± 0,39°C ± 0,12°C ± 0,11°C ± 0,12°C ± 0,16°C
Sensor tipo termopar J	-210°C a -100°C -100°C a -30°C -30°C a 150°C 150°C a 760°C 760°C a 1 200°C	± 0,21°C ± 0,12°C ± 0,11°C ± 0,13°C ± 0,18°C
Sensor tipo termopar K	-210°C a -100°C -100°C a -30°C -30°C a 150°C 150°C a 760°C 760°C a 1 200°C	± 0,26°C ± 0,14°C ± 0,12°C ± 0,20°C ± 0,31°C
Sensor tipo termopar L	-200°C a -100°C -100°C a 800°C 800°C a 900°C	± 0,29°C ± 0,20°C ± 0,13°C
Sensor tipo termopar N	-200°C a -100°C -100°C a -25°C -25°C a 120°C 120°C a 410°C 410°C a 1 300°C	± 0,31°C ± 0,17°C ± 0,15°C ± 0,14°C ± 0,21°C
Sensor tipo termopar R	0°C a 250°C 250°C a 400°C 400°C a 1 000°C 1 000°C a 1 767°C	± 0,44°C ± 0,27°C ± 0,26°C ± 0,31°C
Sensor tipo termopar S	0°C a 250°C 250°C a 400°C 1 000°C a 1 400°C 1 400°C a 1 767°C	± 0,36°C ± 0,28°C ± 0,29°C ± 0,36°C
Sensor tipo termopar T	-250°C a -150°C -150°C a 0°C 0°C a 120°C 120°C a 400°C	± 0,49°C ± 0,19°C ± 0,12°C ± 0,11°C
Sensor tipo termopar U	-200°C a 0°C 0°C a 600°C	± 0,43°C ± 0,21°C
Relación de transformación Generación	0,1 a 131 vueltas	± 0,052%
Medición Tensión en corriente continua	20 mV a 200 mV 200 mV a 2 V 2 V a 20 V 20 V a 200 V 200 V a 1 000 V	± 0,013% ± 0,0092% ± 0,011% ± 0,018% ± 0,021%

Notas:

45 Hz a 2 kHz

2 kHz a 5 kHz

45 Hz a 2 kHz

2 kHz a 5 kHz

2 mA a 200 mA

Responsables técnicos:

Ing. Héctor Rodríguez González Téc. Jesús G. Cavazos González Téc. Juan de Dios Mendoza González

 $\pm 0,69\%$

± 1,04%

 $\pm 1,3\%$

 $\pm 1,8\%$

Instituto Nacional de Investigaciones Nucleares

Ing. Ariel Villaverde Lozano km 36,5 Carretera México-Toluca 52045, Ocoyoacac, Estado de México

Teléfono: (55) 5329 7294 Fax: (55) 5329 7294

Dirección de correo electrónico: arielv@nuclear.inin.mx

Acreditación: E-41 Vencimiento: 2003-11-23

Magnitud	Alcance	Incertidumbre k=2
Tensión en corriente continua	2 mV a 20 mV	± 0,030%
Generación	20 mV a 200 mV	± 0,0075%
	0,2 V a 2 V	± 0,0053%
	2 V a 20 V	± 0,0050%
	20 V a 200 V	± 0,0050%
	200 V a 1100 V	± 0,0050%
Intensidad de corriente	0,2 pA a 2 pA	± 1,87%
en corriente continua	2 pA a 20 pA	± 0,86%

^{1.} Expresados a un nivel de confianza de aproximadamente del 95%.

^{2.} La incertidumbre expresada es la mejor del intervalo, así que el laboratorio debe emitir informes con incertidumbre mayor o igual pero no menores a las expresadas en este documento.

Magnitud Eléctrica	Frecuencia	Alcance	Incertidumbre k=2
Tensión en corriente alterna	50 Hz a 10 kHz	2 mV a 20 mV	± 0,29%
Generación		20 mV a 200 mV	± 0,065%
		0,2 V a 2 V	± 0,043%
		2 V a 20 V	± 0,040%
		20 V a 200 V	± 0,040%
		200 V a 1100 V	± 0,040%
	10 kHz a 20 kHz	2 mV a 20 mV	± 0,32%
		20 mV a 200 mV	± 0,093%
		0,2 V a 2 V	± 0,071%
		2 V a 20 V	± 0,068%
		20 V a 200 V	± 0,075%
	20 kHz a 50 kHz	2 mV a 20 mV	± 0,32%
		20 mV a 200 mV	± 0,093%
		0,2 V a 2 V	± 0,071%
		2 V a 20 V	± 0,068%
Intensidad de corriente	50 Hz a 1 kHz	20 μA a 200 μA	± 0,065%
en corriente alterna		0,2 mA a 2 mA	± 0,056%
Generación		2 mA a 20 mA	± 0,055%
		20 mA a 200 mA	± 0,055%
		0,2 A a 2 A	± 0,055%
		2 A a 20 A	± 0,075%

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Resistencia	1 Ω	± 0,015%
Generación	10 Ω	± 0,010%
	100 Ω	± 0,0030%
	1 kΩ	± 0,0030%
	10 kΩ	± 0,0030%
	100 kΩ	± 0,0030%
	1 ΜΩ	± 0,010%
	10 ΜΩ	± 0,030%
	100 MΩ	± 0,070%
	1 GΩ	± 0,10%
	10 GΩ	± 0,23%
	100 GΩ	± 0,40%
Carga Eléctrica	2 pC a 20 pC	± 1,2%
Generación	20 pC a 200 pC	± 0,54%
	0,2 nC a 2 nC	± 0,12%
	2 nC a 20 nC	± 0,12%
	20 nC a 200 nC	± 0,52%
	0,2 nC a 2 μC	± 0,52%
	2 μC a 20 μC	± 0,52%
Tensión en corriente continua	10 mV a 100 mV	± 0,021%
Medición	0,1 V a 1 V	± 0,015%
Γ	1 V a 10 V	± 0,013%

	10 V a 100 V	± 0,015%
	100 V a 1 000 V	± 0,015%
	1 kV a 40 kV	± 2,0%
Intensidad de corriente	0,2 pA a 2 pA	± 1,9%
en corriente continua	2 pA a 20 pA	± 1,6%
Medición	20 pA a 200 pA	± 1,6%
	0,2 nA a 2 nA	± 0,28%
	2 nA a 20 nA	± 0,26%
	20 nA a 200 nA	± 0,26%
	0,2 μΑ a 2 μΑ	± 0,17%
	2 μΑ a 20 μΑ	± 0,16%
	20 μA a 200 μA	± 0,11%
	0,2 A a 2 mA	± 0,11%
	2 mA a 20 mA	± 0,11%
	20 mA a 200 mA	± 0,11%
	0,2 A a 2 A	± 0,11%
	2 A a 10 A	± 0,12%

Magnitud Eléctrica	Frecuencia	Alcance	Incertidumbre k=2
Tensión en corriente alterna	50 Hz a 10 kHz	20 mV a 200 mV	± 0,40%
Medición		0,2 V a 2 V	± 0,40%
		2 V a 20 V	± 0,40%
		20 V a 200 V	± 0,40%
		200 V a 750 V	± 0,88%
_	10 kHz a 20 kHz	20 mV a 200 mV	± 0,70%
		0,2 V a 2 V	± 0,70%
		2 V a 20 V	± 0,70%
		20 V a 200 V	± 0,70%
		200 V a 750 V	± 1,3%
-	50 Hz a 20 kHz	0,1 V a 1 V	± 0,070%
		1 V a 10 V	± 0,070%
		10 V a 100 V	± 0,070%
		100 V a 1000 V	± 0,070%
Γ		1 kV a 28 kV	± 2,0%
Γ	20 kHz a 1000 kHz	0,1 V a 1 V	± 0,16%
Γ		1 V a 10 V	± 0,16%
		10 v a 100 V	± 0,16%
		100 V a 1000 V	± 0,16%

Magnitud	Alcance	Incertidumbre k=2
Resistencia	10 Ω a 100 Ω	± 0,013%
Medición	0,1 kΩ a 1 kΩ	± 0,0080%
	1 kΩ a 10 kΩ	± 0,011%
	10 kΩ a 100 kΩ	± 0,0090%
	0,1 ΜΩ a 1 ΜΩ	± 0,021%
	1 MΩ a 10 MΩ	± 0,021%
	2 MΩ a 20 MΩ	± 0,26%
	20 MΩ a 200 MΩ	± 0,31%
	$0,2~\mathrm{G}\Omega$ a $2~\mathrm{G}\Omega$	± 1,5%

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 156
	$2~\mathrm{G}\Omega$ a $20~\mathrm{G}\Omega$	± 1,5%
	20 GΩ a 200 GΩ	± 1,5%
Carga Eléctrica	20 pC a 200 pC	± 0,42%
Medición	0,2 nC a 2 nC	± 0,41%
	2 nC a 20 nC	± 0,41%

Signatarios autorizados: Ing. Ariel Villaverde Lozano

Ing. Pedro Cruz Estrada

United Electrónica, S.A. de C.V. Ing. Ricardo Espinosa Díaz Andrés Molina Enríquez No. 4346 Col. Viaducto Piedad

08200, México, D.F.
Teléfono: (55) 5530 7273
Fax: (55) 5530 9382
Acreditación: E-42
Vencimiento: 2003-10-16

Magnitud Eléctrica	Alcance		Incertidumbre 1 k=2
Tensión en corriente continua	10 mV a 320 mV		± 0,012%
Generación	320 mV a 3,2 V		± 0,015%
	3,2 V a	32 V	± 0,016%
	32 V a	320 V	± 0,016%
	320 V a	1050 V	± 0,016%
	10 μA a	320 µA	± 0,028%
	0,32 mA a	3,2 mA	± 0,023%
Intensidad de corriente en corriente	3,2 mA a	32 mA	± 0,028%
continua	32 mA a		± 0,032%
	0,32 A a	•	± 0,13%
	3,2 A a	•	± 0,13%
	10,5 A a	a 20 A	± 0,16%
Simulación de Intensidad de corriente continua Ampérmetros de Gancho	20 A a 1 000 A		± 0,56%
Tensión en corriente alterna	1mV a 10 mV		
		10 Hz a 3 kHz	± 4,5%
	10 mV a 32 mV		_ ',-'-
	10 1111 4 02 1111	10 Hz a 3 kHz	± 0,40%
	32 mV a 320 mV	10 1 12 d 3 K 12	10,4070
		10 Hz a 3 kHz	± 0,08%
	320 mV a 3,2 V		
		10 Hz a 3 kHz	± 0,09%
	3,2 V a 32 V		,
	0,2	10 Hz a 3 kHz	± 0,092%
	32 V a 105 V	10 112 4 5 11 12	± 0,03270
	32 V a 105 V	4011 0111-	0.0000/
		10 Hz a 3 kHz	± 0,092%
	105 V a 320 V		
		40 Hz a 1 kHz	± 0,11%
	320 V a 800 V		
		40 Hz a 1 kHz	± 0,11%
	800 V a 1 050 V		
		40 Hz a 1 kHz	± 0,12%

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 157
Intensidad de corriente en corriente alterna	10 μA a 32 μA 10 Hz a 3 kHz	± 3,3%
	32 μA a 320 μA 10 Hz a 3 kHz	± 0,19%
	0,32 mA a 3,2 mA 10 Hz a 3 kHz	± 0,14%
	3,2 mA a 32 mA 10 Hz a 3 kHz	± 0,14%
	32 mA a 320 mA 10 Hz a 3 kHz	± 0,16%
	0,32 A a 3,2 A 10 Hz a 3 kHz	± 0,23%
	3,2 A a 10,5 A 10 Hz a 3 kHz	± 0,46%
	10,5 A a 20 A 10 Hz a 3 kHz	± 0,47%
Simulación de Intensidad de corriente alterna Amperímetros de Gancho	45 Hz a 100 Hz 20 A a 1000 A	± 0,83%
Resistencia Eléctrica (Simulación)	1 Ω a 40 Ω 40 Ω a 400 Ω	± 0,1% ± 0,05%
	0,4 kΩ a 4 kΩ 4 kΩ a 40 kΩ 40 kΩ a 400 kΩ	± 0,034% ± 0,044% ± 0,044%
	$0.4~\text{M}\Omega$ a $4~\text{M}\Omega$ $4~\text{M}\Omega$ a $40~\text{M}\Omega$	± 0,11% ± 0,31%
	$40~\text{M}\Omega$ a $400~\text{M}\Omega$	± 0,54%

La incertidumbre expresada es la mejor del intervalo así que el laboratorio debe emitir informes con incertidumbre mayor o igual pero no menores a las expresadas en este documento.

Signatario autorizado:

Ing. Ricardo Espinosa Díaz

Laboratorio de Pruebas de Equipos y Materiales de la CFE

Av. Apaseo Ote. S/N

Cd. Industrial

36541, Irapuato, Guanajuato Ing. Jorge Adolfo Pérez Guzmán

Teléfono: (462) 623 9446 Fax: (462) 623 9406

Dirección de correo electrónico: jperezg@cfe.gob.mx

Acreditación: E-43 Vencimiento: 2003-11-23

Magnitud Eléctrica	Alcance	Incertidumbre k=2	
Tensión en corriente continua	10 nV a 100 mV	± 8,0 ppm	
Medición	100 mV a 1 V	± 4,3 ppm	
Calibración de generadores	1 V a 10 V	± 4,1 ppm	
de tensión	10 V a 100 V	± 6,3 ppm	
	100 V a 1 kV	± 6,1 ppm	
	1 kV a 100 kV	± 0,02%	
Tensión en corriente continua	20 mV a 200 mV	± 9,8 ppm	
Generación	0,2 V a 2 V	± 6,6 ppm	
Calibración de medidores de tensión	2 V a 20 V	± 6,5 ppm	
	20 V a 200 V	± 7,3 ppm	
	200 V a 1 kV	± 9,0 ppm	

Magnitud Eléctrica	Alcance		=		=		Incertidumbre k=2
Tensión en corriente alterna		0,1 μV a 2,2 mV	± 0,078%				
Medición		2,2 mV a 7 mV	± 0,031%				
Calibración de generadores		7 mV a 22 mV	± 0,013%				
de tensión		22 mV a 70 mV	± 67 ppm				
	40 Hz	70 mV a 220 mV	± 35 ppm				
	а	220 mV a 700 mV	± 28 ppm				
	20 kHz	700 mV a 2,2 V	± 19 ppm				
		2,2 V a 7 V	± 19 ppm				
		7 V a 22 V	± 21 ppm				
		22 V a 70 V	± 25 ppm				
		70 V a 220 V	± 24 ppm				
		220 V a 700 V	± 32 ppm				
		700 V a 1 kV	± 30 ppm				
	60 Hz	1 kV a 100 kV	± 0,17%				
Tensión en corriente alterna		0,22 mV a 2,2 mV	± 0,18%				
Generación		2,2 mV a 22 mV	± 0,03%				
Calibración de medidores de tensión	40 Hz	22 mV a 0,22 V	± 0,012%				
	а	0,22 V a 22 V	± 68 ppm				
	20 kHz	22 V a 220 V	± 73 ppm				
		220 V a 1,1 kV	± 72 ppm				
	60 Hz	7 kV a 28 kV	± 0,5%				

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Intensidad de corriente continua	10 nA a 100 nA	± 0,043%
Medición	100 nA a 1 μA	± 60 ppm
Calibración de generadores de	1 μΑ α 10 μΑ	± 30 ppm
Intensidad de Corriente	10 μΑ α 100 μΑ	± 28 ppm
	100 μA a 1 mA	± 25 ppm
	1 mA a 10 mA	± 25 ppm
	10 mA a 100 mA	± 40 ppm
	100 mA a 1 A	± 120 ppm
	1 A a 20 A	± 80 ppm
	20 A a 100 A	± 0,05%
Intensidad de corriente continua	22 µA a 220 µA	± 81 ppm
Generación	220 µA a 22 mA	± 50 ppm
Calibración de medidores de	22 mA 220 mA	± 65 ppm
Intensidad de Corriente	0,22 A a 2,2 A	± 0,012%
	2,2 A a 20 A	± 0,05%
	20 A a 100 A	± 0,07%
Simulación de corriente continua**	100 A a 1 000 A	± 0,47%

^{**}Exclusivamente para ampérmetros de gancho.

Magnitud Eléctrica		Alcance	Incertidumbre k=2
Intensidad de corriente alterna	10 Hz	10 μA a 100 mA	± 0,05%
Medición	а	100 mA a 1 A	± 0,1%
Calibración de generadores de	1 kHz	1 A a 20 A	± 0,012%
Intensidad de Corriente	60 Hz	20 A a 1 200 A	± 0,17%
Intensidad de corriente alterna	40 Hz	22 μΑ a 220 μΑ	± 0,019%
Generación	а	220 μA a 22 mA	± 0,014%
Calibración de medidores de	1 kHz	22 mA a 220 mA	± 0,015%
Intensidad de Corriente		220 mA a 2,2 A	± 0,06%
	60 Hz	2,2 A a 20 A	± 0,03%
		20 A a 50 A	± 0,04%
		50 A a 100 A	± 0,46%
Simulación de corriente alterna**	60 Hz	100 A a 1 000 A (Simulación)	± 0,56%

^{**} Exclusivamente para ampérmetros de gancho.

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Resistencia Eléctrica en corriente	100 m Ω a 10 Ω	± 20 ppm
continua	10 Ω a 100 Ω	± 17 ppm
Medición	100 Ω a 1 k Ω	± 11 ppm
Calibración de Resistores	1 k Ω a 10 k Ω	± 11 ppm
	10 k Ω a 100 k Ω	± 11 ppm
	100 k Ω a 1 M Ω	± 17 ppm
	1 M Ω a 10 M Ω	± 60 ppm
	10 M Ω a 100 M Ω	± 0,051%
	100 M Ω a 1 G Ω	± 0,5%

Magnitud Eléctrica	Alcance	Condiciones máximas de medición	Incertidumbre k=2
Resistencia Eléctrica en corriente	0,1 m Ω	150 A	± 58 ppm
continua	1 mΩ	30 A	± 23 ppm
Generación	10 mΩ	10 A	± 12 ppm
Calibración de medidores de	0,1 Ω	3 A	± 12 ppm
resistencia eléctrica	1 Ω	300 mA	± 12 ppm
	10 Ω	100 mA	± 12 ppm
	100 Ω	30 mA	± 12 ppm
	1 kΩ	10 mA	± 12 ppm
	10 kΩ	3 mA	± 12 ppm
	100 kΩ	1 mA	± 12 ppm
	1 ΜΩ	0,3 mA	± 23 ppm
	10 MΩ	5 000 V	± 58 ppm
	10 MΩ a 100 MΩ	5 000 V	± 0,23%
	100 MΩ a 1 GΩ	5 000 V	± 0,23%

Magnitud Eléctrica	Alcance	Condiciones máximas de medición	Incertidumbre k=2
Resistencia Eléctrica en corriente	1 GΩ a 10 GΩ	5 000 V	± 0,58%
continua	10 GΩ a 100 GΩ	5 000 V	± 1,2%

Miércoles 26 de junio de 2002	DIARIO OFICIAL		Segunda Sección)	160
Generación Calibración de medidores de resistencia eléctrica	100 GΩ a 500 GΩ	5 000 V	± 3,5%	

Magnitud Eléctrica	Alcance		Incertidumbre k=2
Resistencia Eléctrica		25 Ω a 374 Ω	± 0,025%
en corriente alterna	1 kHz	374 Ω a 5,9 k Ω	± 0,031%
Medición		5,9 kΩ a 95 kΩ	± 0,037%
Calibración de Resistores		25 Ω a 374 Ω	± 0,047%
	100 Hz	374 Ω a 5,9 k Ω	± 0,051%
		5,9 kΩ a 95 kΩ	± 0,054%
Resistencia Eléctrica en corriente alterna Generación Calibración de medidores de resistencia eléctrica	100 Hz a 1 kHz	1 Ω a 10 kΩ	± 0,2%
Capacitancia	100 Hz		± 0,046%
Medición Calibración de Capacitores	1 kHz	100 pF a 1 μF	± 0,023%

Magnitud Eléctrica	Alcance		Incertidumbre k=2
Capacitancia		10 pF	± 5,8%
Generación		100 pF	± 0,64%
Calibración de medidores de	1 kHz	1 nF	± 0,12%
capacitancia		10 nF	± 0,064%
		100 nF	± 0,058%
		1 μF	± 0,083%
Inductancia	100 Hz	1 mH a 10 H	± 0,046%
Medición Calibración de Inductores	1 kHz		± 0,023%
Inductancia		100 μΗ	± 0,5%
Generación Calibración de medidores de inductancia	1 kHz	1 mH a 10 H	± 0,12%

Magnitud Eléctrica	Alcance			Incertidumbre k=2	
Energía Eléctrica		Condi	ciones de M	edición	± 52 ppm
Medición		120 V	0,5 A	FP=1	
Calibración de generadores de	60 Hz	240 V	а	FP=0,5	
energía		600 V	30 A	(Atrasado)	
		VARh 90°, 30°		± 55 ppm	
Energía Eléctrica				Wh	± 53 ppm
Generación		120 V	0,5 A	0° a -60°	
Calibración de medidores de energía	60 Hz	a 600 V	a 50 A	VARh 90° a 30°	

Magnitud	Alcance	Incertidumbre
Eléctrica		k=2

Angulo de Fase	10 Hz	10 mV	0,5 A		± 0,058°
Medición	а	а	а		
Calibración de generadores	50 kHz	350 V	10 A	0°	
de ángulo de fase		350 V	10 A	а	± 0,58°
	60 Hz	а	а	360°	
		600 V	50 A		
Angulo de Fase	10 Hz	33 V	0,3 A	0°	± 0,08°
Generación	а	а	а	а	
Calibración de medidores	64 Hz	1 kV	20 A	360°	
de ángulo de fase					

Magnitud Eléctrica		Alcance		Incertidumbre k=2
Relación de Transformación de	6000:1	600:1	50:1	± 0,092 min
Intensidad de corriente alterna	5000:1	500:1	40:1	(Fase)
Medición	4000:1	400:1	30:1	у
Calibración de transformadores de	3000:1	375:1	25:1	± 0,05%
corriente con salida de 5 A del	2000:1	300:1	20:1	(Relación)
secundario a 60 Hz	1600:1	200:1	15:1	
	1500:1	150:1	10:1	
	1200:1	100:1	5:1	
	1000:1	80:1	2,5:1	
	800:1	75:1	1:5	
	750:1	60:1		

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Relación de Transformación de	14 400:1	± 0,12 min
Tensión en corriente alterna	12 200:1	(Fase)
Medición	8 400:1	у
Calibración de transformadores de	7 200:1	± 0,87%
tensión con salida de 120 V del	4 800:1	(Relación)
secundario a 60 Hz	4 200:1	
	2 400:1	
	600:1	
	480:1	
	240:1	
	120:1	
	1:120	
Relación de transformación	0,1 a 131; 1 ô	± 0,06%
Generación Calibración de medidores de relación de transformación	0,08 a 2 220; 3 ô	

Magnitud Eléctrica	Alcance		Incertidumbre k=2	
Potencia de c.a. (Generación)	30 W a 1,2 kW) W a 1,2 kW FP=1		
Calibración de medidores de potencia de c.a.	6 W a 240 W	FP=0,2	± 0,38%	

Signatarios autorizados:

Magnitud	Signatarios
Eléctrica	J
Tensión en corriente continua (Medición y Generación	n) M. en C. Alonso Salvador González González
Tensión en corriente alterna (Medición y Generación	n) Ing. Elia Guadalupe Ortega Rojas
Intensidad de corriente continua (Medición y Generación	n) Téc. Rafael Guevara Celio
Intensidad de corriente alterna (Medición y Generación	n) Téc. José Natividad Gómez Hernández
Resistencia Eléctrica en corriente continua (Medición y Generaci	ión)
Resistencia Eléctrica en corriente alterna (Medición y Generación	n)
Capacitancia (Medición y Generación)	
Inductancia (Medición y Generación)	
Energía Eléctrica (Medición y Generación)	M. en C. Alonso Salvador González González Téc. Manuel Lucio López Arriola
Angulo de Fase (Medición y Generación)	M. en C. Alonso Salvador González González Téc. Rafael Guevara Celio Téc. José Natividad Gómez Hernández Ing. Elia Guadalupe Ortega Rojas
Relación de Transformación de Intensidad de corriente a (Medición)	Ilterna M. en C. Alonso Salvador González González Téc. Rafael Guevara Celio Téc. José Natividad Gómez Hernández
Relación de Transformación de Tensión en corriente a (Medición)	M. en C. Alonso Salvador González González Téc. Rafael Guevara Celio Téc. José Natividad Gómez Hernández
Relación de Transformación (Generación)	M. en C. Alonso Salvador González Téc. Rafael Guevara Celio Téc. José Natividad Gómez Hernández Ing. Elia Guadalupe Ortega Rojas
Potencia de corriente alterna (Generación)	M. en I. Alonso Salvador González Ing. Manuel Lucio López Arriola Téc. Rafael Guevara Celio Téc. José Natividad Gómez Hernández Ing. Elia Guadalupe Ortega Rojas

Aseguramiento Metrológico, S.A. de C.V.

Ing. Julio Ramírez Bonilla Sierra Vista No. 340-101 altos

Col. Lindavista 07300, México, D.F.

Teléfono y fax: (55) 5754 3425

Dirección de correo electrónico: jramirez@asmet.com.mx

Acreditación: E-44 Vencimiento: 2004-01-15

Magnitud Eléctrica	Alcance	Frecuencia	Incertidumbre k=2
Tensión en corriente	1 mV a 10 mV	10 Hz a 3 kHz	± 0,044%
alterna		3 kHz a 10 kHz	± 0,045%
Generación		10 kHz a 30 kHz	± 0,07%
		30 kHz a 50 kHz	± 0,11%
		50 kHz a 100 kHz	± 0,25%
	10 mV a 32 mV	10 Hz a 3 kHz	± 0,04%
		3 kHz a 10 kHz	± 0,04%
		10 kHz a 30 kHz	± 0,06%
		30 kHz a 50 kHz	± 0,092%
		50 kHz a 100 kHz	± 0,20%

		(0.18
32 mV a 320 mV	10 Hz a 3 kHz	± 0,04%
	3 kHz a 10 kHz	± 0,04%
	10 kHz a 30 kHz	± 0,06%
	30 kHz a 50 kHz	± 0,09%
	50 kHz a 100 kHz	± 0,2%
0,32 V a 3,2 V	10 Hz a 3 kHz	± 0,046%
	3 kHz a 10 kHz	± 0,048%
	10 kHz a 30 kHz	± 0,075%
	30 kHz a 50 kHz	± 0,12%
	50 kHz a 100 kHz	± 0,28%
3,2 V a 32 V	10 Hz a 3 kHz	± 0,046%
	3 kHz a 10 kHz	± 0,068%
	10 kHz a 30 kHz	± 0,095%
	30 kHz a 50 kHz	± 0,18%
	50 kHz a 100 kHz	± 0,36%

Magnitud Eléctrica	Alcance	Frecuencia	Incertidumbre k=2
Tensión en corriente	32 V a 105 V	10 Hz a 3 kHz	± 0,046%
alterna		3 kHz a 10 kHz	± 0,068%
Generación		10 kHz a 30 kHz	± 0,082%
		30 kHz a 50 kHz	± 0,15%
		50 kHz a 100 kHz	± 0,45%
	105 V a 320 V	40 Hz a 100 Hz	± 0,056%
		100 Hz a 1 kHz	± 0,056%
		1 kHz a 3 kHz	± 0,086%
		3 kHz a 10 kHz	± 0,06%
		10 kHz a 20 kHz	± 0,14%
		20 kHz a 30 kHz	± 0,17%
	320 V a 800 V	40 Hz a 100 Hz	± 0,058%
		100 Hz a 1 kHz	± 0,058%
		1 kHz a 3 kHz	± 0,088%
		3 kHz a 10 kHz	± 0,058%
		10 kHz a 20 kHz	± 0,14%
		20 kHz a 30 kHz	± 0,18%
	800 V a 1050 V	40 Hz a 100 Hz	± 0,062%
		100 Hz a 1 kHz	± 0,062%
		1 kHz a 3 kHz	± 0,1%
		3 kHz a 10 kHz	± 0,092%
		10 kHz a 20 kHz	± 0,15%

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Tensión en corriente continua	32 mV a 320 mV	± 60 ppm
Generación	0,32 V a 3,2 V	± 73 ppm

DIARIO OFICIAL	(Segunda Sección)	164

3,2 V a 32 V	± 66 ppm
32 V a 320 V	± 79 ppm
320 V a 1 050 V	± 79 ppm

Miércoles 26 de junio de 2002

Magnitud Eléctrica	Alcance	Frecuencia	Incertidumbre k=2
Intensidad de corriente en	9,6 μΑ a 32 μΑ	10 Hz a 3 kHz	± 0,07%
corriente alterna		3 kHz a 10 kHz	± 0,1%
Generación		10 kHz a 30 kHz	± 0,2%
		20 kHz a 30 kHz	± 0,25%
	32 μΑ a 320 μΑ	10 Hz a 3 kHz	± 0,07%
		3 kHz a 10 kHz	± 0,1%
		10 kHz a 30 kHz	± 0,2%
		20 kHz a 30 kHz	± 0,25%
	0,32 mA a 3,20 mA	10 Hz a 3 kHz	± 0,07%
		3 kHz a 10 kHz	± 0,1%
		10 kHz a 30 kHz	± 0,2%
		20 kHz a 30 kHz	± 0,25%

Magnitud Eléctrica	Alcance	Frecuencia	Incertidumbre k=2
Intensidad de corriente en	3,20 mA a 32 mA	10 Hz a 3 kHz	± 0,07%
corriente alterna		3 kHz a 10 kHz	± 0,1%
Generación		10 kHz a 30 kHz	± 0,2%
		20 kHz a 30 kHz	± 0,25%
	32 mA a 320 mA	10 Hz a 3 kHz	± 0,08%
		3 kHz a 10 kHz	± 0,1%
		10 kHz a 30 kHz	± 0,2%
		20 kHz a 30 kHz	± 0,25%
	0,32 A a 3,2 A	10 Hz a 3 kHz	± 0,12%
		3 kHz a 10 kHz	± 0,33%
	3,2 A a 10,5 A	10 Hz a 3 kHz	± 0,23%
		3 kHz a 10 kHz	± 0,6%
	10,5 A a 20 A	10 Hz a 3 kHz	± 0,55%
		3 kHz a 10 kHz	± 0,62%
Opción toroide 10 simulación de	20 A a 200 A	10 Hz a 100 Hz	± 0,46%
intensidad de corriente alterna		100 Hz a 440 Hz	± 0,9%
Opción toroide 50 simulación de intensidad de corriente alterna	200 A a 1 000 A	10 Hz a 100 Hz	± 0,45%

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Intensidad de corriente en	32 μA a 320 μA	± 0,014%
corriente continua	0,32 mA a 3,2 mA	± 0,014%
Generación	3,2 mA a 32 mA	± 0,014%
	32 mA a 320 mA	± 0,016%
	0,32 A a 3,2 A	± 0,064%
	3,2 A a 10,5 A	± 0,064%
	10,5 A a 20 A	± 0,078%
Opción toroide 10 simulación de		
intensidad de corriente continua	20 A a 200 A	± 0,078%

Magnitud Eléctrica	Alcance	Frecuencia	Incertidumbre k=2
Tensión en corriente alterna	100 mV	3 Hz a 5 Hz	± 1,0%
Medición		5 Hz a 10 Hz	± 0,39%
		10 Hz a 20 kHz	± 0,1%
		20 kHz a 50 kHz	± 0,17%
		50 kHz a 100 kHz	± 0,68%
		100 kHz a 300 kHz	± 4,5%
	1 V a 750 V	3 Hz a 5 Hz	± 1,0%
		5 Hz a 10 Hz	± 0,38%
		10 Hz a 20 kHz	± 0,09%

	· · · · · · · · · · · · · · · · · · ·	
	20 Hz a 50 kHz ± 0,17%	
	50 Hz a 100 kHz ± 0,68%	
	100 kHz a 300 kHz ± 4,5%	

Magnitud Eléctrica	Alcance	Incertidumbre k=2
	100 mV	± 80 ppm
Tensión en corriente continua	1 V	± 47 ppm
Medición	10 V	± 40 ppm
	100 V	± 60 ppm
	1 000 V	± 60 ppm

Magnitud Eléctrica	Alcance	Frecuencia	Incertidumbre k=2
Intensidad de corriente en	1 A	3 Hz a 5 Hz	± 1,0%
corriente alterna		5 Hz a 10 Hz	± 0,34%
Medición		10 Hz a 20 kHz	± 0,14%
	3 A	3 Hz a 5 Hz	± 0,16%
		5 Hz a 10 Hz	± 0,41%
		10 Hz a 300 kHz	± 0,21%

Magnitud Eléctrica	Alcance	Incertidumbre k=2
Intensidad de corriente en	10 mA	± 0,07%
corriente continua Medición	100 mA	± 0,06%
	1 A	± 0,01%
	3 A	± 0,14%
Resistencia Eléctrica Medición	100 Ω	± 0,01%
	1 kΩ	± 0,01%
	10 kΩ	± 0,01%
	100 kΩ	± 0,01%
	1 ΜΩ	± 0,01%
	10 ΜΩ	± 0,04%
	100 MΩ	± 0,8%

Signatarios autorizados:

Ing. Julio Ramírez Bonilla

Ing. Alberto Huerta García

Caltest Laboratorio, S.A. de C.V. Ing. Rafael González Juárez Zacatepetl Mz. 338 Lt. 15

Col. Cd. Azteca

55120, Ecatepec, Estado de México

Teléfono: (55) 5777 6404 Fax: (55) 5777 8208

Dirección de correo electrónico:

Acreditación: E-45 Vencimiento: 2004-04-16

Magnitud	Alcance	Incertidumbre
Eléctrica		k=2
Tensión en corriente continua	10 mV a 110 mV	0,012%
Generación	110 mV a 1,1 V	0,012%
	1,1 V a 15 V	0,012%

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 16
Intensidad de corriente en corriente continua	10 mA a 22 mA	0,019%
Generación		
Resistencia eléctrica	0,5 a 11	0,15%
Generación	11 a 110	0,036%
	110 a 1100	0,051%
	1,1 k a 11 k	0,058%
Simulación eléctrica de temperatura Generación		
Sensor tipo RTD Pt 385 100	-200°C a 0°C	0,08°C
·	0°C a 400°C	0,16°C
	400°C a 800°C	0,31°C
Sensor termopar tipo J	-210°C a -100°C	0,23°C
• •	-100°C a 800°C	0,16°C
	800°C a 1 200°C	0,16°C
Sensor termopar tipo K	-200°C a -100°C	0,31°C
· ·	-100°C a 1 372°C	0,23°C
Sensor termopar tipo T	-250°C a -200°C	0,7°C
	-200°C a 0°C	0,31°C
	0°C a 400°C	0,23°C
Sensor termopar tipo R	-20°C a 0°C	0,93°C
oonoo oonoopaa apoo	0°C a 100°C	0,85°C
	100°C a 1 767°C	0,7°C
Sensor termopar tipo B	600°C a 800°C	0,78°C
Conton termopal tipe 2	800°C a 1 000°C	0,62°C
	1 000°C a 1 820°C	0,62°C
Tensión en corriente continua	0 mV a 110 mV	0,031%
Medición	110 mV a 1,1 V	0,023%
Wicdicion	1,1 V a 11 V	0,023%
	11 V a 110 V	0,043%
	110 V a 300 V	0,043%
	300 V a 600 V	1,2%
Tensión en corriente alterna	110 mV a 1,1 V	1,270
Medición	20 Hz a 40 Hz	1,6%
Wedioloff	40 Hz a 500 Hz	0,42%
	500 Hz a 1 kHz	1,6%
	1 kHz a 5 kHz	7,9%
	1,1 V a 11 V	1,070
	20 Hz a 40 Hz	1,6%
	40 Hz a 500 Hz	0,42%
	500 Hz a 1 kHz	1,6%
	1 kHz a 5 kHz	7,9%
	11 V a 110 V	1,070
	20 Hz a 40 Hz	1,6%
	40 Hz a 500 Hz	0,42%
		1,6%
	500 Hz a 1 kHz	
	1 kHz a 5 kHz 110 V a 300 V	7,9%
		1 00/
	20 Hz a 40 Hz	1,8%
	40 Hz a 500 Hz	0,52%

	1 kHz a 5 kHz	8,3%
	300 V a 600 V	
	40 Hz a 500 Hz	1,6%
Intensidad de corriente en corriente continua	10 mA a 30 mA	0,019%
Medición	30 mA a 100 mA	0,021%
	0,1 A a 200 A	1,7%
	200 A a 1 000 A	2,6%
Intensidad de corriente en corriente alterna	0,5 A a 200 A	
Medición	45 Hz A 400 Hz	1,7%
	200 A a 600 A	
	45 Hz A 400 Hz	1,9%
Resistencia eléctrica	0,5 a 11	0,39%
Medición	11 a 110	0,074%
	110 a 1,1 k	0,074%
	1,1 k a 11 k	0,15%

Signatarios autorizados:

Ing. María Teresa González Juárez

Ing. Cecilio González Juárez

Ing. Rafael González Juárez

Area: Flujo

Fisher Rosemount, S.A. de C.V. Ing. Juan Carlos Sotelo

Camino a Santa Mónica No. 238

Col. Vista Hermosa

54080, Tlalnepantla, Estado de México

Teléfono: (55) 5728 0800 Fax: (55) 5361 0622

Dirección de correo electrónico: juan-carlos.sotelo@frco.com

Acreditación: FL-03 Vencimiento: 2002-08-15

Magnitud Flujo	Intervalo	Incertidumbre
Calibrador en sitio de medidores de flujo másico tipo coriolis empleando un sistema de medición viajero	300 kg/min a 11 000 kg/min	0,1%

Responsables técnicos:

Ing. Isabel Huerta Espinosa Ing. Juan Carlos Sotelo Catalán

Ing. Jorge López Ríos

Internacional de Bienes, Servicios e Ingeniería, S.A. de C.V.

Lic. Salvador Vázquez Vanegas

Rayas No. 66-B Col. Valle Gómez 15210, México, D.F. Teléfono: (55) 5759 0858 Fax: (55) 5537 4606

Dirección de correo electrónico: ibsei@prodigy.net.mx

Acreditación: FL-04 Vencimiento: 2003-02-20

Magnitud	Alcance	Incertidumbre
Flujo		k=2
Método gravimétrico (medidores de flujo tipo másico efecto coriolis)	200 a 5 000 kg/min	0,1% *
Volumétrico (calibración de medidores de flujo empleando como referencia un patrón volumétrico)	1 a 2 000 L/min	0,07% *

(Segunda Sección) 169

Volumétrico (calibración de medidores de flujo empleando	200 a 2 000 L/min	0,12% *
como referencia un medidor de flujo tipo turbina)		

* En la determinación del factor de calibración.

Responsables técnicos:

Técnico:

Lic. José Manuel Penelas García

Ing. Emilio Torres Carreño

Ing. Lázaro Oscar Caiñas Rodríguez

Ing. Alberto Ojeda Senra Ing. Karen Molina Picón

Flujo Cómitl, S.A. de C.V. Ing. Jaime A. de la Vega Núñez Primera de Cedros No. 705 76100, Jurica, Querétaro Teléfono: (442) 218 09 88 Fax: (442) 218 27 43 Acreditación: FL-05 Vencimiento: 2003-03-20

Magnitud Flujo *	Método	Alcance	Incertidumbre k=2
Calibración de medidores de flujo utilizados en el llenado y descarga de autotanques y carrotanques empleando un medidor de referencia de desplazamiento positivo	Volumétrico	320 L/min a 2 750 L/min	0,1% **
Calibración de sistemas de medición de flujo instalados en los patines de calibración de autotanques, empleando como referencia un patrón volumétrico de 3 000 L fluido de trabajo agua	Volumétrico	95 L/min a 3 000 L/min	0,1% **
Calibración de medidores de desplazamiento positivo empleando como referencia con patrón volumétrico de 3 000 L Fluidos de trabajo hidrocarburos y productos terminados	Volumétrico	95 L/min a 3 000 L/min	0,06% **

^{*} Flujo volumétrico de líquidos (agua, petróleo y productos terminados) excepto gas licuado.

Responsable técnico:

Ing. Jaime A. de la Vega Núñez

Corporación Mexicana de Investigación en Materiales, S.A. de C.V.

Ing. Raúl Herrera Mendoza

Fraccionamiento Saltillo 400 No. 190

25290, Saltillo, Coahuila

Teléfono: (84) 11 32 00 ext. 11 y 42

Fax: (84) 15 21 51 Acreditación: FL-06 Vencimiento: 2003-03-20

Magnitud	Método	Alcance	Incertidumbre
Flujo *			
Calibración de medidores de flujo empleando como referencia un patrón volumétrico	Volumétrico	20 L/min a 3 000 L/min	0,07% **
Calibración de medidores de flujo empleando como referencia un medidor de desplazamiento positivo	Volumétrico	350 L/min a 2 400 L/min	0,10% **

^{*} Flujo volumétrico de líquidos (agua, petróleo y productos terminados) excepto gas licuado.

Responsables técnicos:

Ing. José Santos Espino Tristán

Ing. Francisco Hernández García

Fujisan Survey, S.A. de C.V. Ing. José Carmen Pérez Flores Av. Revolución No. 1008

^{**} En la determinación del factor de calibración del factor de calibración del medidor.

^{**} En la determinación del factor de calibración del factor de calibración del medidor.

Col. Centro

96400, Coatzacoalcos, Veracruz

Teléfonos y fax: (921) 212 51 52, 212 98 60

Dirección de correo electrónico: fujisan@prodigy.net.mx

Acreditación: FL-07 Vencimiento: 2003-07-17

Magnitud Flujo	Método	Alcance	Incertidumbre k=2	Norma de referencia
Servicios: Calibración de medidores de flujo, empleando como referencia un patrón volumétrico	Volumétrico	40 L/min a 1 700 L/min	0,07% *	API capítulo 4 API capítulo 12.2
Calibración de medidores de flujo, empleando como referencia un medidor de desplazamiento positivo	Volumétrico	350 L/min a 1 600 L/min	0,10% *	API capítulo 4 API capítulo 12.2
Calibración de probadores, empleando como referencia patrones volumétricos	Volumétrico	37 L a 24 000 L	0,06% del volumen	API capítulo 4 API capítulo 12.2
Calibración de medidores de flujo, empleando como referencia un probador	Volumétrico	Hasta 12 000 L/min	0,15% *	API capítulo 4 API capítulo 12.2

^{*} del factor de calibración determinado

Responsables técnicos:

Ing. Iván Job Contreras Córdova Ing. José Carmen Pérez Flores Ing. Hiram Castillo Velázquez Marco Antonio García Urgell Ing. Hugo H. Pérez Flores Alejandro Rosas Rosendo

Servicios de Ingeniería y Control Avanzado, S.A. de C.V.

Ing. Magdalena Haydeé Vázquez Meneses

Arquímides No. 12-A Col. Ciudad Brisa

53280, Naucalpan de Juárez, Estado de México Teléfono: (55) 5364 3868, (55) 5364 4020

Fax: (55) 5364 3871

Dirección de correo electrónico: sica@sicamedicion.com

Acreditación: FL-08 Vencimiento: 2004-04-16

Magnitud Flujo	Alcance	Incertidumbre k=2	Norma de Referencia
Calibración de Medidores de flujo por comparación contra Patrón Volumétrico	1 L/min a 2 000 L/min	0,07%	API MPMS Caps. 4 y 12
Calibración de Medidores de flujo para hidrocarburos refinados, por comparación contra medidor de referencia de desplazamiento positivo	50 L/min a 2 000 L/min	0,1%	API MPMS Caps. 4 y 12
Calibración de Medidores de flujo de Gas Licuado de Petróleo, por comparación contra medidor de referencia de Desplazamiento positivo	480 L/min a 2 200 L/min	0,2%	API MPMS Caps. 4 y 12
Calibración de Medidores de flujo de Agua, por comparación contra medidor de referencia de desplazamiento positivo	50 L/min a 400 L/min 480 L/min a 6 050 L/min	0,15% 0,25%	API MPMS Caps. 4 y 12

Signatarios autorizados:

(Segunda Sección) 171

Ing. Juan Carlos Luna Cervantes Ing. Ricardo Bueno Martínez Oscar Daniel Sáenz Santos Miguel Martínez Maldonado Eduardo Uribe Reynoso Ing. Alejandro Altamirano Contreras Marco Antonio Hernández Cordero Juan Manuel Abarca Ortiz Rodolfo Fischer Martínez

Guillermo Cruz Calvet

Juan José Escobar Bosquez

Area: Fuerza

Gerencia de Ingeniería Experimental y Control Comisión Federal de Electricidad Ing. Enrique Mena Sandoval Augusto Rodín No. 265 Col. Noche Buena 03720, México, D.F.

03720, Mexico, D.F. Teléfono: (55) 5230 9284 Fax: (55) 5230 9057

Dirección de correo electrónico: maria.santaella@cfe.gob.mx

Acreditación: F-02 Vencimiento: 2004-03-19

Magnitud Fuerza	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de transductores Compresión	10 N a 25 kN	0,3% Lectura	NMX-CH-23-SCFI-1994
	1 kN a 2 MN	0,6% Lectura	
Calibración de máquinas de ensayo Compresión	1 kN a 2 MN	1,0% Lectura	NMX-CH-27-SCFI-1994

Responsables técnicos: María Teresa Santaella Cópil Ma. Rosario Cervera Anaya

Rutilio Villeda Figueroa Albino Sánchez Sánchez

Impulsora Tlaxcalteca de Industrias, S.A. de C.V.

Téc. David Angelino Romero Reforma Sur No. 25 90796, Panzacola, Tlaxcala Teléfono: (22) 81 03 55

Teléfono: (22) 81 03 55 Fax: (22) 81 02 47

Dirección de correo electrónico: atsanchez@itisa.com.mx

Acreditación: F-08 Vencimiento: 2002-05-16

Magnitud	Intervalo	Incertidumbre
Fuerza		k=2
Compresión	11,1 kN a 111,0 kN	0,73% L
	22,2 kN a 222,4 kN	0,73% L
	44,4 kN a 444,8 kN	0,73% L
	89,0 kN a 890,0 kN	0,73% L

Responsables técnicos:

Téc. David Angelino Romero Ing. María Elena Briones Arrieta

Téc. José I. Flores Corona Sr. Julio Lara Pérez

Metrolab, S.A. de C.V.

Ing. Marcelo Castañón Alvarez

Av. San Nicolás No. 118

Col. Arboledas de San Jorge

66465, San Nicolás de los Garza, Nuevo León

Teléfono y fax: (81) 8383 6930 al 33

Dirección de correo electrónico: jrodriguez@metrolab.com.mx

Acreditación: F-16 Vencimiento: 2003-07-17

Magnitud	Alcance	Tipo de Carga	Incertidumbre k=2
Fuerza	490,35 N a 1961 kN	Compresión	± 0,25% L.
	490,35 N a 98,102 kN	Tensión	± 0,25% L.

Responsables técnicos:

Ing. Jaime Rodríguez Montelongo

Téc. Alberto García Hernández

Ing. Sergio Ochoa Ochoa

Av. Palmas No. 324

Col. El Rosal

10600, México, D.F.

Teléfono y fax: (55) 5595 5142

Acreditación: F-17 Vencimiento: 2003-12-18

Magnitud Fuerza	Alcance	Incertidumbre k=2	Norma de referencia
Compresión	0,294 kN a 2 MN	0,50% Lectura	NMX-CH-027-1994-SCFI
	0,098 kN a 0,294 kN	0,75% Lectura	

Signatarios autorizados:

Ing. Sergio Ochoa Ochoa

Ing. Sergio Ochoa Márquez

Téc. Every López Hinojosa

Ing. Santiago Ochoa Márquez

Grupo CTT, S.A. de C.V.

Lic. José Antonio Benítez Acosta Av. Independencia No. 1850, 1er. piso

Fraccionamiento Jardines de la Concepción II

20120, Aguascalientes, Aguascalientes

Teléfono: (449) 912 37 00 Fax: (449) 912 22 12 Acreditación: F-19 Vencimiento: 2003-18-18

Magnitud Fuerza	Alcance	Incertidumbre k=2	Norma de referencia
Fuerza	0,50 a 5 kN	0,075% Lectura (Compresión) 0,050% Lectura (Tensión)	NMX-CH-027-1994-SCFI
-	2,5 a 25 kN	0,060% Lectura (Compresión) 0,10% Lectura (Tensión)	
	10 a 100 kN	0,10% Lectura (Compresión) 0,17% Lectura (Tensión)	
	25 a 250 kN	0,5% Lectura (Compresión) 0,30% Lectura (Tensión)	
	50 a 500 kN	0,4% Lectura (Compresión) 0,25% Lectura (Tensión)	

Signatario autorizado:

Ing. Eddy Grandy Carreyn

Corporativo Industrial Davi, S.A. de C.V.

Ing. Rodolfo Navarrete Silva

Ciprés No. 26

Col. Viveros Xalostoc

55340, Xalostoc, Estado de México

Teléfono: (55) 5755 8498 Fax: (55) 5569 3480

Dirección de correo electrónico: elaconsa@mexico.com

Acreditación: F-24

Vencimiento: 2002-08-15

Magnitud	Intervalo	Incertidumbre
Fuerza		k=2
Compresión	98,1 kN a 980,7 kN	0,10% E.T.
	19,61 kN a 192,20 kN	0,05% E.T.
	0,98 kN a 9,80 kN	0,52% E.T.

Responsables técnicos:

Ing. Rodolfo Navarrete Silva Ing. David Martín Sánchez Téc. José Soto Cortés Téc. Elías Beltrán Rosas

Téc. Luis Miguel Victoria Anaya

Aurora Hernández Cerón

Ing. Francisco Baños Hernández

Adrián Brower No. 94 Col. Alfonso XIII 01460, México, D.F. Teléfono: (55) 5598 5002 Fax: (55) 5615 2378

Dirección de correo electrónico: elvec@att.net.mx

Acreditación: F-25

Vencimiento: 2002-08-15

Magnitud	Intervalo	Incertidumbre
Fuerza		k=2
Compresión	1,9 kN a 19 kN	0,10% E.T.
	19,6 kN a 196 kN	0,13% E.T.
	98,0 kN a 980 kN	0,22% E.T.
	9,8 kN a 98 kN	0,32% E.T.

Responsables técnicos:

Ing. Francisco Baños Hernández Ing. José Manuel Martínez García

Ing. Jorge Vargas Martínez

Asociación Mexicana de la Industria del Concreto Premezclado, A.C.

Lic. Armando Millán González Blvd. Adolfo López Mateos No. 1135

San Pedro de los Pinos 01180, México, D.F. Teléfono: (55) 5272 8981 Fax: (55) 5272 9011

Dirección de correo electrónico: amicpac@prodigy.net.mx

Acreditación: F-26 Vencimiento: 2002-10-17

Magnitud	Intervalo	Incertidumbre
Fuerza		k=2
Compresión	196,24 kN a 981,19 kN	0,25% L
	98,12 kN a 981,19 kN	0,5% L

58,82 kN a 196,24 kN	0,5% L
39,21 kN a 196,24 kN	0,75% L

Responsables técnicos:

Ing. Felipe Gómez Sánchez Ing. Juan Manuel Montalvo García

Nacional de Conductores Eléctricos, S.A. de C.V.

Ing. Alfonso Figueroa Armenta

Poniente 140 No. 720 Col. Industrial Vallejo 02300, México, D.F.

Teléfono: (55) 5587 7011 ext. 3442

Fax: (55) 5368 0614

Dirección de correo electrónico: ggmejia@condumex.com.mx

Acreditación: F-27 Vencimiento: 2002-12-19

Magnitud	Alcance	Incertidumbre
Fuerza		k=2
Fuerza	890,44 N a 44 522,20 N	1% L

Responsables técnicos:

Ignacio López Olalde Gustavo García Mejía

José Luis Torres Padua

Caltechnix de México, S.A. de C.V.

Ing. Walter Louis Buehler

Sur 111 No. 2260 Col. Juventino Rosas 08700, México, D.F. Teléfono: (55) 5650 4414 Fax: (55) 5569 3480

Dirección de correo electrónico: caltech@caltechnix.com.mx

Acreditación: F-28 Vencimiento: 2002-12-19

Magnitud Fuerza	Alcance	Incertidumbre k=2
Fuerza	0 N a 10 kN	0,05% L
	100 N a 10 kN	0,3 L

Responsables técnicos: Técnicos:

Ana Lilia Hernández Cuevas Alejandro Rodríguez Adeath
Walter Louis Buehler Gabriel de la O Cruz
Enrique García Quintero Gabriel Gudiño García

Laboratorio de Pruebas de Equipos y Materiales de la CFE

Ing. Jorge Adolfo Pérez Guzmán

Avenida Apaseo Ote. s/n

Ciudad Industrial

35641, Irapuato, Guanajuato Teléfono: (462) 623 9446 Fax: (462) 623 9406

Dirección de correo electrónico: jperezg@cfe.gob.mx

Acreditación: F-29 Vencimiento: 2003-04-17

Magnitud	Alcance	Incertidumbre
Fuerza		k=2

DIARIO OFICIAL

(Segunda Sección) 175

Fuerza	245,2 N a 1 961,33 kN	0,25% L
	5 N a 785 N	0,1% L

Responsables técnicos:

Jorge Adolfo Pérez Guzmán Heriberto Bretón Silva Edna Cointa Marure Rojano Alvaro Valdivia Barragán Sergio Ochoa Márquez David Jacobo Obregón

Abaco Ingeniería de Instrumentación y Electrónica Industrial, S.A. de C.V.

Ing. Salvador Frías Ramírez

Av. La Nacional No. 532, Edificio B, Depto. 1

Col. Santa Clara Coatitla

55540, Ecatepec, Estado de México Teléfono y fax: (55) 5569 4862

Dirección de correo electrónico: abacoi@prodigy.net

Acreditación: F-30 Vencimiento: 2003-06-19

Magnitud	Alcance	Incertidumbre	Norma de referencia
Fuerza		k=2	
Compresión	20 kN a 98 kN	0,25% Lectura	NMX-CH-027-1994-SCFI
	98 kN a 981 kN	0,50% Lectura	NMX-CH-027-1994-SCFI
	981 N a 4 413 N	1,0% Lectura	NMX-CH-027-1994-SCFI
	1 N a 4 413 N	0,50% Lectura	
	53 kN a 534 kN	1,5% Lectura	NMX-CH-027-1994-SCF
	160 kN a 534 kN	0,50% Lectura	
	39 kN a 177 kN	1,0% Lectura	NMX-CH-027-1994-SCF
	79 kN a 177 kN	0,50% Lectura	

Responsables técnicos:

Ing. Salvador Frías Ramírez

Jorge Samuel Luna Serna

Comercializadora y Servicios Técnicos "SL", S.A. de C.V.

Ing. Francisco Arechavaleta Rodríguez

Leandro Valle No. 36 Col. Ciudad López Mateos

52900, Atizapán de Zaragoza, Estado de México

Teléfono: (55) 5822 8896 Fax: (55) 5825 1272

Dirección de correo electrónico: cstmex01@terra.com.mx, franciscoarech1@cstmexico.com

Acreditación: F-31 Vencimiento: 2003-06-19

Magnitud	Alcance	Incertidumbre	Norma de referencia
Fuerza		k=2	o procedimiento
Fuerza	98,0665 mN a 2,942 MN	0,25% L	cyst-PT-08.03

Responsables técnicos:

José Luis Rivera Jiménez Francisco Arechavaleta Rodríguez José Antonio Herrera González Víctor Raúl Martínez Romero Ricardo Martínez Ramírez Víctor Hugo Valenzuela Zamudio

Instituto Mexicano del Cemento y del Concreto, A.C.

Ing. Armando Arias Aguas Constitución No. 50 Col. Escandón 11800, México, D.F.

Teléfono: (55) 5272 8042, 5272 7915

Fax: (55) 5272 8689

Dirección de correo electrónico: aarias@mail.imcyc.com

Acreditación: F-32 Vencimiento: 2003-07-17

Magnitud Fuerza	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de máquinas universales y	0,98 kN a 30 kN	1,0% Lectura	Por comparación directa
de ensaye a compresión	30 kN a 980,9 kN	0,20% Lectura	NMX-CH-027-1994-SCFI

Responsables técnicos:

Ing. Vicente Gómez Bezares

Téc. Marcial González Cabrera

Metrología y Pruebas, S.A. de C.V. Ing. Eduardo Ricaud Gamboa Privada Tecnológico No. 25 84000, Nogales, Sonora Teléfono: (631) 314 61 93 Fax: (631) 314 62 63

Dirección de correo electrónico: callab@prodigy.net.mx

Acreditación: F-33 Vencimiento: 2003-07-17

Magnitud Fuerza	Alcance Nominal	Incertidumbre k=2
Fuerza	5,6 N a 84 N	± 0,25% Lectura
	79,6 N a 2 433,1 N	± 0,20% Lectura

Responsables técnicos:

Ing. Eduardo Ricaud Ing. Sergio Iván Hernández Ruiz Ing. Roberto Hurtado Hurtado Ing. Manuel Eligio Vega Sánchez

Calibración y Certificación, S.A. de C.V. Ing. Reynaldo Cárdenas Marroquín

Helios No. 3320 Col. Country Tesoro

64850, Monterrey, Nuevo León Teléfono: (81) 8676 41 14 Fax: (81) 8357 98 36 Acreditación: F-34 Vencimiento: 2003-09-18

Magnitud Fuerza	Alcance	Incertidumbre k=2	Norma de Referencia
Modo Tensión 001215 A	49 N a 490 N	± 0,17 Lectura	ISO 376
Modo Compresión 001215 A	49 N a 490 N	± 0,12 Lectura	ISO 376
Modo Tensión 001215 B	490 N a 4,9 kN	± 0,10 Lectura	ISO 376
Modo Compresión 001215 B	490 N a 4,9 kN	± 0,05 Lectura	ISO 376
Modo tensión 001215 C	4,9 kN a 49,0 kN	± 0,03 Lectura	ISO 376
Modo Compresión 001215C	4,9 kN a 49,0 kN	± 0,06 Lectura	ISO 376
Modo Tensión 001215 D	9,8 kN a 98,066 kN	± 0,30 Lectura	ISO 376
Modo Compresión 001215 D	9,8 kN a 98,066 kN	± 0,16 Lectura	ISO 376
Modo Compresión 011212 E	29,420 kN a 294,2 kN	± 0,30 Lectura	ISO 376
Modo Compresión 001215 F	98,066 kN a 80,665 kN	± 0,40 Lectura	ISO 376

Responsables técnicos:

Reynaldo Cárdenas Marroquín Roberto García González

Edy Samuel Ibarra Carreón Luis Angel Villarreal Lozano

Representaciones y Distribuciones Fal, S.A. de C.V.

Ing. Jaime Falcón Franco Blvd. Avila Camacho No. 569

Col. Naucalpan

53000, Naucalpan, Estado de México

Teléfono: (55) 5576 6142 Fax: (55) 5359 3707

Dirección de correo electrónico: ventas@fal.com.mx

Acreditación: F-35 Vencimiento: 2004-04-16

Magnitud Fuerza	Alcance	Incertidumbre k=2	Norma de referencia
Tensión y	10 N a 294 kN	0,25% de Lectura	NMX-CH-27-SCFI-1994
Compresión			

Signatario autorizado:

Ing. Alberto Guízar López H.

Area: Humedad

Metrología y Calibraciones Industriales, S.A. de C.V.

Ing. Erasto Callejas Sánchez

Calle 22 No. 18 Altos

Fraccionamiento Costa Verde 91950, Veracruz, Veracruz Teléfono: (29) 35 22 66 Fax: (29) 21 98 79

Acreditación: H-02 Vencimiento: 2002-05-03

Magnitud	Intervalo	Incertidumbre
Humedad		k=2
Humedad relativa	20% HR a 80% HR	4,0% HR

Responsable técnico:

Ing. Javier Barrera Quiralte

Técnicos:

Ing. Juan Martín Hernández Romo

Ing. Jorge Luis Parra González

Ing. Erasto Callejas Sánchez

Nysco de México, S.A. de C.V. QFB. Alfredo Garzón Serra

Calzada Ermita Iztapalapa No. 436-B

Col. Mexicalzingo 09080, México, D.F. Teléfono: (55) 5697 5494

Fax: (55) 5697 9565

Dirección de correo electrónico: msanches@icnpharm.com

Acreditación: H-04 Vencimiento: 2002-11-21

Magnitud	Intervalo	Incertidumbre
Humedad		k=2
Humedad relativa	20% HR a 80% HR	3,6% HR

(Segunda Sección) 178

Responsables técnicos:

Miguel Guadalupe Sánchez Hernández Rafael Chargoy Navarro

Víctor M. Soto Velázquez Benigno López Avelar

Metas, S.A. de C.V.

Ing. Víctor Manuel Aranda Contreras

Acantilado No. 29 Col. La Joya

49090, Ciudad Guzmán, Jalisco

Teléfono: (3) 413 6123 Fax: (3) 413 1691 Acreditación: H-05 Vencimiento: 2003-03-20

Magnitud	Alcance	Incertidumbre
Humedad		
Servicio		
Calibración de medidores de humedad	10% HR a 95% HR	2,3% HR
relativa	a temperatura ambiente	

Responsables técnicos:

Ing. Víctor Manuel Aranda Contreras

Ing. Silvia Medrano Guerrero

Ing. Gerardo Aranda Contreras

Grupo Simca, S.A. de C.V. Ing. Víctor Manuel Díaz Vargas

Cajeros No. 73 Col. El Sifón 09400, México, D.F. Teléfono: (55) 5633 7331 Fax: (55) 5633 2803

Dirección de correo electrónico: gposimca@telecomm.net.mx

Acreditación: H-06 Vencimiento: 2003-04-17

Magnitud	Alcance	Incertidumbre del sistema
Humedad		k=2
Humedad relativa	10,0% HR a 95,0% HR	3,0% HR

Responsable técnico:

Ing. José Angel Sevilla García

Técnicos:

Téc. Emmanuel García Hernández Téc. Armando Lázaro Avila Téc. Andrey Noé Durán Ramírez Téc. Alberto Ribera Murguía Ing. Claudio Enrique Flores García Ing. Alfredo Cuevas Valencia

Servicios Metrológicos Especializados, S.A. de C.V.

QFB Martín Nava Lemus

Hacienda de Xajay No. 24, piso 2 Col. Hacienda del Rosario

02420, México, D.F. Teléfono: (55) 5318 6034 Fax: (55) 5318 6035

Dirección de correo electrónico: navamartin@terra.com.mx

Acreditación: H-07 Vencimiento: 2004-03-19

Magnitud Humedad	Alcance	Incertidumbre k=2
Calibración de Sensores de Humedad	10% HR a 90% HR	3,1% HR

Signatarios autorizados:

QFB Martín Nava Lemus Roberto Nava Lemus

Area: Masa

Ing. Ma. Magdalena Pacheco Montoya Av. Cuauhtémoc No. 1095-103

Col. Letrán Valle 03650, México, D.F. Teléfono: (55) 5601 3962 Fax: (55) 5688 0305

Dirección de correo electrónico: mpacheco@mail.intranet.com.mx

Acreditación: M-09 Vencimiento: 2003-07-17

Magnitud	Alcance	Incertidumbre	Norma de referencia
Densidad		k=2	
Calibración de Densímetros de Inmersión	500 kg/m ³ a 2 500 kg/m ³	0,5 kg/m ³	Método de Cuckow FW

Magnitud Masa	Alcance hasta	Resolución	Norma de referencia
Calibración de Instrumentos	10 g	0,02 mg	NOM-010-SCFI-1994
para pesar	100 g	0,05 mg	
	200 g	0,1 mg	
	1 000 g	5 mg	
	2 000 g	10 mg	
	3 000 g	20 mg	
	10 000 g	50 mg	
	20 000 g	100 mg	
	30 kg	2 g	
	100 kg	5 g	
	150 kg	10 g	

Responsables técnicos:

Ing. Ma. Magdalena Pacheco Montoya

Ing. Ernesto Ramírez Avila

Dr. Sergio Pacheco Montoya

Raymundo Rivera Rosas Sr. Willebaldo Rivera González Primera Calle de Venus No. 6

Col. San Simón 06920, México, D.F. Teléfono: (55) 5583 3192 Fax: (55) 5583 0197

Dirección de correo electrónico: labmetrr@df1.telmex.net.mex

Acreditación: M-18

Aprobación Secretaría de Economía: M-18

Vencimiento: 2002-06-13

Magnitud	Alcance	Resolución
Masa		

Instrumentos para pesar		
I, II, III, IIII	1 mg a 1 g	0,01 mg
I, II, III, IIII	1 mg a 10 g	0,02 mg
I, II, III, IIII	1 mg a 100 g	0,05 mg
I, II, III, IIII	1 mg a 200 g	0,1 mg
I, II, III, IIII	1 mg a 400 g	0,2 mg
I, II, III, IIII	1 mg a 1 kg	0,5 mg
I, II, III, IIII	1 mg a 2 kg	1 mg
I, II, III, IIII	2 mg a 4 kg	2 mg
I, II, III, IIII	5 mg a 5 kg	5 mg
I, II, III, IIII	50 mg a 10 kg	50 mg
I, II, III, IIII	100 mg a 20 kg	100 mg
II, III, IIII	2 g a 40 kg	2 g
II, III, IIII	5 g a 100 kg	5 g
II, III, IIII	10 g a 200 kg	10 g
II, III, IIII	20 g a 400 kg	20 g
II, III, IIII	50 g a 1 000 kg	50 g
II, III, IIII	100 g a 2 000 kg	100 g
II, III, IIII	200 g a 4 000 kg	200 g
III, IIII	500 g a 10 000 kg	500 g
III, IIII	2 kg a 20 000 kg	2 kg
III, IIII	5 kg a 50 000 kg	5 kg
III, IIII	10 kg a 84 500 kg	10 kg

Magnitud Masa	Alcance	Incertidumbre k=2
Calibración de pesas		
M_1 , M_2 y M_3	100 mg a 20 kg	1/3 EMT
M_2 y M_3	1 g a 50 kg	1/3 EMT
	25 kg	416 mg

Responsables técnicos:

Raymundo Rivera Rosas

Técnicos:

Mario Olvera Barbosa

Héctor Osorio Hernández	Luis Hidalgo Coronilla	
Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: M-18	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar

Básculas Revuelta Maza, S.A. de C.V.

Ing. Sylvia Maeda Sánchez

Calzada Avila Camacho y Calle 16

Colonia Santa María 27020, Torreón, Coahuila Teléfono: (871) 713 20 49

Fax: (871) 717 75 70

Dirección de correo electrónico: basculas_brm@revuelta.com.mx

Acreditación: M-19

Aprobación Secretaría de Economía: M-19

Vencimiento: 2002-12-02

Magnitud	Intervalo	Incertidumbre
Masa		k=2
Calibración de pesas		
Clase de exactitud		
F ₁	1 mg a 50 kg	1/3 del EMT
F ₂	1 mg a 50 kg	1/3 del EMT
M ₁	1 mg a 1 t	1/3 del EMT
M_2	1 mg a 5 t	1/3 del EMT
M ₃	1 g a 5 t	1/3 del EMT

Responsables técnicos: Sr. José Revuelta Maza

Ing. Sylvia Maeda Sánchez Ing. José Revuelta Rivas

María de los Angeles Córdova Valadez

Técnicos:

Abraham González Carrillo

José Torres García

Jaime I. Guevara Ceniceros

Magnitud	Intervalo	Resolución
Masa		
Instrumentos para pesar	200 g	0,1 mg
	500 g	0,2 mg
	1 kg	0,5 mg
	2 kg	1 mg
	5 kg	2 mg
	10 kg	5 mg
	20 kg	20 mg
	50 kg	100 mg
	100 kg	200 mg
	200 kg	1 g
	500 kg	2 g
	1 000 kg	5 g
	2 000 kg	20 g
	5 000 kg	100 g
	10 000 kg	500 g
	50 t	2 kg
	100 t	5 kg
	200 t	10 kg
	500 t	50 kg
	1 200 t	100 kg

Responsables técnicos: Sr. José Revuelta Maza Ing. José Revuelta Rivas Ing. Sylvia Maeda Sánchez Ing. Guillermo Orozco Muro Técnicos:

Abraham González Carrillo Santiago Canales Carrillo José Luis Cornejo Guerrero J. Salvador Barrón Mercado José A. Guerrero Cruz Feliciano Palacios Soto Carlos Euan Ku Gregorio Olea Osorio

José Torres García

J. Eleazar Ledezma Villarreal Evelio Espinoza Balderas Casimiro Soto Canales Pío Rodríguez Pérez Fernando Madrigal Llamas Miguel López Hermosillo Oscar López Hermosillo

Aprobación Normas Oficiales Mexicanas Aprobadas Campo de aplicación

Secretaría de Economía: M-19	NOM-010-SCFI-1994 Incisos: 5.6.1, 5.6.2, 5.8, 5.10	Pruebas metrológicas para instrumentos para pesar.
	NOM-038-SCFI-2000 Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1, 7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1, 14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1	Pruebas metrológicas para pesas.

Insco de México, S.A. de C.V. Jorge Mendoza Illescas Blvd. Toluca No. 43-C Col. El Conde

Miércoles 26 de junio de 2002

53500, Naucalpan de Juárez, Estado de México

Teléfono: (55) 5359 0088 Fax: (55) 5358 3913

Correo electrónico: inscomex@prodigy.net.mx

Acreditación: M-24

Aprobación Secretaría de Economía: M-24

Vencimiento: 2003-10-16

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de instrumentos	1 kg	0, 5 mg	NOM-010-SCFI-1994
para pesar	2 kg	1 mg	
	3 kg	5 mg	
	5 kg	10 mg	
	10 kg	20 mg	
	200 kg	10 g	
	400 kg	20 g	
	1 000 kg	50 g	

Signatarios autorizados:

Jorge Mendoza Illescas

Eric Rojas Sánchez

Miguel Angel Martínez Carreño
Fernando Mora Hernández

César Cruz Ramírez

		• • • • • • • • • • • • • • • • • • • •	a. o.a	
Magnitud	Alcance	Clase	Incertidumbre	Norma de referencia
Masa			k=2	
Calibración de	1 mg a 10 kg	$E_{\!2}$	1/3 EMT	NOM-038-SCFI-2000
pesas	1 mg a 20 kg	F ₁	1/3 EMT	
	1 mg a 20 kg	F ₂	1/3 EMT	
	1 mg a 50 kg	M ₁	1/3 EMT	
	100 mg a 50 kg	M_2	1/3 EMT	
	1 g a 50 kg	M ₃	1/3 EMT	

Magnitud	Alcance	Clase*	Incertidumbre
Masa			k=2
Calibración de pesas	1 mg a 10 kg	1	1/3 EMT
	1 mg a 25 kg	2, 3, 4	1/3 EMT
	1 mg a 50 kg	5	1/3 EMT
	100 mg a 50 kg	6	1/3 EMT

^{*} ANSI/ASTM 617

Magnitud	Alcance	Clase**	Incertidumbre
Masa			k=2
Calibración de pesas	1 mg a 10 kg	S	1/3 EMT
	1 mg a 20 kg	M	1/3 EMT
	1 mg a 20 kg	S-1, P y Q	1/3 EMT
	1 mg a 50 kg	Т	1/3 EMT

** NBS Circular 547

Signatarios autorizados para: CLASE F_1 , F_2 , M_1 , M_2 y M_3

CLASE 1, 2, 3, 4, 5 Y 6 CLASE S, M, P, S-1, Q Y T

Jorge Mendoza Illescas Eric Rojas Sánchez Fernando Mora Hernández César Cruz Ramírez

José Luis Castrejón López Miguel Angel Martínez Carreño Jesús Olivares Terrazas

Signatarios autorizados para: CLASE E2

Jorge Mendoza Illescas

Fernando Mora Hernández

Eric Rojas Sánchez

Aprobación	Normas Oficiales Mexicanas Aprobadas	Campo de aplicación
Secretaría de Economía: M-24	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.
	NOM-038-SCFI-2000	Pruebas metrológicas para pesas.
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2,	
	7.2.3.1, 7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1,	
	12.2, 14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1,	
	14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1	

Ciateq, A.C.

Ing. Antonio Martínez Saucedo Circuito Aguascalientes No. 135

Parque Industrial del Valle de Aguascalientes 20355, Aguascalientes, Aguascalientes

Teléfono: (449) 973 10 60 Fax: (449) 973 10 70

Dirección de correo electrónico: saucedo@ags.ciateq.mx

Acreditación: M-25 Vencimiento: 2004-01-15

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de Instrumentos para pesar	10 g	0,02 mg	NOM-010-SCFI-1994
	100 g	0,05 mg	
	250 g	0,1 mg	
	400 g	0,2 mg	
	1 kg	0,5 mg	
	2 kg	1 mg	
	3 kg	5 mg	
	10 kg	50 mg	
	20 kg	100 mg	
	40 kg	200 mg	

400 kg	200 g	
1 000 kg	500 g	

Signatarios autorizados: Antonio Martínez Saucedo César Guillermo Nájera Martell Zaida Antonieta Mora Alvarez

Guadalupe del Rocío Lira Guerra Alfredo Escobedo Serrano

Magnitud	Clase	Alcance	Incertidumbre	Norma de referencia
Masa			k=2	
Calibración de pesas	F ₁	1 g a 10 kg	1/3 del EMT	NOM-038-SCFI-2000
	F ₂	20 mg a 10 kg	1/3 del EMT	
	M ₁	1 mg a 20 kg	1/3 del EMT	
	M_2	100 mg a 20 kg	1/3 del EMT	
	M_3	1 g a 20 kg	1/3 del EMT	

Signatarios autorizados:

Antonio Martínez Saucedo

Guadalupe del Rocío Lira Guerra

Calibración y Tecnología Profesional, S.A. de C.V.

Sr. Héctor Mercado Rule Norte 76 No. 5846 Col. Faja de Oro 07850, México, D.F. Teléfono: (55) 5715 2497 Fax: (55) 5715 2341

Acreditación: M-29 Vencimiento: 2002-10-01

Magnitud	Intervalo	Incertidumbre
Masa		k=2
M_1	1 g a 20 kg	1/3 del EMT
M_2	100 mg a 20 kg	1/3 del EMT
4 (ANSI/ASTM)	25 kg	1/3 del EMT
5 (ANSI/ASTM)	10 kg a 25 kg	1/3 del EMT
6 (ANSI/ASTM)	2 kg a 25 kg	1/3 del EMT

Magnitud Masa	Alcance	Resolución
	40 ~	0.05
Instrumentos para pesar	10 g	0,05 mg
Bajo alcance	50 g	0,1 mg
	200 g	0,2 mg
	500 g	1 mg
Bajo alcance	2 kg	2 mg
	5 kg	10 mg
	20 kg	20 mg
Mediano alcance	50 kg	2 g
	100 kg	5 g
	200 kg	10 g
	500 kg	20 g
	1 t	50 g
	2 t	100 g
	5 t	200 g

40 t

2 kg

Responsables técnicos:

Sr. Héctor Mercado Rule Ing. Ezequiel Quezada Rojas Sr. Antonio Aguilera Mercado Téc. Jorge Medina Ortiz

Centro de Ingeniería y Desarrollo Industrial

Ing. Fernando Motolinía Velázquez Av. Pie de la Cuesta No. 702

Desarrollo San Pablo

76130, Santiago de Querétaro, Querétaro

Teléfono: (442) 211 98 43

Fax: (442) 211 98 00 exts. 243 y 269, (442) 220 72 99 Dirección de correo electrónico: fmotolinia@cidesi.mx

Acreditación: M-31 Vencimiento: 2003-02-20

Magnitud Masa	Alcance	Incertidumbre
Calibración de pesas		
F₁	1 mg a 20 kg	1/3 EMT
F ₂	1 mg a 50 kg	1/3 EMT
M ₁	1 mg a 50 kg	1/3 EMT
M_2	100 mg a 50 kg	1/3 EMT
M ₂	1 g a 50 kg	1/3 EMT

Magnitud Masa	Alcance máximo	Resolución
Instrumentos para pesar	1 kg	0,001 mg
	2 kg	1 mg
	20 kg	10 mg
	60 kg	5 g
	100 kg	10 g
	1 000 kg	1 kg
	65 000 kg	2 kg

Responsables técnicos: Técnicos:

Miguel Angel Vargas Navarro Angelina Estrada Martínez
Alfredo Sánchez Héctor Ramírez Coronado
Alejandro Castillo Estrada

Validación y Metrología, S.A. de C.V. QFB Blanca Rosa Rodríguez Alvarado Av. Ejido San Francisco No. 196 Col. Presidentes Ejidales

04470, México, D.F. Teléfono: (55) 5656 8414 Fax: (55) 5695 9874

Dirección de correo electrónico: vamet@prodigy.net.mx

Acreditación: M-35

Aprobación Secretaría de Economía: M-35

Vencimiento: 2003-06-19

Magnitud	Alcance Máximo	Incertidumbre	Norma de referencia
Masa		k=2	o procedimiento

Calibración de pesas			CM-05
F ₂	50 g a 100 g	1/3 EMT	
M_1 , M_2 , y M_3	1 mg a 200 g	1/3 EMT	
M_1	10 kg, 20 kg	1/3 EMT	
M_2 , M_3	5 kg, 10 kg, 20 kg	1/3 EMT	

Magnitud Masa	Alcance máximo	Resolución	Norma de referencia o procedimiento
Instrumentos para pesar	2 g	0,01 mg	CM-02, CM-03, CM-04
	50 g	0,02 mg	
	200 g	0,1 mg	
	500 g	0,2 mg	
	1 kg	0,5 mg	
	2 kg	1 mg	
	5 kg	10 mg	
	20 kg	20 mg	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000 kg	50 g	

Responsables técnicos:

Blanca Rosa Rodríguez Alvarado Mario Alberto Rodríguez Alvarado

Sofía Margarita Rodríguez Alvarado Falko Bueno Córdova *
Edgar Escalona Alvarez Héver Víctor Castro
Juan Arturo González Carranza Raquel Reyes Román
*Solamente podrá calibrar pesas M₁ de 10 kg, 20 kg y pesas M₂, M₃ de 5 kg, 10 kg a 20 kg

Aprobación	Normas Oficiales Mexicanas Aprobadas	Campo de aplicación
Secretaría de Economía: M-35	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.
	NOM-038-SCFI-2000	Pruebas metrológicas para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1,	pesas.
	7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1,	
	14.1.2, 14.4.3, 14.4.4.1, 14.4.2, 14.4.3, 15.1, 15.1.2,	
	15.2, 15.3, 15.3.1	

Mettler Toledo, S.A. de C.V. Ing. Arturo Novoa Castañeda Calle Pino No. 350 Col. Atlampa

06450, México, D.F. Teléfono: (55) 5547 1634 Fax: (55) 5541 2366

Dirección de correo electrónico: arturo.novoa@mt.com.mx

Acreditación: M-37

Aprobación Secretaría de Economía: M-37

Vencimiento: 2003-06-19

Magnitud Masa	Alcance	Incertidumbre k=2	Norma de referencia o procedimiento
Calibración de pesas	4 mm o 5 km	4/2 FMT	PTM.08.08/98
Clase de exactitud F ₁ , F ₂ OIML y equivalentes	1 mg a 5 kg	1/3 EMT	
F ₂ OIML	20 kg	1/3 EMT	
M ₁ OIML y equivalentes	1 mg a 50 kg	1/3 EMT	
M ₂ OIML y equivalentes	100 mg a 50 kg	1/3 EMT	
M ₃ OIML y equivalentes	1 g a 50 kg	1/3 EMT	

4 y 5 (ANSI/ASTM-E617)	25 kg	1/3 EMT
M3 (3,3/10 000; 1,7/10 000; 0,5/10 000)	50 kg a 1 000 kg	1/3 EMT
OIML y similares		

Responsables técnicos: Jesús Vázquez Monroy Carlos Ortiz García Edgar Rosas Facio

Marco A. Ojeda Sánchez Gabriel Gallardo Camacho

Magnitud Masa	Alcance Máximo	Resolución	Norma de referencia o procedimiento
Instrumentos para pesar	5 g	0,02 mg	PTM.07.08/98
	50 g	0,05 mg	
	200 g	0,10 mg	
	500 g	0,20 mg	
	1 kg	0,50 mg	
	2 kg	1,0 mg	
	5 kg	2,0 mg	
	10 kg	5,0 mg	
	20 kg	20 mg	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000 kg	50 g	
	2 000 kg	100 g	
	5 000 kg	200 g	
Instrumentos para pesar	10 000 kg	500 g	PTM.09.08/98
	20 000 kg	1 kg	
	50 000 kg	2 kg	
	100 000 kg	5 kg	
	200 000 kg	10 kg	

Responsables técnicos: Jesús Vázquez Monroy Carlos Ortiz García Edgar Rosas Facio

Marco A. Ojeda Sánchez Gabriel Gallardo Caballero

Magnitud Masa	Alcance Máximo	Resolución	Norma de referencia o procedimiento
Instrumentos para pesar	5 000 kg	500 g	PTM.09.08/98
	10 000 kg	2 kg	
	20 000 kg	5 kg	
	50 000 kg	5 kg	
	100 000 kg	5 kg	
	200 000 kg	10 kg	

Responsables técnicos:

Rafael Ramírez Ríos José C. Galindo López

René Rosas Bahena

Ma	gnitud	Alcance Máximo	Resolución	Norma de referencia o
l l	Masa			procedimiento

ércoles 26 de junio de 2002

DIARIO OFICIAL

(Segunda Sección) 188

Instrumentos para pesar	10 g	0,1 mg	PTM.07.08/98
	100 g	0,2 mg	
	500 g	0,50 mg	
	2 kg	2,0 mg	
	5 kg	20 mg	
	10 kg	50 mg	
	20 kg	100 mg	
	50 kg	200 mg	
	100 kg	20 g	
	200 kg	50 g	
	500 kg	100 g	
	1 000 kg	200 g	
	2 000 kg	500 g	

Responsables técnicos: Rodolfo Sandoval Esparza

Juan C. Barrios Velázquez

Magnitud Masa	Alcance Máximo	Resolución	Norma de referencia o procedimiento
Instrumentos para pesar	10 g	0,1 mg	PTM.07.08/98
	100 g	0,2 mg	
	500 g	0,50 mg	
	2 kg	2,0 mg	
	5 kg	20 mg	
	10 kg	50 mg	
	20 kg	100 mg	
	50 kg	200 mg	
	100 kg	20 g	
	200 kg	50 g	
	500 kg	100 g	
	1 000 kg	200 g	
	2 000 kg	500 g	
	10 000 kg	500 g	PTM.09.08/98
	20 000 kg	1 kg	
	50 000 kg	2 kg	
	100 000 kg	5 kg	
	200 000 kg	10 kg	
		_	

Responsables técnicos: Genovevo Hernández Isabel Javier Olmedo Abarca Carlos Hurtado González

Alberto Azotla Chávez Iturbide Negrón González

Magnitud Masa	Alcance	Resolución	Norma de referencia o procedimiento
Calibración de Instrumentos para	5 g	0,02 mg	PTM.07.08/98
pesar	50 g	0,05 mg	
	200 g	0,10 mg	
	500 g	0,20 mg	
	1 kg	0,50 mg	
	2 kg	1,0 mg	
	5 kg	2,0 mg	
	10 kg	5,0 mg	
	20 kg	20 mg	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000 kg	50 g	
	2 000 kg	100 g	
	5 000 kg	200 g	

Calibración de Instrumentos para	10 000 kg	500 g	PTM.09.08/98
pesar	20 000 kg	1 kg	
	50 000 kg	2 kg	
	100 000 kg	5 kg	
	200 000 kg	10 kg	

Magnitud Masa	Alcance	Resolución	Norma de referencia o procedimiento
Calibración de Instrumentos para	10 g	0,1 mg	PTM.07.08/98
pesar	100 g	0,2 mg	
	500 g	0,50 mg	
	2 kg	2,0 mg	
	5 kg	20 mg	
	10 kg	50 mg	
	20 kg	100 mg	
	50 kg	200 mg	
	100 kg	20 g	
	200 kg	50 g	
	500 kg	100 g	
	1 000 kg	200 g	
	2 000 kg	500 g	
Calibración de Instrumentos para	5 000 kg	500 g	PTM.09.08/98
pesar	10 000 kg	2 kg	
	20 000 kg	5 kg	
	50 000 kg	5 kg	
	100 000 kg	5 kg	
	200 000 kg	10 kg	

Signatarios autorizados:

Miércoles 26 de junio de 2002

Omar Solís de la Rosa

Jesús Edgardo Pérez Fuentes

Aprobación	Normas Oficiales Mexicanas Aprobadas	Camp	o de aplicació	'n
Secretaría de	NOM-010-SCFI-1994	Pruebas	metrológicas	para
Economía: M-37	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumer	ntos para pesar.	
	NOM-038-SCFI-2000	Pruebas	metrológicas	para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1, 7.2.3.2, 8.1,	pesas.		
	8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1,			
	14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1			

Instrumentación Básculas Hidráulicos e Industriales, S.A. de C.V. Sr. Sergio Hernández Reyes

Emilio Carranza No. 2 Col. Buena Vista Sur 96730, Minatitlán, México Teléfono: (922) 223 76 76 Fax: (922) 223 41 98

Acreditación: M-39

Aprobación Secretaría de Economía: M-39

Vencimiento: 2003-09-18

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de Instrumentos para	50 kg	10 g	NOM-010-SCFI-1994
pesar	100 kg	20 g	
	300 kg	50 g	
	600 kg	100 g	
	1 t	200 g	
	10 t	1 000 g	

20 t	2 kg	
50 t	5 kg	
100 t	10 kg	
160 t	20 kg	

Signatarios autorizados: Sergio Hernández Reyes Salvador Sánchez Marcos

Gustavo Cortés Díaz Pedro Martínez Sánchez

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: M-39	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.

Ing. Diana Eugenia Cantú Flores/Seprocal de México

Corregidora No. 58 Col. San Pedro Mártir 76117, Querétaro, Querétaro Teléfono: (442) 254 40 04

Fax: (442) 254 40 24 Acreditación: M-41 Vencimiento: 2004-02-19

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de Instrumentos para	5 g	0,02 mg	NOM-010-SCFI-1994
pesar	50 g	0,05 mg	
	200 g	0,1 mg	
	500 g	0,2 mg	
	1 kg	0,5 mg	
	2 kg	2 mg	
	5 kg	5 mg	
	10 kg	10 mg	
	20 kg	2 g	
	50 kg	10 g	
	100 kg	20 g	
	200 kg	50 g	
	500 kg	100 g	
	1 000 kg	200 g	

Signatarios autorizados: Diana Eugenia Cantú Flores

José Pedro Sixtos Morales

Angel Herrera Franco

Insco de México, S.A. de C.V. Ing. Jorge Mendoza Illescas Libramiento Norte No. 5318 Col. Alfaro

37000, León, Guanajuato Teléfono: (44) 771 06 71 Fax: (44) 771 09 11

Dirección de correo electrónico: leon@inscointernational.com

Acreditación M-44

Vencimiento: 2004-03-19

Magnitud Masa	Clase	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de pesas	E ₂	1 mg a 20 kg	1/3 del EMT	NOM-038-SCFI-2000
	F ₁	1 mg a 20 kg	1/3 del EMT	
	F ₂	1 mg a 20 kg	1/3 del EMT	
	M ₁	1 mg a 20 kg	1/3 del EMT	
	M_2	100 mg a 20 kg	1/3 del EMT	

M_3	1 g a 20 kg	1/3 del EMT	
Clase 1, 2, 3, 4, 5, 6 y equivalentes	1 mg a 25 kg	1/3 del EMT	ANSI/ASTM 617

Signatarios autorizados para calibración de pesas clases de exactitud E2 e inferiores:

Eric Rojas Sánchez Jorge Mendoza Illescas Fernando Mora Hernández César Cruz Ramírez

Signatarios autorizados para calibración de pesas clases de exactitud F1 e inferiores y para clases

1 e inferiores:

Jorge Mendoza Illescas Eric Rojas Sánchez Fernando Mora Hernández César Cruz Ramírez

José Luis Castrejón López Miguel Angel Martínez Carreño

Jesús Olivares Terrazas

Magnitud	Alcance	Resolución	Norma de referencia
Masa			
Calibración de Instrumentos para	10 g	0,02 mg	NOM-010-SCFI-1994
pesar	100 g	0,05 mg	
	250 g	0,1 mg	
	400 g	0,2 mg	
	1 kg	0,5 mg	
	2 kg	1 mg	
	3 kg	5 mg	
	5 kg	10 mg	
	10 kg	50 mg	
	20 kg	1 g	
	40 kg	2 g	
	50 kg	5 g	
	200 kg	10 g	
	400 kg	20 g	
	1 000 kg	50 g	
	2 000 kg	100 g	

Signatarios autorizados para calibración de instrumentos para pesar: Jorge Mendoza Illescas José Luis Castrejón López Fernando Mora Hernández César Cruz Ramírez

Eric Rojas Sánchez Miguel Angel Martínez Carreño

Jesús Olivares Terrazas

Magnitud Densidad	Alcance	Incertidumbre k=2
Densidad de Sólidos	1 100 kg/m ³ a 30 000 kg/m ³	0,01%

Signatarios autorizados para densidad de sólidos:

Jorge Mendoza Illescas Eric Rojas Sánchez Fernando Mora Hernández César Cruz Ramírez

José Luis Castrejón López Miguel Angel Martínez Carreño

Jesús Olivares Terrazas

Asesoría Integral de Básculas, S.A. de C.V. Téc. José Manuel Lumbreras Peña

74 Poniente No. 511 Col. 16 de Septiembre 72230, Puebla, Puebla

Teléfonos: (222) 220 30 51, (222) 220 41 12 Fax: (222) 220 02 67

Dirección de correo electrónico: aibsa@prodigy.net.mx

Acreditación: M-47

Aprobación Secretaría de Economía: M-47

Vencimiento: 2003-09-18

Magnitud	Alcance	Resolución	Norma de referencia
Masa			

Calibración de instrumentos	Hasta 2 g	0,01 mg	NOM-010-SCFI-1994
para pesar	Hasta 200 g	0,1 mg	
	Hasta 500 g	0,2 mg	
	Hasta 2 kg	2 mg	
	Hasta 5 kg	10 mg	
	Hasta 20 kg	20 mg	
	Hasta 50 kg	200 mg	
	Hasta 200 kg	20 g	
	Hasta 500 kg	100 g	
	Hasta 2 000 kg	200 g	

Responsables técnicos:

Téc. José Manuel Lumbreras Peña

Porfirio Antonio Escalante

Ma. de Lourdes de los Santos Flores

Ing. Juan José Márquez Limón

David Gutiérrez Limón

Ingeniería Industrial de Precisión Carbarín, S.A. de C.V.

Ing. Heriberto M. Carbarín Rivera

Río Balsas No. 100 Col. Cuauhtémoc 06500, México, D.F. Teléfono: (55) 5333 6318 Fax: (55) 5333 6318 Acreditación: M-48

Aprobación Secretaría de Economía: M-48

Vencimiento: 2003-07-17

Magnitud	Alcance	Clase	Incertidumbre	Norma de referencia
Masa				
Calibración de pesas	20 kg	M_1 , M_2 , M_3	± 1/3 EMT	NOM-038-SCFI-2000

Magnitud	Alcance	Resolución	Norma de referencia
Masa	Hasta		
Calibración de	50 g	0,1 mg	NOM-010-SCFI-1994
instrumentos para pesar	200 g	0,2 mg	
	500 g	1 mg	
	2 kg	2 mg	
	5 kg	10 mg	
	20 kg	20 mg	
	50 kg	100 mg	
	100 kg	5 g	
	200 kg	20 g	
	2 000 kg	200 g	
	5 000 kg	1 kg	
	10 000 kg	2 kg	
	25 000 kg	5 kg	
	25 000 kg	5 kg	

Responsables técnicos:

Heriberto Mucio Carbarín Rivera Maximino Carbarín Valencia Arturo Israel Carbarín Carbarín Guillermo Hugo Nava Reyes Heriberto Carbarín Carbarín

Aprobación	Normas Oficiales Mexicanas Aprobadas	Campo de aplicación

Secretaría de	NOM-010-SCFI-1994	Pruebas metrológicas para
Economía: M-48	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.
	NOM-038-SCFI-2000	Pruebas metrológicas para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1, 7.2.3.2, 8.1,	pesas.
	8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1,	
	14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1	

Básculas Braunker, S.A. de C.V., División Patrón Braunker

Ing. Federico Jaime Okhuysen Morales

Trípoli No. 413 Col. Portales 03300, México, D.F. Teléfono: (55) 56 05 18 53 Fax: (55) 56 04 35 31

Dirección de correo electrónico: fibra@infosel.net.mx

Acreditación: M-49

Aprobación Secretaría de Economía: M-49

Vencimiento: 2003-06-14

Magnitud Masa	Alcance Máximo	Resolución	Norma de referencia o procedimiento
Instrumentos para pesar	10 g	0,1 mg	BRAUNKER-PT-04,
	50 g	0,2 mg	BRAUNKER-PT-05,
	200 g	0,5 mg	BRAUNKER-PT-15
	500 g	1 mg	
	2 kg	2 mg	
	5 kg	10 mg	
	20 kg	20 mg	
	50 kg	200 mg	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	

Magnitud Masa	Alcance Máximo	Resolución	Norma de referencia o procedimiento
	1 000 kg	50 g	
	2 000 kg	100 g	
	5 000 kg	200 g	
	10 000 kg	500 g	
	20 000 kg	1 000 g	
	30 000 kg	2 000 g	

Magnitud Masa	Alcance Máximo	Incertidumbre k=2	Norma de referencia o procedimiento
Calibración de pesas			BRAUNKER-PT-03
M_1 , M_2 , y M_3	1 g a 20 kg	1/3 EMT	
5 (ANSI/ASTM E617)	25 kg	400 mg	

Responsables técnicos:

Ing. Federico Jaime Okhuysen Morales Ing. Juan Alberto González Alvarado

Ing. Rosa María Herrera Hernández

Aprobación	Normas Oficiales Mexicanas Aprobadas	Campo de aplicación
Secretaría de Economía: M-49	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.
	NOM-038-SCFI-2000	Pruebas metrológicas para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2,	pesas.
	7.2.3.1, 7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1, 12.2,	
	14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1, 14.4.2,	
	14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1	

Centro de Investigación Científica de Yucatán, A.C.

Ing. Manuel Jesús Alvarez Díaz

Calle 43 No. 130

Col. Chuburná de Hidalgo 97200, Mérida, Yucatán

Teléfonos: (999) 981 3921, (999) 981 3923

Fax: (999) 981 3900 Acreditación: M-50

Dirección de correo electrónico: malvarez@cicy.mx

Aprobación Secretaría de Economía: M-50

Vencimiento: 2003-07-17

Magnitud	Alcance	Resolución	Norma de referencia
Masa	Hasta		
Calibración de Instrumentos	50 g	0,1 mg	NOM-010-SCFI-2000
para pesar	200 g	0,2 mg	
	500 g	1 mg	
	2 kg	2 mg	
	5 kg	10 mg	
	20 kg	20 mg	
	50 kg	100 mg	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000 kg	50 g	

Magnitud	Método	Alcance	Resolución	Norma de referencia
Masa				
Calibración de	Doble	100 mg a 20 kg	1/3 EMT	NOM-038-SCFI-2000
pesas	Sustitución	clase F ₁ y equivalentes		
		1 mg a 50 kg, clases F ₂ , M ₁ y equivalentes	1/3 EMT	
		100 mg a 50 kg, clase M ₂ y equivalentes	1/3 EMT	

Responsables técnicos:

Ing. José Ricardo Pech Poot

Ing. Rosario de Alma Belman Garrido

Ing. Javier Enrique Escalante Estrella

Tamoxlab, S.A. de C.V. Ing. José Luis Ríos Piñeiro Emiliano Zapata No. 305-1 Col. Ampliación Unidad Nacional 89510, Cd. Madero, Tamaulipas Teléfono: (12) 11 31 84

Fax: (12) 11 31 84 Acreditación: M-54 Vencimiento: 2004-03-19

Magnitud	Alcance	Resolución	Norma de referencia
Masa			
Calibración de	10 g	0,1 mg	NOM-010-SCFI-1994
instrumentos para pesar	100 g	0,2 mg	
	500 g	0,5 mg	
	2 kg	2 mg	
	5 kg	5 mg	
	10 kg	10 mg	
	20 kg	20 mg	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000 kg	50 g	

Magnitud Masa	Clase	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de pesas	F ₁	100 mg a 200 g	1/3 del EMT	NOM-038-SCFI-2000
	F ₂	1 mg a 5 kg	1/3 del EMT	
	M ₁	1 mg a 20 kg	1/3 del EMT	
	M_2	100 mg a 20 kg	1/3 del EMT	
	M_3	1 g a 25 kg	1/3 del EMT	
	0, 00033 kg/kg	200 kg a 500 kg	1/3 del EMT	
	4, 5, 6	1 mg a 25 kg	1/3 del EMT	ASTM E617
	P, Q, T	1 mg a 25 kg	1/3 del EMT	NBS Circular

Signatarios autorizados: José Luis Ríos Piñeiro Sergio Salas Pereda

Alfonso Tesillos Marcelino

José Guadalupe Hernández Murueta

Oscar Arcega Pérez Ing. Héctor Ahumada Elías Arteaga No. 174 Pte. Centro 76000, Querétaro, Querétaro Teléfono: (42) 15 18 16

Fax: (42) 15 59 80

Acreditación: M-55 Aprobación Secretaría de Economía: M-55

Vencimiento: 2002-05-03

Magnitud	Intervalo	Resolución
Masa		

Miércoles	26	de	iunio	de	2002

DIARIO OFICIAL

(Segunda Sección) 196

Instrumentos para pesar		
Clase de exactitud	100 g a 10 kg	1 mg
Especial I	100 g a 100 kg	1 mg
Fina II	1 kg a 1 000 kg	100 mg
Media III	1 kg a 1 000 kg	5 g
Ordinaria IIII		

Responsable técnico:

Ing. Héctor Ahumada Elías

	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: M-55	NOM-010-SCFI-1994	Aprobación
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	

Corporación Mexicana de Investigación en Materiales, S.A. de C.V.

M. en C. Juan Genaro Osuna Alarcón

Blvd. Oceanía No. 190 Fraccionamiento Saltillo 400 25290, Saltillo, Coahuila Teléfono: (84) 11 32 00 Fax: (84) 15 21 51

Dirección de correo electrónico: yfraga@cominsa.com.mx

Acreditación: M-56 Vencimiento: 2002-06-06

Magnitud Masa	Intervalo	Resolución
Instrumentos para pesar		
	1 mg a 200 g	1 mg
	2 mg a 500 g	2 mg
Especial I, Fina II, Media III y	5 mg a 2 000 g	5 mg
Ordinaria IIII	20 mg a 5 000 g	20 mg
	50 mg a 10 000 g	50 mg
	100 mg a 15 000 g	100 mg

Magnitud Masa	Intervalo	Incertidumbre k=2
Calibración de pesas		
F ₂	1 mg a 200 g	1/3 del EMT
M ₁	1 mg a 2 kg	1/3 del EMT
M_2	100 mg a 2 kg	1/3 del EMT
M_3	1 g a 2 kg	1/3 del EMT

Responsable técnico: Técnico:

Yolanda Fraga Torres Alejandra Espinoza Pérez

Juan José Manzanares Ceballos

Agrario No. 14 local A Col. San Andrés Tomatlán 09800, México, D.F.

Teléfono y fax: (55) 5607 9688

Acreditación: M-57

Dirección de correo electrónico: danielmanzanarez@aol.com

Vencimiento: 2002-06-06

Magnitud	Intervalo	Resolución		
Masa				

Instrumentos para pesar		
Clase de exactitud		
Especial	1 mg a 5 g	0,005 mg
Especial	1 mg a 50 g	0,01 mg
Especial	1 mg a 100 g	0,02 mg
Especial	1 mg a 200 g	0,05 mg
Especial	1 mg a 1 kg	0,5 mg
Especial	5 mg a 2 kg	5 mg
Especial	10 mg a 5 kg	10 mg
Especial	20 mg a 10 kg	20 mg
Fina	1 g a 20 kg	1 g
Fina	5 g a 100 kg	5 g
Fina	10 g a 200 kg	10 g
Fina	20 g a 400 kg	20 g
Media	50 g a 500 kg	50 g
Media	100 g a 1 000 kg	100 g

Técnicos: Responsable técnico:

Daniel Manzanares Ceballos Juan José Manzanares Ceballos Armando Manzanares Ceballos

Qualitecnia, S.C.

Ing. Rodolfo Emmanuel Luna Villegas

Cuauhtémoc No. 45-A Col. Centro Histórico 76150, Querétaro, Querétaro Teléfono: (42) 12 82 23

Fax: (42) 12 89 09 Acreditación: M-58 Vencimiento: 2002-10-17

Magnitud Masa	•		
Instrumentos para pesar Clase de exactitud			
II, III y IIII	1 mg a 50 g	1 mg	
II, III y IIII	2 mg a 100 g	2 mg	
II, III y IIII	5 mg a 200 g	5 mg	
II, III y IIII	10 mg a 500 g	10 mg	
II, III y IIII	20 mg a 1 kg	20 mg	
II, III y IIII	50 mg a 2 kg	50 mg	
II, III y IIII	100 mg a 5 kg	100 mg	
II, III y IIII	200 mg a 10 kg	200 mg	
II, III y IIII	500 mg a 20 kg	500 mg	
II, III y IIII	1 g a 50 kg	1 g	
II, III y IIII	2 g a 115 kg	2 g	

Responsables técnicos:

Ing. Alvaro Alvarez Pérez

Ing. Rodolfo Luna Villegas

Instituto Mexicano del Petróleo Ing. Enrique Ovando Ishikahua Eje Central Lázaro Cárdenas No. 152 Col. San Bartolo Atepehuacan

07730, México, D.F. Teléfono: (55) 5333 6906 Fax: (55) 5333 6920 Acreditación: M-59

Aprobación Secretaría de Economía: M-59

Vencimiento: 2002-10-17

Magnitud Masa	Intervalo	Incertidumbre	
F ₁	1 mg a 100 g	1/3 del EMT	
F_2	1 mg a 5 kg	1/3 del EMT	
M_1	1 mg a 20 kg	1/3 del EMT	
M_2	100 mg a 20 kg	1/3 del EMT	
M ₂	1 g a 25 kg	1/3 del EMT	

Magnitud Masa	Intervalo	Resolución
Instrumentos para pesar		
Especial I	Hasta 200 g	0,1 mg
Fina II	Hasta 20 kg	1 mg
Media III	Hasta 20 kg	5 g
Ordinaria IIII	Hasta 50 kg	100 g

Responsables técnicos:

Ing. Enrique Ovando Ishikaua

Téc. Octavio A. Claudio Gómez

Aprobación	Normas Oficiales Mexicanas Aprobadas	Campo de aplicación
Secretaría de Economía: M-59	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.
	NOM-038-SCFI-2000	Pruebas metrológicas para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2,	pesas.
	7.2.3.1, 7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1, 12.2,	
	14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1, 14.4.2,	
	14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1	

Servicios Certificados Integrales, S.C.

Ing. Javier Doniz Rivera

Viveros de la Hacienda No. 13-7

Col. Viveros del Valle

54060, Tlalnepantla, Estado de México

Teléfono: (55) 5236 3187 Fax: (55) 5236 3105

Dirección de correo electrónico: secei@axtel.net

Acreditación: M-60 Vencimiento: 2002-12-19

Magnitud Masa	Alcance	Resolución
Instrumentos para pesar Especial I, Fina II, Media III y Ordinaria IIII	1 mg a 400 g 1 mg a 700 g	0, 1 mg 1 mg

Responsables técnicos: Técnicos:

Juan Javier Doniz Rivera Adrián Vázquez Iturbe Francisco López Escobedo Jorge Israel Ramírez Pérez

Eligio Galindo Cruz José Miguel Licea Flores

Técnicos Asociados Básculas Electrónicas, S.A. de C.V.

Ing. Teodoro Overhage Kruger

Polígonos No. 116

Conjunto Industrial Arco Vial 67500, Monterrey, Nuevo León Teléfono: (81) 8381 0202

Fax: (81) 8381 0435

Dirección de correo electrónico: tabesa@prodigy.net.mx

Acreditación: M-61

Aprobación Secretaría de Economía: M-61

Vencimiento: 2003-01-16

Calibración de pesas Masa	Alcance	Incertidumbre k=2
F ₂	1 mg a 10 kg	1/3 EMT
$\overline{M_{1}}$	1 mg a 20 kg	1/3 EMT
M_2	100 mg a 20 kg	1/3 EMT
$\overline{M_{3}}$	1 g a 20 kg	1/3 EMT
	25 kg	420 mg
	500 kg	15 g

Magnitud Masa	Alcance	Resolución
Instrumentos para pesar	210 g	0,1 mg
	2 kg	0,5 mg
	10 kg	1 mg
	40 kg	5 mg
	100 kg	100 mg
	200 kg	5 g
	400 kg	10 g
	600 kg	20 g
	1 200 kg	50 g
	4 000 kg	100 g
	6 000 kg	200 g
	10 000 kg	500 g
	20 000 kg	1 kg
	30 000 kg	2 kg
	40 000 kg	5 kg
	50 000 kg	5 kg
	60 000 kg	10 kg
	80 000 kg	10 kg
	90 000 kg	10 kg
	100 000 kg	10 kg
	200 000 kg	20 kg

Responsables técnicos: Ing. Rudolf A. Overhage A. Técnicos: Ing. Teodoro R. Overhage A.

Ing. Teodoro R. Overhage A.
Téc. Gilberto Hernández Lara

Ing. Wilhelm H. Overhage A.
Téc. Omar A. Favela S.

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: M-61	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.

Ing. Oscar Noé Segovia Bernal

Centro de Investigación y Asesoría Tecnológica en Cuero y Calzado, A.C.

Ing. José Julio Mares Hernández Omega No. 201

Omega No. 201 Fraccionamiento Delta 037540, León, Guanajuato Teléfono: (477) 710 00 11 Fax: (477) 710 00 11

Dirección de correo electrónico: jlopez@ciatec.mx

Acreditación: M-62

Aprobación Secretaría de Economía: M-62

Vencimiento: 2003-01-16

Magnitud	Alcance	Incertidumbre
Masa		k=2

Miércoles	26	de	innio	de	2002
14110100103	20	uc	Juino	uc	2002

DIARIO OFICIAL

(Segunda Sección)

Calibración de pesas		
F ₁	1 g a 10 kg	1/3 EMT
F ₂	20 mg a 10 kg	1/3 EMT
M_1	1 mg a 10 kg	1/3 EMT
M_2	100 mg a 10 kg	1/3 EMT
M_3	1 g a 10 kg	1/3 EMT

Responsables técnicos:

Ing. Juan Manuel López López

Ing. Elvia Funes Rodríguez

Ing.	José	Julio	Mares	Hern	ández

Magnitud Masa	Alcance máximo	Resolución
Instrumentos para pesar	1 g	0,01 mg
	10 g	0,02 mg
	100 g	0,05 mg
	200 g	0,1 mg
	1 kg	0,5 mg
	2 kg	1 mg
	10 kg	5 mg
	20 kg	10 mg
	40 kg	20 mg
	50 kg	50 mg

Responsables técnicos:

Ing. Elvia Funes Rodríguez

Ing. José Julio Mares Hernández

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: M-62	NOM-038-SCFI-2000	Pruebas metrológicas para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1, 7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1, 14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1	pesas.

Laboratorio de Pruebas de Equipos y Materiales de la CFE

Ing. Jorge Adolfo Pérez Guzmán

Avenida Apaseo Ote. s/n

Ciudad Industrial

35641, Irapuato, Guanajuato Teléfono: (4) 623 94 78 Fax: (4) 623 94 06

Dirección de correo electrónico: jperezg@cfe.gob.mx

Acreditación: M-63 Aprobación Secretaría de Economía: M-63

Vencimiento: 2003-01-16

Magnitud Masa	Alcance	Resolución
Instrumentos para pesar	1 g	0,01 mg
	10 g	0,02 mg
	100 g	0,05 mg
	200 g	0,1 mg
	400 g	0,2 mg
	1 kg	0,5 mg
	2 kg	10 mg
	4 kg	20 mg
	10 kg	50 mg
	20 kg	100 mg
	40 kg	200 mg

(Segunda Sección)

Magnitud Masa	Alcance	Incertidumbre k=2
Calibración de pesas		N-Z
E ₂ , F ₁ , F ₂ , M ₁	1 mg a 1 kg	1/3 del EMT
M ₂	100 mg a 1 kg	1/3 del EMT
M_3	1 g a 1 kg	1/3 del EMT
E ₂ , F ₁ , F ₂ , M ₁ , M ₂ , M ₃	5 kg	1/3 del EMT
M ₁	1 mg a 20 kg	1/3 del EMT
M ₂	100 mg a 20 kg	1/3 del EMT
M_3	1 g a 20 kg	1/3 del EMT
	25 kg	420 mg

Responsables técnicos: Edna Cointa Marure Rojano Alvaro Valdivia Barragán Sergio Ochoa Márquez

David Jacobo Obregón Heriberto Bretón Silva

Aprobación	Normas Oficiales Mexicanas Aprobadas	Camp	o de aplicació	'n
Secretaría de Economía: M-63	NOM-010-SCFI-1994		metrológicas ntos para pesar.	
Leonomia. W 65	Incisos: 5.6.1, 5.6.2, 5.8, 5.10 NOM-038-SCFI-2000	Pruebas		para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1, 7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1,	pesas.		
	14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1			

Unidad de Control de Insumos del Instituto Mexicano del Seguro Social Ing. Luis Enrique Arteaga Granados

José Urbano Fonseca No. 6 Col. Magdalena de las Salinas

07750, México, D.F. Teléfono: (55) 5747 3500 ext. 1361

Fax: (55) 5754 6590

Dirección de correo electrónico: earteaga@compaq.net.mx Acreditación: M-64

Vencimiento: 2003-04-17

Magnitud Masa	Alcance máximo	Resolución
Instrumentos para pesar	5 g	0,005 mg
	50 g	0,01 mg
	100 g	0,02 mg
	300 g	0,05 mg
	500 g	0,10 mg
	1 kg	0,20 mg
	3 kg	0,50 mg
	5 kg	1,00 mg
	12 kg	5,00 mg
	20 kg	50 mg
	30 kg	200 mg

Responsable técnico:

Ing. Luis Enrique Arteaga Granados

Centro de Validaciones y Calibraciones de Occidente, S.A. de C.V

Lic. Juan Carlos Jiménez Arias

Sirio No. 5644 Col. Arboledas

45070, Zapopan, Jalisco Teléfono: (3) 133 1859 Fax: (3) 634 1104 Acreditación: M-65 Vencimiento: 2003-05-15

Magnitud	Alcance	Incertidumbre	Norma de referencia
Masa	(valores nominales)	k=2	o procedimiento

Calibración de pesas			NOM-038-SCFI-2000
M_1, M_2, M_3	1 g a 200 g	1/3 EMT	
M_2 , M_3	100 mg a 200 g	1/3 EMT	
M_1, M_2, M_3	20 kg	1/3 EMT	
M_2, M_3	10 kg	1/3 EMT	
M_2	5 kg	1/3 EMT	

Magnitud Masa	Alcance máximo	Resolución	Norma de referencia o procedimiento
Instrumentos para pesar	10 g	0,02 mg	NOM-010-SCFI-1994
	100 g	0,05 mg	
	200 g	0,1 mg	
	300 g	0,5 mg	
	500 g	1 mg	
	1 kg	5 mg	
	2 kg	10 mg	
	3 kg	20 mg	
	10 kg	50 mg	
	20 kg	100 mg	
	35 kg	200 mg	

Responsables técnicos:

Juan Carlos Jiménez Arias José Fernando Mendoza Valencia Carlos Arizti Jiménez Claudia Mata Mejía Joel Torres Cristerna Víctor Medina Muciño

Vidriera Los Reyes, S.A. de C.V.

Ing. Francisco Murillo J.

Av. Presidente Juárez No. 2039

Col. Los Reyes

54090, Tlanepantla, Estado de México

Teléfono: 5227 9624

Fax: 5390 6780

Dirección de correo electrónico: labmetrologia@vto.com

Acreditación: M-66 Vencimiento: 2003-06-19

Magnitud Masa	Alcance Máximo	Resolución	Norma de referencia o procedimiento
Instrumentos para pesar	10 g	0,10 mg	VR-PO-39-002
	100 g	0,20 mg	
	500 g	0,50 mg	
	2 kg	2,0 g	
	5 kg	5,0 g	
	10 kg	10,0 g	
	20 kg	2,0 g	
	50 kg	10 g	
	100 kg	20 g	
	200 kg	50 g	
	500 kg	100 g	

Responsables técnicos:

José Fernando Tabares C. Marco Antonio Roa Torres

Rodrigo Alcántara Martínez

Calibraciones Profesionales e Ingeniería, S.A. de C.V.

Ing. Roberto Luis Villeda Rubín Camino Real de Calacoaya No. 65

Col. Calacoaya

52990, Atizapán, Estado de México

Teléfono: (55) 5362 7431

Fax: (55) 5362 7439

Dirección de correo electrónico: roberto.villeda@calpro.com.mx

Acreditación: M-67 Vencimiento: 2003-10-16

Magnitud	Alcance	Incertidumbre k=2
Densidad		
(Calibración de Densímetros a frecuencia)	700 kg/m3 a 1 700 kg/m3	0, 2 kg/m3

Signatarios autorizados:

Ing. Roberto Luis Villeda Rubín Ing. José Julián Aranda Roberto Jaime Méndez Mario Marrón Oliver Marcos López Ramírez Joaquín Salazar Escorza

Ing. Fabiola Muñoz Roldán Ing. Jesús Rodríguez Monroy Ricardo Pacheco Aguilar Isabel Alba Villasana Roberto Villeda Suárez

JL Básculas del Golfo, S.A. de C.V. Ing. José Luis de los Santos Carrasco

Av. 18 de Marzo No. 27

Col. Obrera

96740, Minatitlán, Veracruz Teléfono: (922) 222 92 99 Fax: (922) 223 23 52 Acreditación: M-68

Dirección de correo electrónico: basculas@moomsa.com.mx

Aprobación Secretaría de Economía: M-68

Vencimiento: 2003-11-23

Magnitud Masa	Alcance Hasta	Resolución	Norma de referencia
Calibración de	10 g	0,10 mg	NOM-010-SCFI-1994
Instrumentos para pesar	50 g	0,20 mg	Incisos: 5.6.1, 5.6.2, 5.8,
	500 g	0,5 mg	5.10
	2 kg	2,0 mg	
	5 kg	5,0 mg	
	10 kg	10 mg	
	20 kg	100 mg	
	50 kg	10 g	
	200 kg	50 g	
	500 kg	100 g	
	1 000 kg	200 g	
	2 000 kg	100 g	
	5 000 kg	200 g	
	10 000 kg	500 g	
	20 000 kg	1 kg	
	50 000 kg	2 kg	
	100 000 kg	5 kg	
	150 000 kg	10 kg	

Signatario autorizado: Ing. Beatriz Gómez Aquino

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: M-68	NOM-010-SCFI-1994	Pruebas metrológicas para
	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumentos para pesar.

Col. Industrial 07800, México, D.F. Teléfono: (55) 5750 2753 Fax: (55) 5236 1075

Dirección de correo electrónico: tecnicosesp@hotmail.com

Acreditación: M-69 Vencimiento: 2004-02-19

Magnitud Masa	Alcance	Resolución	Norma de referencia
Instrumentos para pesar	5 g	0,02 mg	NOM-010-SCFI-1994
	50 g	0,05 mg	
	200 g	0,1 mg	
	500 g	0,5 mg	
	2 kg	2 mg	
	5 kg	5 mg	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1000 kg	50 g	

Signatarios autorizados:

Lic. Gilberto Tello Martínez Ing. Oscar Flores Martínez

Ing. Miguel Vázquez Contreras

Ingeniería en Sistemas y Pesaje, S.A. de C.V.

Ing. Enrique Contreras Monarrez

Laguna Luna No. 6 Col. Cumbria

54740, Cuautitlán Izcalli, Estado de México

Teléfono: (55) 5871 5011 Fax: (55) 5881 6703

Dirección de correo electrónico: calibracion@ispbasculas.com, laboratorio@ispbasculas.com

Acreditación: M-70

Aprobación Secretaría de Economía: M-70

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de instrumentos	10 g	0,1 mg	NOM-010-SCFI-1994
para pesar	100 g	0,2 mg	
	500 g	0,5 mg	
	2 kg	2 mg	
	5 kg	5 mg	
	10 kg	10 mg	
	20 kg	20 mg	
	50 kg	200 mg	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000	50 g	
	2 000	100 g	
	5 000	200 g	
	10 000	500 g	
	20 t	1 kg	
	50 t	2 kg	
	78 t	5 kg	

Magnitud	Alcance	Clase	Incertidumbre	Norma de referencia
Masa			k=2	
Calibración de pesas	1 kg, 2 kg, 5 kg, 10 kg, 20 kg	M_1 , M_2 , M_3	1/3 del EMT	NOM-038-SCFI-2000
	1 kg, 2 kg, 3 kg, 5 kg, 10 kg, 20 kg, 25 kg	5, 6	1/3 del EMT	ANSI/ASTM E617
	1 kg, 2 kg, 3 kg, 5 kg, 10 kg, 20 kg, 25 kg	F	1/3 del EMT	NIST

Signatarios autorizados: Enrique Contreras Monarrez Rubén Lara Velasco

Humberto Echavarría Mora

Aprobación	Normas Oficiales Mexicanas Aprobadas	Camp	o de aplicació	'n
Secretaría de	NOM-010-SCFI-1994	Pruebas	metrológicas	para
Economía: M-70	Incisos: 5.6.1, 5.6.2, 5.8, 5.10	instrumer	ntos para pesar.	
	NOM-038-SCFI-2000	Pruebas	metrológicas	para
	Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1, 7.2.3.2, 8.1,	pesas.		
	8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1, 14.1.2, 14.4.3,			
	14.4.4.1, 14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1			

Pablo Martínez Ramírez Santiago No. 11-2 Col. Los Reyes Coyoacán 04330, México, D.F. Teléfono y fax: (55) 5617 6056

Acreditación: M-71 Vencimiento: 2004-01-15

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de instrumentos	5 g	0,2 mg	NOM-010-SCFI-1994
para pesar	50 g	0,5 mg	
	200 g	0,1 mg	
	500 g	20 mg	
	1 kg	50 mg	
	2 kg	100 mg	
	5 kg	200 mg	
	10 kg	500 mg	
	20 kg	1 g	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000 kg	50 g	

Magnitud Masa	Alcance	Clase	Incertidumbre k=2	Norma de referencia
Calibración de pesas	100 mg a 200 g	M ₁	1/3 del EMT	NOM-038-SCFI-2000
	10 kg, 20 kg	M ₁	1/3 del EMT	
	5 kg, 10 kg, 20 kg	M_2, M_3	1/3 del EMT	
	25 kg	5	1/3 del EMT	ANSI/ASTM E617

Signatarios autorizados:

Pablo Martínez Ramírez

Gudelia Martínez Ramírez

Metrolab, S.A. de C.V.

Ing. Marcelo Castañón Alvarez Av. San Nicolás No. 118 Col. Arboledas de San Jorge

66465, San Nicolás de los Garza, Nuevo León

Teléfono: (81) 8383 6930 Fax: (81) 8383 6933

Dirección de correo electrónico: jrodriguez@metrolab.com.mx

Acreditación: M-72 Vencimiento: 2004-01-15

Magnitud	Alcance	Resolución	Norma de referencia
Masa			
Calibración de	10 g	0,10 mg	NOM-010- SCFI -1994
Instrumentos para pesar	100 g	0,20 mg	
	500 g	0,5 mg	
	2 kg	2 mg	
	5 kg	5 mg	
	10 kg	10 mg	
	20 kg	20 mg	
	50 kg	10 g	
	100 kg	20 g	
	200 kg	50 g	
	500 kg	100 g	
	1 200 kg	200 g	

Signatarios autorizados:

Ervey López Hinojosa Alberto García Hernández Armando Cadena Hinojosa Marcelo Castañón Alvarez

Centro de Validaciones y Calibraciones de México, S.A. de C. V.

Ing. Esteban A. Escalona González

Av. La Garita No. 231-2 Col. Villa Coapa 14390, México, D.F. Teléfono: (55) 5671 8431 Fax: (55) 5671 9667

Dirección de correo electrónico: cvc_de_mexico@yahoo.com.mx

Acreditación: M-73 Vencimiento: 2003-12-18

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de Instrumentos para pesar	1 g	0,01 mg	NOM-010-SCFI-1994
	10 g	0,02 mg	
	100 g	0,05 mg	
	250 g	0,1 mg	
	400 g	0,2 mg	
	1 kg	0,5 mg	
	2 kg	10 mg	
	3 kg	20 mg	
	10 kg	50 mg	
	15 kg	100 mg	
	30 kg	5 g	
	65 kg	10 g	
	120 kg	20 g	
	320 kg	50 g	
	620 kg	100 g	

1 300 kg	200 g
3 300 kg	500 g
5 500 kg	1 kg

Magnitud	Clase	Alcance	Incertidumbre	Norma de referencia
Masa			k=2	
Calibración de pesas	M_2	5 kg	1/3 EMT	NOM-038-SCFI-2000
	M_2	10 kg	1/3 EMT	
	M_2	20 kg	1/3 EMT	

Signatarios autorizados:

Ing. Esteban Escalona González

Ing. Andrés Daniel Ramírez Villaseca

Alejandro Juárez Márquez

Guillermo Aguilar Soto
Ing. Juan Pedro Aguilar Kaiten
Josefina Haro No. 320-3
Col. Insurgentes Oeste
21280, Mexicali, Baja California
Teléfono: (6) 5 66 01 00
Fax: (6) 5 66 18 59
Acreditación M-74
Vencimiento: 2004-03-19

Vencimiento: 2004-03-19

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de instrumentos	200 g	0,1 mg	NOM-010-SCFI-1994
para pesar	1 kg	0,5 mg	
	2 kg	1 mg	
	5 kg	5 mg	
	20 kg	100 mg	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	500 kg	20 g	
	1 000 kg	50 g	
	2 000 kg	100 g	

Magnitud Masa	Clase	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de pesas	M1	100 mg a 20 kg	1/3 del EMT	NOM-038-SCFI-2000
	M2	100 mg a 50 kg	1/3 del EMT	
	M3	1 g a 50 kg	1/3 del EMT	
	M3 (0, 000 1 kg/kg)	500 y 1 000 kg	1/3 del EMT	

Signatario autorizado:

Lizeth Colado Ríos

Instrumentación Científica y Analítica, S.A. de C.V.

Ing. José Antonio Cruz Vázquez Playa Icacos No. 99

Col. Reforma Iztaccíhuatl 08800, México, D.F. Teléfono y fax: (55) 5696 3048 Acreditación, No. M-75 Vencimiento: 2004-03-19

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de instrumentos para	10 g	0,1 mg	NOM-010-SCFI-1994
pesar	100 g	0,2 mg	
	6 kg	0,5 g	

20 kg	2 g	
50 kg	10 g	
100 kg	20 g	

(Segunda Sección)

208

Signatario autorizado:

Mario Guillermo García Reyes

Instituto Mexicano del Cemento y del Concreto, A.C. Ing. Armando Arias Aguas Insurgentes Sur No. 1846
Col. Florida
01030, México, D.F.
Teléfono: (55) 5272 8101, 5272 8204
Fax: (55) 5272 8689
Acreditación: M-76 (Norma NIMX-EC-17025-IMNIC-20

Acreditación: M-76 (Norma NMX-EC-17025-IMNC-2000) Vencimiento: 2006-03-19

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de Instrumentos para	10 g	0,1 mg	NOM-010-SCFI-1994
pesar	100 g	0,2 mg	
	500 g	0,5 mg	
	2000 g	2 mg	
	5 kg	200 mg	
	10 kg	500 mg	
	20 kg	1 g	
	50 kg	10 g	
	130 kg	20 g	

Signatarios autorizados:

Vicente Gómez Bezares

Marcial González Cabrera

Sistemas Integrales de Calibración y Aseguramiento Metrológico, S.A. de C.V. QFB Ezequiel E. Noguez Sáenz
Juan Aldama Sur No. 1135
Col. Universidad
50130, Toluca, Estado de México
Teléfono: (722) 270 15 84
Fax: (722) 270 15 84
Dirección de correo electrónico: dolores.ceron@terra.com.mx
Acreditación: M-77 (Norma NMX-EC-17025-IMNC-2000)
Aprobación Secretaría de Economía: M-77
Vencimiento: 2006-04-16

Magnitud Masa	Clase	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de pesas	F2 o inferior	5 kg, 10 kg y 20 kg	1/3 del EMT	NOM-038-SCFI-2000

Magnitud Masa	Alcance	Resolución	Norma de referencia
Calibración de instrumentos	5 g	0,02 mg	NOM-010-SCFI-1994
para pesar	50 g	0,05 mg	
	200 g	0,10 mg	
	500 g	0,20 mg	
	2 000 g	0,2 mg	
	5 000 g	5 mg	
	10 000 g	500 mg	
	20 kg	1 g	
	50 kg	2 g	
	100 kg	5 g	
	200 kg	10 g	
	600 kg	100 g	

Signatarios autorizados:

		(
María de los Do	lores Cerón Toledano Felipe de Jesús Noguez S	Sáenz	
Aprobación	Normas Oficiales Mexicanas Aprobadas	Campo de aplicación	
Secretaría de Economía: M-77	NOM-010-SCFI-1994 Incisos: 5.6.1, 5.6.2, 5.8, 5.10 NOM-038-SCFI-2000 Incisos: 6.2.1, 6.4, 6.4.5, 6.4.1, 7.2.1, 7.2.2, 7.2.3.1, 7.2.3.2, 8.1, 8.2, 8.3.1, 8.3.2, 11.1, 12.2, 14.1, 14.1.1, 14.1.2, 14.4.3, 14.4.4.1, 14.4.2, 14.4.3, 15.1, 15.1.2, 15.2, 15.3, 15.3.1	Pruebas metrológicas pa instrumentos para pesar. Pruebas metrológicas pa pesas.	

Area: Materiales de Referencia

Presición Instrumental Automotriz, S.A. de C.V.

Ing. Hugo Limón Zambrano

17 Sur No. 707

La Paz Zona Esmeralda 72160, Puebla, Puebla Teléfono: (222) 232 28 87 Fax: (222) 242 63 12 Acreditación: MR-01

Magnitud Materiales de Referencia	Alcance	Resolución Mínima	Incertidumbre k=2	Norma de Referencia
Analizadores de gases fuentes móviles HC ppm/mol	297,4 a 2000 ppm/mol	1 ppm/mol	2,79%	NOM-047-ECOL-1999
CO% mol	1,002 a 5,99%	0,01% mol	1,85% mol	
CO ₂ % mol	6,00 a 12,06%	0,001% mol	1,95% mol	
Analizadores de humos	18,55%	1%	1,95%	NOM-077-ECOL-1995
medidores de opacidad	43,61%	1%	1,95%	
	89,84%	1%	1,95%	
	17,71%	1%	1,95%	
	34,24%	1%	1,95%	
	46,59%	1%	1,95%	
	84,62%	1%	1,95%	

Signatarios autorizados:

Ing. José Antonio Baeza Alonso Ing. Hugo Limón Zambrano Téc. Víctor Manuel Morales Cisneros Téc. Luis Ernesto Mora López

Grupo Trafalgar, S.C. Ing. John Rogers Allen Calzada de Tlalpan No. 5005

Col. La Joya 14000, México, D.F. Teléfono: (55) 5313 3506 Fax: (55) 5513 3199

Dirección de correo electrónico: lab@trafalgar-mexico.com

Acreditación: MR-03 Vencimiento: 2002-06-13

Magnitud	Intervalo	Incertidumbre
Materiales de Referencia		
Concentración de Gas		
HC (Propano)	200 mol/mol a 2 000 mol/mol	1%
СО	1% mol a 6, 03% mol	1%
CO_2	3, 62% mol a 12, 61% mol	1%

Opacidad	Puntos de calibración de los filtros de	
	referencia en % de opacidad	1,0%
	99,9	1,0%
	90,3	1,0%
	47,8	1,0%
	20,4	
N0x	0 mol/mol a 3 750 mol/mol	± 10%

De acuerdo a su procedimiento de calibración evaluado y a los materiales de referencia utilizados, el laboratorio tiene la capacidad técnica para realizar la calibración de N0x en los analizadores de gases.

Responsables técnicos:

Ing. Alejandro García González Téc. José Luis Alvarado Romero Téc. Sergio Lozada Rivera Melo

Téc. Arturo López Ramírez Téc. Arturo Santiago Sánchez

Orlov, S.A. de C.V.

Ing. José Luis Martínez Medina Av. Hidalgo No. 34

Col. Santa Catarina Azcapotzalco 02250, México, D.F.

Teléfono y fax: (55) 5383 0330

Dirección de correo electrónico: orlov@infosel.net.mx

Acreditación: MR-04 Vencimiento: 2002-06-13

Magnitud Materiales de Referencia	Intervalo	Incertidumbre k=2
Fuentes móviles		
HC	198 a 2 000 mol/mol	1% relativo
CO ₂	05,98 a 12,30% mol	1% relativo
co	0,992 a 6,03% mol	1% relativo
NO _X	0 a 3 750 mol/mol	10% relativo
Opacidad	94,21	2,11%
	99,83	1,037%

Responsables técnicos:

Ing. José Luis Martínez Medina Lic. Mónica Gómez Velázquez Ing. Víctor Angeles Larios

Téc. Apolinar Isidoro Valeriano Juan Manuel López Salinas

Central de Electrónica Mexicana, S.A. de C.V.

Ing. Abraham Miranda Alvarez

Canela No. 610 Col. Granjas México 08400, México, D.F.

Teléfono y fax: (55) 5657 0517

Dirección de correo electrónico: icelemex@aol.com

Acreditación: MR-05 Vencimiento: 2002-07-09

Magnitud	Intervalo	Incertidumbre
Materiales de Referencia		k=2
Fuentes móviles		
HC	0 a 2000 mol/mol	10% relativo
CO_2	0 a 12% mol	10% relativo
CO	0 a 6% mol	10% relativo
NO_X	0 a 3 750 mol/mol	10% relativo
Opacidad	0 a 100%	2 unidades

Responsables técnicos:

Javier Naranjo Mogica Juan Manuel Miranda Torres Angel Miranda Torres

Isaac Elías Miranda Torres **Humberto Miranda Torres**

Herramientas y Equipos Industriales Quintana, S.A. de C.V.

Ing. José Quintana Solano

Av. De Las Granjas No. 280-D

Col. Libertad 02050, México, D.F. Teléfono: (55) 5352 3618 Fax: (55) 5352 8045 Acreditación: MR-06 Vencimiento: 2004-03-19

Magnitud	Alcance	Incertidumbre	Norma de Referencia
Materiales de Referencia		k=2	
HC	200 a 1412 mol/mol	4,3%	NOM-CCAT-047-ECOL-1999
CO	1 a 6% mol	5,5%	
CO_2	5, 96 a 8,0% mol	5,5%	
NO_X	295 a 3000 mol/mol	8,3%	
Opacidad	14, 93 a 92,83%	0,5%	NOM-CCAT-077-ECOL-1995

Signatario autorizado: Ing. José Quintana Solano

Presición Instrumental Automotriz, S.A. de C.V.

Ing. Roberto Garzón de Lara Cecilio Robelo No. 347 Col. Jardín Balbuena 15900, México, D.F. Teléfono: (55) 5552 4398

Fax: (55) 5768 9149 Acreditación: MR-10 Vencimiento: 2004-03-19

Magnitud Materiales de Referencia	Alcance	Resolución Mínima	Incertidumbre k=2	Norma de Referencia
Analizadores de gases fuentes móviles HC ppm/mol	300 a 2001 ppm/mol	1 ppm/mol	2,3%	NOM-047-ECOL-1999
CO% mol	1,0% mol a 6% mol	0,01% mol	1,4% mol	
CO ₂ % mol	6,0% mol a 12,06% mol	0,001% mol	1,8% mol	
Analizadores de humos	18,61%	1%	1,3%	
medidores de opacidad	48,54%	1%	1,3%	NOM-077-ECOL-1995
	90,48%	1%	1,3%	
	20,33%	1%	1,3%	
	47,61%	1%	1,3%	
	85.20%	1%	1,3%	
	42,70%	1%	1,3%	
	59,07%	1%	1,3%	
	75,23%	1%	1,3%	
	85,24%	1%	1,3%	
Analizador de gases	40 a 400 ppm/mol	1 ppm/mol	2,0%	
fuentes fijas CO ppm/mol	100 a 1000 ppm/mol	1 ppm/mol	1,9%	
CO ₂ % mol	1,2% mol a 12,0% mol	0,01% mol	2,4%	
	0,6% mol a 5,96% mol			
SO ₂ ppm/mol	100 a 1000 ppm/mol		2,5%	
	400 a 4000 ppm/mol	1 ppm/mol	2,8%	NOM-085-ECOL-1994
Analizador de gases Fuentes fijas	2,1 a 21% mol	0,01% mol	3,4%	CCAM-001-ECOL-1993
O ₂ % mol				

O ₂ ppn	n/mol	30 a 300 ppm/mol	1 ppm/mol	3,8%
HC ppr	n/mol	200 a 2000 ppm/mol	1 ppm/mol	2,5%
		19,9 a 199,1 ppm/mol		2,8%
NO _X pp	m/mol	200 a 2000 ppm/mol	1 ppm/mol	1,4%
		29,49 a 294,9 ppm/mol		1,9%

Signatarios autorizados:

Ing. Roberto Garzón de Lara Ing. Hugo Limón Zambrano Téc. César Fernández Albarrán Ing. Luis Calvo García Téc. Miguel García López Téc. Elpidio Flores García Ing. Jorge Varela Alfaro Téc. Elpidio Flores García Téc. Fabricio Alonso Vázquez Ing. José Luis Calvillo Téc. Miguel Felipe Ordaz Higareda Lic. Julio Jean Salvatori

Area: Optica

Ing. Diana Eugenia Cantú Flores/Seprocal de México

Corregidora No. 58 Col. San Pedro Mártir 76117, Querétaro, Querétaro Teléfono: (442) 254 4004 Fax: (442) 254 4024

Dirección de correo electrónico: seprocal@prodigy.net.mx

Acreditación: OP-01 Vencimiento: 2004-02-19

Magnitud Optica	Alcance	Resolución	Incertidumbre k=2
Escalas: *Longitud de Onda *Fotométrica Servicio: Calibración de Espectrofotómetros UV - Visible	Escala de Longitud de Onda: 240 nm a 900 nm. Escala Fotométrica: 1% a 95% 0,02 a 3,0	0,1 nm a 5 nm 0,01% 0,0001	0,117 nm; AB=1nm 0,6 nm; AB=20 nm 0,10% a 0,381% 0,002 a 0,0055
Escalas: *Longitud de Onda *Fotométrica Servicio: Caracterización de materiales de referencia	Escala de Longitud de Onda: 190 nm a 1100 nm Escala Fotométrica: 0% a 100% 0,0 a 3,7	0,01 nm 0,0001% 0,0001	0,133 nm a 0,153nm 0,012% a 0,402% 0,0020 a 0,007
Magnitud Optica	Alcance	Resolución	Incertidumbre k=2
Indice de refracción Servicio: Calibración de Refractómetros	1,4 a 1,7 (Adimensional)	0,00001 (Adimensional)	0,00017 (Adimensional)

Donde: Símbolo de la transmitancia

Símbolo de la absorbancia

AB: Se refiere al ancho de banda espectral

Signatarios autorizados:

Ing. Diana Eugenia Cantú Flores

Ing. María del Rosario González Olvera

Metrolab Internacional, S.A. de C.V.

Ing. Miguel Luján Durán

Paseo de las Fuentes No. 5100 Col. Del Paseo Residencial

64920, Monterrey, Nuevo León Teléfono: (81) 8365 7188 Fax: (81) 8365 7145 Acreditación: OP-02 Vencimiento: 2003-06-19

1	gnitud ptica	Alcance	Incertidumbre K=2	Norma de referencia o procedimiento
Longitud o	de onda (nm)	240 nm a 640 nm	0,1 nm a 0,2 nm *	PCAL-15.8
Escala	Transmitancia	1% al 94%	0,01% a 0,4%	
fotométrica	Absorbancia	0,03 a 2,2	0,0055 a 0,0019	
	Reflectancia 6	4.7% a 96,33% €	0,2% a 2% €	PCAL-15.2

^{*} Para 1 nm y 2 nm de ancho de banda espectral respectivamente

Responsables técnicos:

Miguel Angel Arrollo Leoncio Gómez Castellanos José Luis Torres Rodríguez Miguel Luján Durán

Orlando Javier Reyes Hernández

Area: Par Torsional

Metrolab, S.A. de C.V. Ing. Marcelo Castañón Alvarez

Av. San Nicolás No. 118 Col. Arboledas de San Jorge

66465, San Nicolás de los Garza, N.L.

Teléfono: (81) 8383 6930 Fax: (81) 8383 6933

Dirección de correo electrónico: jrodriguez@metrolab.com.mx

Acreditación: PT-02 Vencimiento: 2003-06-19

Magnitud	Alcance	Incertidumbre	Norma de referencia o
Par torsional		k=2	procedimiento
Par torsional	2, 8 Nm a 813 Nm	1,0% de L	ISO 6789
			ASME B 107.14 M

Responsable técnico:

Ing. Marcelo Castañón Alvarez

María Guadalupe Ramos Cisneros

Francisco J. Mora Ramos

Calle 6 No. 91

Col. Progreso Nacional 07600, México, D.F. Teléfono: (55) 5392 0414

Fax: 5389 6811 Acreditación: PT-03 Vencimiento: 2002-09-19

Magnitud	Intervalo	Incertidumbre
Par torsional	81,3 Nm a 813,5 Nm	0,5% L

Responsables técnicos:

Francisco Javier Mora Ramos

Pedro Mora Ramos

Caltechnix de México, S.A. de C.V.

Ing. Walter Louis Buehler

Sur 111 No. 2260

Col. Juventino Rosas 08700, México, D.F.

Teléfono: (55) 5650 4414

Fax: 5654 6425

Dirección de correo electrónico: caltech@caltechnix.com.mx

Acreditación: PT-04 Vencimiento: 2002-10-17

Magnitud	Intervalo	Equipo	Incertidumbre		
Par Torsional			k=2		
(patrón tipo primario, brazo bal. y masa)	1 Nm-20 Nm	R2019	(0,2% L + 0,01 Nm)		
(patrón tipo primario, brazo bal. y masa)	2 Nm-35 Nm	R2022	(0,2% L + 0,01 Nm)		
(patrón tipo primario, brazo bal. y masa)	5 Nm-100 Nm	R2020	(0,2% L + 0,01 Nm)		
(patrón tipo primario, brazo bal. y masa)	10 Nm-300 Nm	R2021	(0,2% L + 0,01 Nm)		
(patrón tipo primario, brazo n.b. y masa)	3 Nm-60 Nm	R2024	(0,2% L + 0,01 Nm)		
(patrón tipo primario, brazo n.b. y masa)	10 Nm-250 Nm	R2026	(0,2% L + 0,03 Nm)		
(patrón tipo primario, brazo n.b. y masa)	50 Nm-1000 Nm	R2023	(0,2% L + 0,16 Nm)		
(patrón tipo primario, brazo n.b. y masa)	200 Nm-4000 Nm	R2027	(0,2% L + 0,7 Nm)		
(patrón tipo primario, brazo n.b. y celda carga)	200 Nm-4000 Nm	S3004	(0,5% L + 0,7 Nm)		

Responsables técnicos:

Ing. Walter LouisIng. Enrique García QuinteroIng. Ana Lilia Hernández CuevasIng. Gabriel de la O. CruzIng. Gabriel Gudiño GarcíaIng. Alejandro Rodríguez

Arjessiger de México, S.A. de C.V.

Roberto Ruiz Martínez Calle 10 No. 117, piso 2 Col. Progreso Nacional 07600, México, D.F. Teléfono: (55) 5391 0749

Fax: 5391 5187

Dirección de correo electrónico: arjessiger@premiumproducts.com

Acreditación: PT-05 Vencimiento: 2002-12-19

Magnitud Par torsional	Alcance	Incertidumbre k=2
Par torsional	2,2 Nm a 5,6 Nm	1% L
	9,9 Nm a 34 Nm	0,4% L
	40 Nm a 200 Nm	0,5% L
	270 Nm a 1 356 Nm	0,3% L

Responsable técnico: Técnico:

Arturo Gómez Hernández Martín Vargas Ibarranco

Metrología y Pruebas, S.A. de C.V. Ing. Eduardo Ricaud Gamboa Privada Tecnológico No. 25 84000, Nogales, Sonora Teléfono: (631) 4 61 93 Fax: (631) 4 62 63

Dirección de correo electrónico: callab@prodigy.net.mx

Acreditación: PT-06 Vencimiento: 2003-07-17

Magnitud	Alcance Nominal	Incertidumbre k=2
Par Torsional	0,1 Nm a 20, 0 Nm	± 0,1% Lectura
	20 Nm a 200 Nm	± 0,5% Lectura

Responsables técnicos:

Ing. Eduardo Ricaud Ing. Sergio Iván Hernández Ruiz Ing. Manuel Eligio Vega Sánchez Ing. Roberto Hurtado Hurtado

Laboratorio de Pruebas y Equipos y Materiales

Comisión Federal de Electricidad Ing. Jorge Adolfo Pérez Guzmán

Av. Apaseo Oriente s/n Ciudad Industrial

36541, Irapuato, Guanajuato Teléfono: (462) 623 94 46 Fax: (462) 623 94 06

Dirección de correo electrónico: jperezg@cfe.gob.mx

Acreditación: PT-07 Vencimiento: 2003-07-17

Magnitud Par torsional	Alcances de Medición	Sentido	Incertidumbre k=2	Norma de referencia
Par Torsional	0,3 Nm a 1,4 Nm	Horario y Antihorario	1% L	ISO 6789: 1992
	0,6 Nm a 5,6 Nm	Horario y Antihorario	0,75% L	
	4,5 Nm a 45 Nm	Horario y Antihorario	1% L	
	11,2 Nm a 112,98 Nm	Horario	0,75% L	
	11,2 Nm a 112,98 Nm	Antihorario	0,5% L	
	33,02 Nm a 330 Nm	Horario	0,5% L	
	33,02 Nm a 330 Nm	Antihorario	0,25% L	
	134,5 Nm a 1350 Nm	Horario y Antihorario	0,75% L.	

Responsables técnicos:

Ing. Sergio Ochoa Márquez Téc. David Jacobo Obregón Ing. Edna Cointa Marure Rojano Téc. Alvaro Valdivia Barragán

Téc. Heriberto Bretón Silva

Metalsa, S. de R.L.

Ing. Javier Alberto Garza López

Carretera Miguel Alemán km 16,5 No. 100

66600, Apodaca, Nuevo León Teléfono: (81) 8369 75 63 Fax: (81) 8369 72 24 Acreditación: PT-08 Vencimiento: 2003-09-18

Magnitud	Alcance	Incertidumbre	Norma de Referencia
Par torsional		k=2	
Par Torsional	33,895 Nm a 338, 95 Nm	± 1,2% Lectura	ISO 6789

Responsables técnicos:

Ing. Javier Alberto Garza López

Téc. Gerardo Herrera García

Francisco Angel Fernández Parra Av. Cuauhtémoc No. 877 Int. 9

Col. Narvarte 03020, México, D.F.

Teléfono y fax: (55) 5523 8642

Acreditación: PT-09 Vencimiento: 2003-10-16

Magnitud	Alcance	Incertidumbre	Norma de referencia
Par torsional		k=2	
Par Torsional	122 Nm a 1220 Nm	1,5% Lectura	ISO 6789

Signatarios autorizados:

Alfredo García Alpízar Israel Ramos

Area: Presión

Ma. Magdalena Pacheco Montoya y/o Metrología Profesional

Av. Cuauhtémoc No. 1095, planta baja

Col. Letrán Valle 03650, México, D.F. Teléfono: (55) 5601 3962 Fax: (55) 5688 0305

Dirección de correo electrónico: mpacheco@mail.intranet.com.mx

Acreditación: P-15 Vencimiento: 2003-06-19

Magnitud Presión	Alcance	Incertidumbre k=2	Norma de referencia o procedimiento
Presión relativa	0 a 1 379 kPa	1,3% E.T.	NOM-013-SCFI-1993
Presión negativa	-77,02 a 0 kPa	2,0% E.T.	

Responsables técnicos:

Ing. Magdalena Pacheco Montoya

Ing. Ernesto Ramírez Avila

Dr. Sergio Pacheco Montoya

Validación y Metrología, S.A. de C.V. QFB Blanca Rosa Rodríguez Alvarado Av. Ejido San Francisco Culhuacán No. 196

Col. Presidentes Ejidales 04470, México, D.F. Teléfono: (55) 5656 8414 Fax: (55) 5695 9874

Dirección de correo electrónico: vamet@prodigy.net.mx

Acreditación: P-28

Aprobación Secretaría de Economía: P-28

Vencimiento: 2003-07-17

Magnitud	Alcance	Incertidumbre	Norma de referencia
Presión		k=2	
Presión relativa	-80,0 a 0 kPa	<u>+</u> 0,8% E.T.	NOM-013-SCFI-1993
	0 a 69,74 kPa	<u>+</u> 0,1% L.	
	0 a 13,8 Mpa	<u>+</u> 0,1% L.	
Presión diferencial	0 a 500 Pa	<u>+</u> 0,5% L.	

Responsables técnicos:

QFB Blanca Rosa Rodríguez Alvarado M. en C. Margarita Rodríguez Alvarado

Ing. Mario Alberto Rodríguez Alvarado Téc. Edgar Escalona Alvarez

Téc. Falko Manuel Bueno Córdova Téc. Juan Arturo González Carranza

Téc. Héver Víctor Castro

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: P-28	NOM-013-SCFI-1993	Pruebas metrológicas para manómetros
		con elemento elástico.

Asesoría y Servicios Integrales en Calibración, S.C.

Ing. Valdemar Farías Rodríguez Colima 11-B San Lorenzo Tepaltitlán 50010, Toluca, Estado de México

Teléfono: (72) 72 02 77 Fax: (72) 72 92 56

Dirección de correo electrónico: asicsc@irt.com.mx

Acreditación: P-33 Vencimiento: 2002-08-15

Magnitud	Intervalo	Incertidumbre
Presión		k=2
Presión relativa	-62 kPa a 0 kPa	0,03% ET
	0 kPa a 2 MPa	0,03% ET
	2 MPa a 14 MPa	0,03% ET

Responsables técnicos:

Ing. J. César Martínez Rivera

Ing. J. Fernando Rosales Serrano

Industrias Técnicas Schob, S.A. de C.V. Ing. Francisco González Hinojosa

Acceso Oriente 4

Nuevo Parque Industrial

76800, San Juan del Río, Querétaro

Teléfono: (427) 268 42 Fax: (427) 269 62

Dirección de correo electrónico: sjrschob@sjr.podernet.com.mx.

Acreditación: P-34

Aprobación Secretaría de Economía: P-34

Vencimiento: 2002-10-17

Magnitud Presión	Intervalo	Incertidumbre k=2
Presión negativa	-74,5 a 0 kPa	0,25% E.T.
Presión relativa	50 kPa a 5 MPa	0,05% L.
	5 MPa a 100 MPa	0,05% L.

Responsables técnicos:

Ing. Francisco González Hinojosa

Alejandra Pichardo Carmona

Aprobación	Norma Oficial Mexicana Aprobada Campo de aplicacion	
Secretaría de Economía: P-34	NOM-013-SCFI-1993	Pruebas metrológicas para manómetros con elemento elástico.

Tequila Herradura, S.A. de C.V.

Ing. Miguel Angel Pérez M.

Ex Hacienda San José del Refugio

44180, Amatitán, Jalisco Teléfono: (374) 745 1103 Fax: (374) 745 0000 ext. 218

Dirección de correo electrónico: miguelangelperez@herradura.com.mx

Acreditación: P-35 Vencimiento: 2002-10-17

Magnitud Presión		
Presión relativa	0 kPa a 1,4 MPa	0,05% E.T.

Responsable técnico:

Ing. Martha Pineda Ibarra

Caltechnix de México, S.A. de C.V.

Ing. Walter Louis Buehler

Sur 111 No. 2260 Col. Juventino Rosas 08700, México, D.F. Teléfono: (55) 5650 4414 Fax: (55) 5532 3339

Dirección de correo electrónico: caltech@caltechnix.com.mx

Acreditación: P-36

Aprobación Secretaría de Economía: P-36

Vencimiento: 2002-12-19

1	1	O

Magnitud	Alcance	Incertidumbre	
Presión		k=2	
Presión relativa	-71 kPa a 0 kPa	0,1% E.T.	
	0 kPa a 10 kPa	0,1% E.T.	
	0,2 MPa a 8 MPa	0,01% L.	
	0,4 MPa a 160 MPa	0,01% L.	

Responsables técnicos: Técnicos:

Ana Lilia Hernández Cuevas Alejandro Rodríguez Adeath
Walter Louis Buehler Margarita Teresa Rivera Santana

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: P-36	NOM-013-SCFI-1993	Pruebas metrológicas para
		manómetros con elemento elástico.
	NOM-009-SCFI-1993	Pruebas metrológicas para
		esfigmomanómetros

Patricia Granados Sánchez Manuela Medina No. 104

Col. Burócrata

76070, Querétaro, Querétaro Teléfono y fax: (442) 223 53 39

Dirección de correo electrónico: labcam@qro1telmex.net.mx

Acreditación: P-37

Aprobación Secretaría de Economía: P-37

Vencimiento: 2003-03-20

Magnitud Presión	Alcance	Incertidumbre k=2
Presión negativa	-80 kPa a 0 kPa	200 Pa (0,15% ET)
Presión relativa	5 kPa a 133 kPa	200 Pa (0,15% ET)
	1 kPa a 850 kPa	0,016% L
Presión relativa (calibración de manómetros)	1 MPa a 70 MPa	0,015% L

Nota: Sólo para instrumentos secundarios, no se reconoce la capacidad para calibrar balanzas de pesos muertos.

Responsables técnicos:

Patricia Granados Sánchez M. en C. Leonel Lira Cortés

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: P-37	NOM-013-SCFI-1993	Pruebas metrológicas para manómetros con elemento elástico.

Instituto Mexicano del Petróleo Ing. Enrique Ovando Yshikaua Eje Central Lázaro Cárdenas No. 152 Col. San Bartolo Atepehuacan 07730, México, D.F.

Teléfono: (55) 5333 6907 Fax: (55) 5333 6920

Dirección de correo electrónico: eovando@imp.mx

Acreditación: P-38

Aprobación Secretaría de Economía: P-38

Vencimiento: 2003-06-19

DIARIO OFICIAL

(Segunda Sección) 219

Magnitud Presión	Alcance	Incertidumbre k=2	Norma de referencia o procedimiento
Presión relativa	-75 kPa a 200 kPa	0,1% de E.T.	
(manométrica)	40 kPa a 400 kPa	0,05% de L.	DODBB-MP-01.01
	2 MPa a 20 Mpa	0,1% de E.T.	
	7MPa a 70 Mpa	0,03% de L.	

Nota: No puede calibrar balanzas de pesos muertos

Responsable técnico:

Ing. Andrés García de la Rosa

Aprobación	Norma Oficial Mexicana Aprobada Campo de aplicación	
Secretaría de Economía: P-38	NOM-013-SCFI-1993	Pruebas metrológicas para
		manómetros con elemento elástico.

Vidriera Los Reyes, S.A. de C.V. Ing. Francisco Murillo Jaramillo Av. Presidente Juárez No. 2039 Col. Los Reyes Iztacala

54090, Tlanepantla, Estado de México Teléfono: (55) 5227 9600 ext. 1007

Fax: 5227 9000 ext. 1027 Acreditación: P-39 Vencimiento: 2003-07-17

Magnitud Presión	Alcance	Intervalo	Incertidumbre k=2	Norma de referencia
Presión relativa	De 68,9 kPa a 13789,5 kPa	344,7 a 13 789,5 kPa 68,9 a 2 757,9 kPa	0,2% Lectura 0,2% Lectura	NOM-013-SCFI-1993
	De 0 kPa a 6894,7 kPa	0 a 6894,7 kPa	0,3% Escala Total	

Responsables técnicos:

Ing. Javier Herrera Murillo

Marco Antonio Roa Torres

Grupo Simca, S.A. de C.V. Ing. Víctor Manuel Díaz Vargas Cajeros No. 73

Col. El Sifón 09400, México, D.F. Teléfono: (55) 5633 7331 Fax: (55) 5633 2803

Dirección de correo electrónico: gposimca@telecomm.net.mx

Acreditación: P-40

Aprobación Secretaría de Economía: P-40

Vencimiento: 2003-07-17

Magnitud Presión	Alcance	Incertidumbre k=2	Norma de referencia
			101010101
Presión relativa	-71 kPa a 0 kPa	0,03% E.T.	NOM-013-SCFI-1993
(manométrica)	0 kPa a 175 kPa	0,03% E.T.	
	175 kPa a 210 kPa	0,03% E.T.	
	210 kPa a 7 MPa	0,05% E.T.	
	1 MPa a 10 MPa	0,03% L.	
	10 MPa a 100 MPa	0,03% L.	
Baumanómetros	0 kPa a 40 kPa	0,3% L.	NOM-009-SCFI-1993
(columna de mercurio)	(0 mm Hg a 300 mm Hg)		
Válvulas de Seguridad	0 MPa a 7,0 MPa	0,05% E.T.	NOM-093-SCFI-1994

Responsables técnicos:

Ing. Angel Sevilla García Téc. Ricardo Rivera Murguía Téc. Javier Israel Arrieta García Téc. Andrey Noé Durán Ramírez * Téc. Fernando Cortés Javier *

Téc. Emmanuel García Hernández *

Téc. Armando Lázaro Avila

Nota: *Estas personas quedan acreditadas sólo para calibrar manómetros.

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación	
Secretaría de Economía: P-40	NOM-013-SCFI-1993	Pruebas metrológicas para manómetros con elemento elástico.	
	NOM-009-SCFI-1993	Pruebas metrológicas para esfigmomanómetros	
	NOM-093-SCFI-1994	Pruebas metrológicas para válvulas d seguridad	

José Luz Martínez Lara Zaragoza No. 13

Col. Émiliano Zapata Ayotla 56560, Ayotla, Estado de México Teléfono y fax: (55) 5974 5464

Correo electrónico: controlautomatico@icsistemas.com

Acreditación: P-41 Vencimiento: 2003-09-18

Magnitud	Alcance	Incertidumbre	Norma de Referencia
Presión		k=2	
Presión Relativa	0,0 a 207,0 kPa	± 0,10% Escala Total	NOM-013-SCFI-1993
Manómetros,	0,17 a 1,4 Mpa	± 0,03% Lectura	
Transductores	0,34 a 6,9 Mpa	± 0,03% Lectura	
	0,02 a 3,5 Mpa	± 0,01% Lectura *	
	1,0 a 70,0 Mpa	± 0,01% Lectura *	
Presión Negativa	- 78,4 a 0,0 kPa	± 0,10% Escala Total	
Vacuómetros			
Presión Diferencial	0,0 a 207,0 kPa	± 0,08% Escala Total	

^{*} Se reconoce la capacidad para calibrar balanzas de pesos muertos de 0, 05% lectura y/o 0, 1% lectura.

Responsable técnico: Sr. José Luz Martínez Lara

Centro de Validaciones y Calibraciones de Occidente, S.A. de C. V.

Lic. Juan Carlos Jiménez Arias

Sirio No. 5644 Col. Arboledas

45070, Zapopan, Jalisco Teléfono: (3) 133 18 59 Fax: (3) 634 11 04 Acreditación: P-42 Vencimiento: 2003-10-16

Magnitud Presión	Alcance	Incertidumbre k=2
Presión Relativa (manométrica) Manómetros y Transductores	0 Pa a 498,2 Pa	± 0,48% de Escala Total
Presión Relativa (manométrica) Manómetros y Transductores	0 MPa a 1,4 MPa	± 0,12% de Escala Total
Presión Relativa (manométrica) Manómetros y Transductores	1,4 MPa a 2,8 MPa	± 0,05% de Escala Total (E. T.= 2,8 MPa)
Presión Relativa (manométrica) Manómetros y Transductores	2,8 MPa a 14 MPa	± 0,05% de Escala Total (E. T.= 2,8 MPa)

Signatarios autorizados:

Juan Carlos Jiménez Arias

José Fernando Mendoza Valencia

Claudia Mata Mejía

Nysco de México, S.A. de C.V.

QFB Miguel Guadalupe Sánchez Hernández

Calz. Ermita Iztapalapa No. 436-B

Col. Mexicaltzingo 09080, México, D.F. Teléfono: (55) 5697 5494

Fax: 5697 9565

Correo electrónico: msanches@acnpharm.com

Acreditación: P-43 Vencimiento: 2003-11-23

Magnitud	Alcance	Incertidumbre	Norma de Referencia
Presión		k=2	
Presión Relativa	0 a 7 Mpa	± 0,025% Escala Total	NOM-013-SCFI-1993
	0 a 1,4 MPa	± 0,05% Escala Total	
Presión Diferencial	0 a 500 Pa	± 0,08% Lectura	
Presión Negativa	- 78,2 kPa a 0 kPa	± 0,025% Escala Total	

Nota: Considérese como escala total para presión negativa - 101,325 kPa.

Signatarios autorizados:

QFB Miguel Guadalupe Sánchez Hernández

QFB Rafael Chargoy Navarro Téc. Víctor Manuel Soto Velázquez Téc. Luis Enrique Ibáñez Pérez

Metas, S.A. de C.V.

Ing. Víctor Manuel Aranda Contreras

Acantilado No. 29 Col. La Joya

49090, Ciudad Guzmán, Jalisco

Teléfono: (341) 413 6123 Fax: (341) 413 1691

Dirección de correo electrónico: metas@metas.com.mx

Acreditación: P-44

Aprobación Secretaría de Economía: P-44

Vencimiento: 2003-11-23

Magnitud	Alcance	Incertidumbre	Norma de referencia
Presión		k=2	
Alto y Ultra Alto Vacío Presión	10 ^{–8} Pa a 1 Pa	± 0,87% de Lectura	
Medio y Alto Vacío Presión Absoluta	10 ⁻² Pa a 133 Pa	± 0,68% de Lectura	
Bajo y Medio Vacío Presión Absoluta	1 Pa a 13,3 kPa	± 0,57% de Lectura	
Presión Barométrica Presión Absoluta	1,3 kPa a 160 kPa	± 0,015% de Lectura	
Presión Negativa Vacío Relativo	- 85 kPa a 0 kPa - P atm a 0	± 0,015% de E.T.	NOM-009-SCFI-1993 NMX-CH-65-IMNC-1996
Presión Diferencial	± 12 kPa ± 160 kPa	± 0,015% de E.T.	
Presión Relativa y Presión Absoluta	12 kPa 160 kPa	± 0,015% de E.T.	
Presión Relativa y Presión Absoluta	0,17 MPa a 7 MPa	± 0,010% de L	NMX-CH-58-IMNC-1994 NMX-CH-65-IMNC-1996
Presión Relativa y Presión Absoluta	1,7 MPa a 70 MPa	± 0,010% de L	

Signatarios autorizados:

Ing. Víctor Manuel Aranda Contreras Ing. Silvia Medrano Guerrero

Ing. Gerardo Aranda Contreras Ing. Noel Gutiérrez Bautista

Aprobación	Norma Oficial Mexicana Aprobada	Ca	mpo de aplicación	
Secretaría de Economía: P-44	NOM-009-SCFI-1993	Pruebas	metrológicas	para
		esfigmomanómetros.		

Laboratorio de Pruebas de Equipos y Materiales de la CFE

Ing. Jorge Adolfo Pérez Guzmán

Av. Apaseo Ote. s/n Cd. Industrial

36541, Irapuato, Guanajuato Teléfono: (462) 623 94 46 Fax: (462) 623 94 06

Correo electrónico: jperezg@cfe.gob.mx

Acreditación: P-45 Vencimiento: 2003-11-23

Magnitud	Alcance	Incertidumbre
Presión		k=2
Presión Relativa	2 kPa a 350 kPa	± 0,0024% de Lectura
	10 kPa a 1 750 kPa	± 0,0026% de Lectura
	40 kPa a 7 000 kPa	± 0,0035% de Lectura
	0,02 MPa a 5 MPa	± 0,005% de Lectura
	0,4 MPa a 100 MPa	± 0,005% de Lectura
Presión Absoluta sumando la presión	5 kPa a 350 kPa	± 0,005% de Lectura
atmosférica	25 kPa a 1 750 kPa	± 0,0035% de Lectura
	100 kPa a 7 000 kPa	± 0,0035% de Lectura
	0,1 MPa a 5 MPa	± 0,005% de Lectura
	2 MPa a 100 MPa	± 0,005% de Lectura
Presión	KPa a 350 kPa	± 0,0025% de Lectura
	10 kPa a 1 750 kPa	± 0,0027% de Lectura
	40 kPa a 7 000 kPa	± 0,0037% de Lectura

Signatarios autorizados:

M. en C. Edna Cointa Marure Rojano Ing. Sergio Ochoa Márquez Téc. David Jacobo Obregón Téc. Heriberto Bretón Silva

Téc. J. Alvaro Valdivia Barragán

Nicolás, Sven, Pacheco y Andresen, S.A. de C.V. M. en C. Ruth Martínez Velarde

Madrid No. 77 Col. Del Carmen 04100, México, D.F. Teléfono: (55) 5659 1481 Fax: (55) 5659 5572

Correo electrónico: nspacand@mail.internet.com.mx

Acreditación: P-46

Vencimiento: 2003-11-23

Magnitud Presión	Alcance	Incertidumbre k=2	Norma de referencia
Presión Relativa	0 MPa a 1,5 MPa	0,04% Escala Total	NOM-013-SCFI-1993
(Manométrica)	0 kPa a 70 kPa	0,03% Escala Total	
	0 kPa a 6,9 kPa	0,02% Escala Total	
Presión Diferencial	0 hPa a 100 hPa	0,1% Escala Total	
	0 kPa a 0,5 kPa	0,02% Escala Total	

Signatarios autorizados:

Ing. Laura Angélica Colín Villedas Ing. Miguel Angel Martínez Salgado

Ing. Fanny Pineda Pineda Ing. Daniel López Herrera

Ciateq, A.C., Unidad Aguascalientes Ing. Antonio Martínez Saucedo Circuito Aguascalientes No. 135

Parque Industrial del Valle de Aguascalientes 20190, Aguascalientes, Aguascalientes

Teléfono: (449) 733 10 60 Fax: (449) 733 10 70

Dirección de correo electrónico: saucedo@ags.ciateq.mex

Acreditación: P-47

Vencimiento: 2003-09-18

Magnitud Presión	Alcance	Incertidumbre del Sistema k=2	Norma de referencia
Presión Relativa (manométrica)	1 000 kPa a 7 000 kPa	± 0,5 kPa a ± 3,5 kPa; ± 0,05% de Lectura	NOM-013-SCFI-1994.
Manómetros y Transductores	7 000 kPa a 70 000 kPa	± 3,5 kPa a ± 35 kPa; ± 0,05% de Lectura.	

Responsables técnicos: Ing. Antonio Martínez Saucedo Ing. Alfredo Escobedo Serrano

Ing. Zaida Antonieta Mora Alvarez

Calibraciones Profesionales e Ingeniería, S.A. de C.V.

Ing. Roberto Luis Villeda Rubín Camino Real de Calacoaya No. 65

Col. Calacoaya

52290, Atizapán de Zaragoza, Estado de México

Teléfono: (55) 5362 7431 Fax: (55) 5362 7439

Dirección de correo electrónico: info@calpro.com.mx

Acreditación: P-48 Vencimiento: 2004-02-19

Magnitud	Alcance	Incertidumbre	Norma de referencia
Presión		k=2	
Presión relativa	-Patm a 150 kPa	0,05% Escala Total	NOM-013-SCFI-1993
	100 kPa a 1 Mpa	0,07% Escala Total	
	200 kPa a 2 MPa	0,05% Escala Total	
	1 MPa a 10 MPa	0,06% Escala Total	
	7 MPa a 70 MPa	0,08% Escala Total	

Signatarios autorizados: Fabiola Muñoz Roldán José Julián Aranda Tobías Israel Alba Villasana Jesús Rodríguez Monroy Ricardo Pacheco Aguilar

Roberto Villeda Suárez Roberto Luis Villeda Rubín Mario A. Marrón Oliver Joaquín Salazar Escorza

Magnitud Presión	Alcance	Incertidumbre k=2
Presión Relativa	200 kPa a 50 MPa	0,0075% Lectura
Calibración de Balanzas de Presión (0,1% L)		

Signatarios autorizados:

Fabiola Muñoz Roldán Roberto Villeda Suárez José Julián Aranda Tobías Roberto Luis Villeda Rubín Ricardo Pacheco Aguilar Jesús Rodríguez Monroy

Metalsa, S. de R.L.

Ing. Javier Alberto Garza López

Carretera Miguel Alemán km 16,5 No. 100

66600, Apodaca, Nuevo León Teléfono: (81) 8369 75 63 Fax: (81) 8369 72 24

Acreditación: P-49 Vencimiento: 2004-03-19

Magnitud Presión	Alcance	Incertidumbre k=2	Norma de referencia
Presión relativa	60 kPa a 600 kPa	350 0,6% Escala Total	NOM-013-SCFI-1993
Calibración de manómetros y	160 kPa a 1,6 Mpa	350 0,6% Escala Total	
transductores de presión.	700 kPa a 7 MPa	350 0,15% Lectura	
	7 MPa a 70 MPa	0,1% Lectura	

Signatarios autorizados:

Javier Alberto Garza López Fernando López Dávila

Centro de Validaciones y Calibraciones de México, S.A. de C. V.

Ing. Esteban A. Escalona González

Av. La Garita No. 231-2 Col. Villa Coapa 14390, México, D.F. Teléfono: (55) 5671 8431 Fax: (55) 5671 9667

Dirección de correo electrónico: cvc_de_mexico@yahoo.com.mx

Acreditación: P-50 Vencimiento: 2004-04-16

1011011110111011011200101111			
Magnitud	Alcance	Incertidumbre	Norma de referencia
Presión		k=2	
Presión Relativa	0 MPa a 10,34 MPa	0,025% Escala Total	NOM-013-SCFI-1993
(Manométrica)			
Presión Relativa	0 MPa a 1,4 MPa	0,1% Escala Total	
(Manométrica)			
Presión Diferencial	0 Pa a 500 Pa	0,3% Lectura	
Presión Negativa	- 78,0 kPa a 0,0 kPa	0,03% Escala Total	

Signatarios autorizados:

I.M.I. Andrés Daniel Ramírez Villaseca Téc. María Angélica Vega Sebastián I.M.I. Esteban Adrián Escalona González Téc. Fernando Calixto Godínez

Sistemas Integrales de Calibración y Aseguramiento Metrológico, S.A. de C.V.

QFB Ezequiel E. Noguez Sáenz Juan Aldama Sur No. 1135 Col. Universidad

50130, Toluca, Estado de México

Teléfono: (722) 270 15 84 Fax: (722) 270 15 84

Dirección de correo electrónico: dolores.ceron@terra.com.mx Acreditación: P-51 (Norma NMX-EC-17025-IMNC-2000)

Vencimiento: 2006-04-16

Magnitud Presión	Alcance	Incertidumbre k=2
Presión Diferencia/Relativa	0 a 500 Pa	± 0,2% Lectura
Presión Diferencia/Relativa	0 a 9,96 kPa	± 0,5% Escala Total
Relativa	- 78 kPa a 0 kPa	± 0,025% Escala Total
Relativa	20 kPa a 2070 kPa	± 0,025% Escala Total

Signatarios autorizados:

Ing. María de los Dolores Cerón Toledano QFB Ezequiel Noguez Sáenz Ing. Felipe de Jesús Noguez Sáenz Téc. Jesús Zamora Fabián

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: P-51	NOM-013-SCFI-1993	Pruebas metrológicas para manómetros
		con elemento elástico.

Area: Temperatura

Gerencia de Ingeniería Experimental y Control

Comisión Federal de Electricidad

Ing. Enrique Mena Sandoval

Augusto Rodín No. 265

Col. Noche Buena

03720, México, D.F.

Teléfono: (55)5229 4605

Fax: (55)5229 4400

Dirección de correo electrónico: maria.santaella@cfe.gob.mx

Acreditación: T-01 Vencimiento: 2003-09-18

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de Referencia
Termómetros de líquido en vidrio	- 10°C a 180°C	± 0,3°C	NOM-011-SCFI:1994
Calibración de indicadores de temperatura de hornos	Temperatura ambiente a 150°C	±2°C	

Responsables técnicos:

Ing. Ma. Teresa Santaella

Ing. Ma. Del Rosario Cervera Anaya

Ing. Magdalena Pacheco Montoya

Avenida Cuauhtémoc No. 1095, interior 103

Col. Letrán Valle 03650, México, D.F. Teléfono: (55) 5601 3962 Fax: (55) 5688 0305

Dirección de correo electrónico: mpacheco@mail.intranet.com.mx

Acreditación: T-13 Vencimiento: 2003-04-17

Magnitud Temperatura	Alcance	Incertidumbre máxima del sistema	Exactitud de los instrumentos
Líquido en vidrio	0 a 150°C	0,7°C	1,0°C
Bimetálicos	0 a 150°C	0,6°C	1,2°C

Responsables técnicos:

Ing. Ma. Magdalena Pacheco Montoya

Dr. Sergio Pacheco Montoya

Instituto Mexicano del Petróleo Ing. Enrique Ovando Yshikaua

Eje Central Lázaro Cárdenas No. 152

Col. San Bartolo Atepehuacan

07730, México, D.F. Teléfono: (55) 5333 6907 Fax: (55) 5333 6920

Dirección de correo electrónico: eovando@imp.mx

Acreditación: T-14

Aprobación Secretaría de Economía: T-14

Vencimiento: 2003-03-20

Magnitud	Alcance de medición	Incertidumbre
Temperatura		k=2
Termómetros de líquido en vidrio	-30°C a 50°C	0,020°C
Termómetros de resistencia de platino	50°C a 150°C	0,025°C
	150°C a 250°C	0,035°C
Termómetros bimetálicos	-30°C a 250°C	0,2°C

Termopares	-30°C a 250°C	0,2°C
	250°C a 700°C	0,25°C
	700°C a 960°C	0,5°C
Calibradores de temperatura	-30°C a 450°C	0,1°C
	450°C a 960°C	0,25°C
Equipos generadores de temperatura	-30°C a 250°C	0,20°C
(congeladoras, hornos, etc.)	250°C a 960°C	0,80°C
Termómetros digitales con sensor de termopar o	-30°C a 250°C	0,1°C
RTD	250°C a 960°C	0,3°C

Responsable técnico:

Ing. Enrique Ovando Yshikaua

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: T-14	NOM-011-SCFI-1993	Pruebas metrológicas para termómetros
		de líquido en vidrio.

Insco de México, S.A. de C.V. Ing. Jorge Mendoza Illescas Blvd. Toluca No. 43-C

Col. El Conde

53500, Naucalpan de Juárez, Estado de México

Teléfono: (55) 5359 0088 Fax: (55) 5358 3913

Dirección de correo electrónico: inscomex@prodigy.net.mx

Acreditación: T-18 Vencimiento: 2003-11-23

Magnitud	Alcance	Incertidumbre	Norma de Referencia
Temperatura		k=2	
Calibración de	-70 a 150°C	± 0,04°C	NOM-011-SCFI-1993
Termómetros de Líquido en	150 a 250°C	± 0,06°C	
Vidrio y Bimetálicos			
Calibración de	-70 a 250°C	± 0,02°C	
Termómetros de	250 a 400°C	± 0,07°C	
Resistencia de Platino	400 a 600°C	± 0,14°C	
Calibración de Termopares	-70 a 350°C	± 0,08°C	
	350 a 600°C	± 0,15°C	

Signatarios autorizados:

M. en C. Georgina Ramos Montiel Ing. Leticia Alcalá Madrid Ing. David Licea Panduro Ing. Alejandro Molina Piche

Ing. Agustín Villalobos Estrada

Ciateq, A.C.

Ing. Antonio Martínez Saucedo Circuito Aguascalientes No. 135

Parque Industrial del Valle de Aguascalientes

20355, Aguascalientes, Aguascalientes

Teléfono: (4) 973 10 60

Fax: (4) 973 10 70

Dirección de correo electrónico: saucedo@ags.ciateq.mx

Acreditación, No. T-19 Vencimiento: 2004-03-19

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia
Termómetros de líquido en vidrio en baño líquido.	- 30°C a 120°C	0,06°C	NOM-011-SCFI-1993

Termómetros de líquido en vidrio en pozo seco.	50°C a 450°C	0,40°C	NOM-011-SCFI-1993
Termómetros de resistencia de platino en baño líquido.	- 30°C a 120°C	0,06°C	
Termómetros de resistencia de platino en pozo seco.	50°C a 450°C	0,40°C	
Termopares en baño líquido.	- 30°C a 120°C	0,06°C	
Termopares y Termómetros industriales en pozo seco.	50°C a 580°C	0,40°C	
Termopares y termómetros industriales en mufla.	100°C a 960°C	1,5°C	

Signatarios autorizados:

Ing. Héctor Robledo González

Ing. Guadalupe del Rocío Lira Guerra

Centro de Ingeniería y Desarrollo Industrial

Ing. Fernando Motolinía Velázquez Av. Playa Pie de la Cuesta No. 702

Col. Desarrollo San Pablo 76130, Querétaro, Querétaro

Teléfono: (442) 211 9800 ext. 243, 269

Fax: (442) 220 7299

Dirección de correo electrónico: fmotolinia@cidesi.mx

Acreditación: T-24 Vigencia: 2003-07-17

Magnitud	Alcance	Incertidumbre	Norma de referencia
Temperatura		k=2	
Termómetros de líquido en vidrio.	-40°C a 200°C	± 0,1°C	NOM-011-SCFI-1993
	200°C a 600°C	± 0,2°C	
Termopares estandarizados	-40°C a 600°C	± 0,2°C	
Termopares de resistencia:			
Pt	-40°C a 600°C	± 0,2°C	
Cu	-40°C a 150°C	± 0,2°C	
Ni	-40°C a 300°C	± 0,2°C	
Termómetros industriales	-40°C a 600°C	± 0,2°C	
Termómetros ambientales con sensor interno	-10°C a 100°C	± 0,4°C	
Caracterización de medios de reproducción de temperatura	-40°C a 800°C	± 0,3°C	

Responsables técnicos:

Ing. José Luis Cravioto Urbina

Ing. Estela Escoto Serrano

Téc. Francisco Cruz Méndez

Validación y Metrología, S.A. de C.V. QFB Blanca Rosa Rodríguez Alvarado Av. Ejido San Francisco Culhuacán No. 196

Col. Presidentes Ejidales 04470, México, D.F. Teléfono: (55) 5656 8414 Fax: (55) 5695 9874

Dirección de correo electrónico: vamet@prodigy.net.mx

Acreditación: T-28

Aprobación Secretaría de Economía: T-28

Vencimiento: 2003-07-17

Magnitud	Alcance	Incertidumbre	Norma de referencia
Temperatura		k=2	

Termómetros a calibrar:			
Líquido en vidrio	-30°C a 250°C	+ 0,1°C	NOM-011-SCFI-1993
Resistencia eléctrica de platino con indicador de temperatura	-30°C a 250°C	+ 0,1°C	
Termopar con indicador de temperatura	-30°C a 250°C	+ 0,1°C	
Bimetálicos e industriales	-30°C a 250°C	+ 0,1°C	
En campo: Termopar montado en horno con indicador de temperatura	30°C a 600°C	+ 1°C	
	600°C a 875°C	+ 4°C	

Responsables técnicos:

QFB Blanca Rosa Rodríguez Alvarado

Ing. Mario Alberto Rodríguez Alvarado Téc. Reyes Martínez Lozano

Téc. Héver Víctor Castro

M. en C. Margarita Rodríguez Alvarado

Téc. Edgar Escalona Alvarez

Téc. Juan Arturo González Carranza

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: T-28	NOM-011-SCFI-1993	Pruebas metrológicas para
		termómetros de líquido en vidrio.

Grupo Simca, S.A. de C.V. Ing. Víctor Manuel Díaz Vargas Cajeros No. 73

Cajeros No. 73 Col. El Sifón 09400, México, D.F. Teléfono: (55) 5633 7331 Fax: (55) 5633 2803

Dirección de correo electrónico: gposimca@telecomm.net.mx

Acreditación: T-29 Vencimiento: 2003-06-19

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia o procedimiento
Termómetros de líquido en vidrio (en baño líquido)	-15 a 200°C	0,15°C	SIMCA-CAL-97-15
Termómetros de líquido en vidrio (pozo seco)	-15 a 350°C	1,6°C	
Termómetros de resistencia de platino	-15 a 420°C	0,2°C	SIMCA-CAL-97-20
Termopares	-15 a 420°C 420 a 1 100°C	0,2°C 1,2°C	SIMCA-CAL-97-17

Responsables técnicos:

Ing. Angel Sevilla García Téc. Alberto Rivera Murguía Ing. Claudio Enrique Flores García

Téc. Armando Lázaro Avila

Téc. Javier Israel Arieta García Téc. Andrey Noé Durán Ramírez Ing. Alfredo Cuevas Valencia

José Luz Martínez Lara

Zaragoza No. 13

Col. Emiliano Zapata Ayotla 56560, Ayotla, Estado de México Teléfono y fax: (55) 5974 5464

Correo electrónico: controlautomatico@icsistemas.com

Acreditación: T-32 Vencimiento: 2003-11-23

Magnitud	Alcance	Incertidumbre	Norma de referencia
		k=2	

-			
Termómetros de líquido en vidrio	0 a 200°C	± 0,03°C	NOM-011-SCFI-1993
Termopares	0 a 420°C	± 0,3°C	ASTM-E-230
Termómetros de Resistencia de platino	0 a 200°C	± 0,03°C	IEC 751
Termómetros de Resistencia de platino	200 a 420°C	± 0,1°C	IEC 751
Bimetálicos	0 a 420°C	± 0,3°C	NMX-CH-70-1993

Magnitud	Alcance	Incertidumbre
		k=2
Medición	-210°C a -100°C	± 0,2°C
Simulación eléctrica de temperatura	-100°C a 800°C	± 0,2°C
Sensor tipo termopar J	800°C a 1 200°C	± 0,2°C
Sensor tipo termopar K	-200°C a -100°C	± 0,3°C
	-100°C a 400°C	± 0,2°C
	400°C a 1 200°C	± 0,3°C
	1 200°C a 1 372°C	± 0,4°C
Sensor tipo termopar T	-250°C a -200°C	± 0,5°C
	-200°C a 0°C	± 0,2°C
	0°C a 400°C	± 0,2°C
Sensor tipo termopar R	-20°C a 0°C	± 0,5°C
·	0°C a 100°C	± 0,5°C
	100°C a 1 767°C	± 0,3°C
Sensor tipo termopar S	-20°C a 0°C	± 0,4°C
·	0°C a 200°C	± 0,4°C
	200°C a 1 400°C	± 0,3°C
	1 400°C a 1 767°C	± 0,4°C
Generación	-210°C a -100°C	± 0,2°C
Simulación eléctrica de temperatura	-100°C a 800°C	± 0,2°C
Sensor tipo termopar J	800°C a 1 200°C	± 0,2°C
Sensor tipo termopar K	-200°C a -100°C	± 0,3°C
Sonosi apo termopai in	-100°C a 400°C	± 0,2°C
	400°C a 1 200°C	± 0,3°C
	1 200°C a 1 372°C	± 0,4°C
Sensor tipo termopar T	-250°C a -200°C	± 0,5°C
Sensor upo termopar i	-200°C a 0°C	± 0,2°C
	0°C a 400°C	± 0,2°C
Songer tipe termoner P	-20°C a 0°C	± 0,5°C
Sensor tipo termopar R	0°C a 100°C	± 0,5°C
	100°C a 1 767°C	± 0,3°C
0		· · · · · · · · · · · · · · · · · · ·
Sensor tipo termopar S	-20°C a 0°C	± 0,4°C
	0°C a 200°C	± 0,4°C
	200°C a 1 400°C	± 0,3°C
Manathat /	1 400°C a 1 767°C	± 0,4°C
Medición	200°C c 0°C	. 0.0700
Simulación eléctrica de temperatura	-200°C a 0°C	± 0,07°C ± 0,1°C
Sensor tipo RTD Pt 385 100	0°C a 400°C 400°C a 800°C	± 0,1°C ± 0,2°C
F1 303 100	400 C a 000 C	± 0,2 C
Simulación eléctrica de temperatura	-200°C a -190°C	± 0,2°C
Sensor tipo RTD	-190°C a 0°C	± 0,1°C
Pt 3916 100	0°C a 360°C	± 0,1°C

Signatario autorizado: Sr. José Luz Martínez Lara

Centro de Investigación y Asesoría Tecnológica en Cuero y Calzado, A.C.

Ing. Juan Manuel López López

Omega No. 201

Fraccionamiento Delta 037540, León, Guanajuato

Teléfono: (47) 10 00 11 ext. 125, 405, 406

Fax: (47) 10 00 11 ext. 146

Acreditación: T-36

Dirección de correo electrónico: jlopez@ciatec.mx

Aprobación Secretaría de Economía: T-36

Vencimiento: 2003-01-16

Magnitud	Intervalo	Incertidumbre	
Temperatura		k=2	
Termómetros de líquido en vidrio	0°C a 150°C	0,02°C	
Termómetro de resistencia de platino	0°C a 150°C	0,02°C	
	150°C a 230°C	0,03°C	
Termopares	0°C a 960°C	0,05°C	
Sensores con lector electrónico	0°C a 230°C	0,1°C	

Responsables técnicos:

Ing. Juan Manuel López López Ing. Carlos A. Arámbulo Botello

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: T-36	NOM-011-SCFI-1993	Pruebas metrológicas para
		termómetros de líquido en vidrio.

Servicios Metrológicos Especializados, S.A. de C.V.

QFB Martín Nava Lemus Hacienda de Xajay No. 24 Col. Hacienda del Rosario 02420, México, D.F.

Teléfono: (55) 5318 6034 Fax: (55) 5318 6035

Dirección de correo electrónico: navamartin@terra.com.mx

Acreditación: T-37

Aprobación Secretaría de Economía: T-37

Vencimiento: 2003-02-20

Magnitud Temperatura Termómetros a calibrar:	Método	Alcance	Incertidumbre del sistema k =2	Clase de exactitud
De lectura directa (digital o analógica) con sensor de resistencia eléctrica, termopar, termistor o similar, bimetálicos De líquido en vidrio de inmersión parcial	Por comparación en baño líquido	0 a 200°C 200 a 250°C	0,025°C 0,033°C	0,08°C 0,1°C
De líquido en vidrio de inmersión total (inmersión máxima 30 cm)	Por comparación en baño líquido	0 a 200°C 200 a 250°C	0,025°C 0,033°C	0,08°C 0,1°C

Responsables técnicos:

QFB Martín Nava Lemus

Lap. Roberto Nava Lemus

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: T-37	NOM-011-SCFI-1993	Pruebas metrológicas para
		termómetros de líquido en vidrio.

Metas, S.A. de C.V.

Ing. Víctor Manuel Aranda Contreras

Acantilado No. 29 Col. La Joya

49090, Ciudad Guzmán, Jalisco Teléfono: (341) 413 6123

Fax: (341) 413 1691

Dirección de correo electrónico: metas@metas.com.mx

Acreditación: T-38

Aprobación Secretaría de Economía:

Vencimiento: 2003-03-20

Magnitud	Alcance (°C)	Incertidumbre del sistema
Temperatura		(°C)
Termómetros a calibrar		
De lectura directa (digital o analógica) con	-20 a 232	0,02
sensor de resistencia eléctrica, termopar,	0 a 1 000	0,20
termistor o similar	1 000 a 1 200	0,5
De líquido en vidrio de inmersión parcial	-20 a 232	0,02
De líquido en vidrio de inmersión total	-20 a 232	0,02
(inmersión máxima 30 cm)	0 a 600	0,3
De resistencia de Platino	-20 a 232	± 0,02
	0 a 855	± 0,20
De termopar	-20 a 232	± 0,02
	0 a 1 000	± 0,20
	1 000 a 1 200	± 0,5
Sistemas de calibración integrados en horno o	-38 a 232	0,01
baño	0 a 1 000	0,2
	1 000 a 1 200	0,5
	1 200 a 1 450	2,0

Responsables técnicos:

Ing. Víctor Manuel Aranda Contreras

Ing. Gerardo Aranda Contreras

Ing. Silvia Medrano Guerrero

Asesoría y Servicios Integrales en Calibración, S.C.

Ing. Valdemar Farías Rodríguez Colima 11-B, San Lorenzo Tepaltitlán 50010, Toluca, Estado de México

Teléfono: (7) 272 02 77 Fax: (7) 272 92 52 Acreditación: T-39 Vencimiento: 2003-05-15

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma o procedimiento de referencia
Termómetros de líquido en vidrio	0°C,35°C a 350°C	0,5°C	NOM-011-SCFI-1993
Indicadores de temperatura	-250°C a 2 320°C	0,5°C	ASIC-129-2001

Responsables técnicos:

Valdemar Farías Rodríguez J. César Martínez Rivera José Alberto Gómez J. Fernando Rosales Serrano

Calibraciones Profesionales e Ingeniería, S.A. de C.V.

Ing. Roberto Luis Villeda Rubín

Camino Real de Calacoaya No. 65

Col. Calacoaya

53120, Atizapán, Estado de México

Teléfono: (55) 5362 7431 Fax: (55) 5362 7439

Dirección de correo electrónico: info@calpro.com.mx

Acreditación: T-41 Vencimiento: 2003-07-17

			•
Magnitud Temperatura	Alcance	Incertidumbre del sistema k=2	Método
Calibración de: Termómetros de resistencia utilizando un termómetro de resistencia de platino y baño de lecho fluidizado.	100°C a 400°C	± 1,2°C	Comparación directa
Termómetro de resistencia utilizando un termómetro de resistencia de platino y baño de pozo seco	30°C a 450°C	± 1,8°C	Comparación directa
Termómetro de resistencia utilizando un termómetro de resistencia de platino y baño líquido	30°C a 200°C	± 1,2°C	Comparación directa
Termopares utilizando un termómetro de resistencia de platino y baño de pozo seco.	30°C a 450°C	± 1,2°C	Comparación directa
Termopares utilizando un horno de calibración	500°C a 1000°C	± 4,6°C	Comparación directa
Termómetros bimetálicos	30°C a 450°C	± 1,8°C	Comparación directa

Responsables técnicos:

Ing. José Julián Aranda Tobías Téc. Marcos López Ramírez Téc. Ricardo Pacheco Aguilar Ing. Jesús Rodríguez Monroy Ing. Fabiola Muñoz Roldán Téc. Roberto Jaime Méndez Ing. Roberto Luis Villeda Rubín Téc. Israel Alba Villasana

Magnitud	Alcance	Incertidumbre
Temperatura		k=2
Medición y Generación		
Simulación eléctrica de temperatura		
Sensor tipo termopar J	-210°C a 1 200°C	0,2°C
Sensor tipo termopar K	200°C a 1 372°C	0,2°C
Sensor tipo termopar T	-205°C a 400°C	0,1°C
Sensor tipo termopar E	-234°C a 1 000°C	0,2°C
Sensor tipo termopar R	-50°C a 1 768°C	0,4°C
Sensor tipo termopar S	-50°C a 1 768°C	0,4°C
Simulación eléctrica de temperatura sensor tipo RTD Pt 385 100	-200°C a 800°C	0,1°C
Simulación eléctrica de temperatura sensor tipo RTD Pt 385 200	-200°C a 630°C	0,1°C
Simulación eléctrica de temperatura sensor tipo RTD Pt 385 500	-200°C a 630°C	0,1°C
Simulación eléctrica de temperatura sensor tipo RTD Pt 385 1000	-200°C a 800°C	0,1°C

DIARIO OFICIAL

(Segunda Sección) 233

Simulación eléctrica de temperatura sensor	-200°C a 630°C	0,1°C
tipo RTD		
Pt 100 392		

Signatarios autorizados:

Ing. Roberto Luis Villeda Rubín Ing. José Julián Aranda Tobías Ing. Fabiola Muñoz Roldán Ing. Jesús Rodríguez Monroy Téc. Roberto Jaime Méndez Téc. Ricardo Pacheco Aguilar Téc. Mario Marrón Oliver Téc. Israel Alba Villasana

Téc. Marcos López Ramírez

Raúl Vicente Castillo Carrillo

Hermenegildo Rangel L. (antes Fronteras) No. 83-A

Col. 5 de Mayo

83010, Hermosillo, Sonora Teléfono y fax: (62) 14 88 31 Acreditación: T-42 Vencimiento: 2003-09-18

101101111011101. 2000 00 10			
Magnitud Temperatura	Alcance	Incertidumbre del sistema k=2	Norma de referencia
Termómetros de líquido en vidrio, digitales	-20°C a 100°C	± 0, 6°C	NOM-011-SCFI-1994
Termómetros de líquido en vidrio,	100°C a 200°C	± 1, 1°C	NOM-011-SCFI-1994

Responsables técnicos:

digitales

Raúl Vicente Castillo Carrillo Gina C. Castillo Quijada

Raúl Castillo Romero

Ingeniería y Servicios de Equipo Electrónico, S.A. de C.V.

Ing. Ernesto Ochoa Cortés

Calle Ojitlán No. 7

Col. Residencial Cafetales

04918, México, D.F. Teléfono: (55) 5671 1591 Fax: (55) 5673 9638

Dirección de correo electrónico: aautomatizacion@prodigy.net.mx

Acreditación: T-43 Vencimiento: 2003-09-18

Magnitud Temperatura	Alcance	Incertidumbre del Sistema k=2
Termómetros de lectura directa (digital o analógica) con sensor de resistencia eléctrica o termopar. Método: comparación directa en baño líquido.	- 30°C a 30°C	± 0, 16°C
Termómetros de lectura directa (digital o analógica) con sensor de resistencia eléctrica o termopar. Método: Comparación directa en baño líquido.	30°C a 80°C	± 0, 10°C
Termómetros de lectura directa (digital o analógica) con sensor de resistencia eléctrica o termopar. Método: comparación directa en baño de pozo seco.	80°C a 300°C	± 0, 20°C

Responsables técnicos:

M. en C. Ernesto José Ochoa Cortés

Ing. María Luisa Ochoa Cortés

Ing. Alfonso Ricardo Ochoa Cortés

Vidriera Los Reyes, S.A. de C.V. Ing. Francisco Murillo Jaramillo Av. Presidente Juárez No. 2039

54090, Tlalnepantla, Estado de México Teléfono: (55) 5227 9600 ext. 1007 Fax: (55) 5227 9000 ext. 1027

Dirección de correo electrónico: labmetrologia@vto.com

Acreditación: T-44 Vencimiento: 2003-09-18

Magnitud Temperatura	Alcance	Incertidumbre del sistema k=2	Norma de referencia
Termómetros de líquido en vidrio	− 30°C a 250°C	± 0,7°C	NOM-011-SCFI-1994
Termómetros bimetálicos	0°C a 250°C	±1,2°C	NMX-CH-70-SCFI-1993
Termómetros de radiación (pirómetros ópticos)	0°C a 450°C 450°C a 1 000°C 1 000°C a 1 300°C	± 3°C ± 4°C ± 4,5°C	
Termopares	0°C a 1 300°C	±0,8°C	

Responsables técnicos:

Ing. Javier Herrera Murillo Ing. Marco Antonio Roa Torres

Nicolás, Sven, Pacheco y Andresen, S.A. de C.V.

M. en C. María Ruth Martínez Velarde

Madrid No. 77

Col. Del Carmen, Coyoacán

04100, México, D.F. Teléfono: (55) 5659 1481 Fax: (55) 5659 0525

Dirección de correo electrónico: nspacand@mail.internet.com.mx

Acreditación: T-45 Vencimiento: 2003-09-18 **EN LABORATORIO:**

Magnitud Temperatura	Alcance	Incertidumbre del sistema k=2	Norma de referencia
Termómetros de resistencia de platino	- 20 a 150°C	± 0,11°C	
Termopares	- 20 a 150°C	± 0,3°C	
Termómetros bimetálicos	- 20 a 150°C	± 0,3°C	NMX-CH-70-1993
Termómetros de líquido en vidrio	- 20 a 150°C	± 0,11°C	NOM-011-SCFI-1994

EN CAMPO:

LIT O/ WIL O.			
Magnitud Temperatura	Alcance	Incertidumbre del sistema k=2	Norma de referencia
Termómetros de resistencia de platino	- 20 a 150°C	± 0,11°C	
Termopares	- 20 a 150°C	± 0,3°C	
Termómetros bimetálicos	- 20 a 150°C	± 0,3°C	NMX-CH-70-1993
Sistemas termales (capilares de Gas)	- 20 a 150°C	± 0,2°C	
Termómetros de líquido en vidrio	- 20 a 150°C	± 0,11°C	NOM-011-SCFI-1994

Responsables técnicos:

Ing. Miguel Martínez Salgado

Ing. Laura Angélica Colín Villedas

Ing. Fanny Pineda Pineda

IQ Daniel López Herrera

Conductores Monterrey, S.A. de C.V.

Ing. David Espinoza de León Av. Conductores No. 505 Ote. Col. Constituyentes de Querétaro

66493, San Nicolás de los Garza, Nuevo León

Teléfono: (81) 8369 8000 Fax: (81) 8369 8060

Dirección de correo electrónico: davidel@xignux.com

Acreditación: T-47 Vencimiento: 2003-10-16

Magnitud	Alcance	Incertidumbre	Norma de Referencia
Temperatura		k=2	
Calibración de termómetros de líquido en vidrio	0 a 100°C	± 1,8°C	NOM-011-SCFI-1993
Calibración de termómetros de líquido en vidrio	100 a 200°C	± 2,0°C	NOM-011-SCFI-1993

Signatarios autorizados:

Ing. Edgar Andrade Frías Ing. David Espinoza De León Téc. José Miguel Moreno Vásquez Téc. Héctor Daniel Villarreal

Patricia Granados Sánchez Manuela Medina No. 104

Col. Burócrata

76070, Querétaro, Querétaro Teléfono y fax: (442) 223 53 59

Correo electrónico: labcam@qro1.telmex.net.mx

Acreditación: T-49 Vencimiento: 2003-11-23

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia
Termómetros de líquido en vidrio, digitales (conjunto lector con sensor de termopar, de resistencia o de termistor) y bimetálicos	0°C a 90°C	0,016°C	NOM-011-SCFI-1993
Termómetros de líquido en vidrio, digitales (conjunto lector con sensor de termopar, de resistencia o de termistor) y bimetálicos	90°C a 150°C	0,025°C	
Termómetros de líquido en vidrio, digitales (conjunto lector con sensor de termopar, de resistencia o de termistor) y bimetálicos	150°C a 450°C	0,1°C	NOM-011-SCFI-1993
Termómetros de líquido en vidrio	0°C a 420°C	0,1°C	

Signatarios autorizados:

Patricia Granados Sánchez

M. en C. Leonel Lira Cortés

Metrología y Pruebas S.A. de C.V. Ing. Eduardo Ricaud Gamboa Privada Tecnológico No. 25 84000, Nogales, Sonora Teléfono: (631) 314 6263

Fax: (631) 314 6193

Dirección de correo electrónico: callab@prodigy.net.mx

Acreditación: T-50 Vencimiento: 2004-02-19

Magnitud	Alcance	Incertidumbre
Temperatura		k=2

DIARIO OFICIAL

(Segunda Sección)

Termómetros digitales cuyo sensor sea una - 30°C a 200°C 0,07°C resistencia de platino, termopar o termistor

Signatarios autorizados:

Ing. Eduardo Ricaud Gamboa Ing. Manuel Eligio Vega Sánchez Ing. Sergio Iván Hernández Ruiz Ing. Roberto Hurtado

Nysco de México, S.A. de C.V.

QFB Miguel Guadalupe Sánchez Hernández

Calz. Ermita Iztapalapa No. 436-B

Col. Mexicaltzingo 09080, México, D.F. Teléfono: (55) 5697 5494 Fax: (55) 5697 9565

Dirección de correo electrónico: msanches@icnpharm.com

Acreditación: T-51 Vencimiento: 2004-03-19

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia
Termómetros de Líquido en Vidrio de Inmersión Total	- 30°C a 250°C	0,03°C	NOM-011-SCFI-1993
Termómetros de Líquido en Vidrio de Inmersión Parcial	- 30°C a 250°C	0,06°C	NOM-011-SCFI-1993
Termómetros Bimetálicos	- 30°C a 250°C	0,1°C	NMX-CH-70- SCFI -1993

Signatarios autorizados:

Miguel Guadalupe Sánchez Hernández Gerardo Soria Trujillo Rafael Chargoy Navarro Benigno López Avelar

Luis Enrique Ibáñez Pérez

Baxter, S.A. de C.V. Ing. Francisco Juárez Martínez Av. de los 50 metros No. 2 62500, Jiutepec, Morelos Teléfono: (7) 329 60 00 Fax: (7) 329 60 00 Acreditación: T-52

Vencimiento: 2004-03-19

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de termómetros de líquido en vidrio en baño líquido	-40°C a 110°C 90°C a 250°C	0,02°C 0,08°C	NOM-011-SCFI-1993
Calibración de termómetros digitales, analógicos (conjunto- sensor lector) y bimetálicos en baño líquido	-40°C a 110°C 90°C a 250°C	0,02°C 0,08°C	
Calibración de termómetros digitales, analógicos (conjunto- sensor lector) y bimetálicos en pozo seco	-25°C a 140°C 100°C a 300°C	0,30°C 0,10°C	

Signatarios autorizados:

Ing. Edgar Sandoval Pineda

Ing. Ramón Sotelo Rodríguez

Lakeside de México, S.A. de C.V. QFB Carlos Castellanos Vargas Isidro Fabela Norte No. 1536 Col. Parque Industrial

50030, Toluca, Estado de México

Teléfono: (722) 279 17 60 Fax: (722) 279 17 60 ext. 5252 Acreditación: T-53 Vencimiento: 2004-04-16

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia
Termómetros de líquido en vidrio en baño líquido	-20°C a 150°C 150°C a 250°C	± 0,3°C ± 1,8°C	NOM -011-SCFI-1993
Termómetros digitales o analógicos con sensor de resistencia y/o termopar en baño líquido y en pozo seco	-20°C a 150°C 150°C a 250°C	± 0,3°C ± 1,8°C	
Termómetros bimetálicos en baño líquido y en pozo seco	-20°C a 150°C 150°C a 250°C	± 0,5°C ± 1,8°C	
Termopares Tipo J Tipo K Tipo T Por simulación eléctrica	-210°C a 1200°C -200°C a 1372°C -250°C a 400°C	± 0,32°C	

Signatarios autorizados:

Ing. Juan Manuel Romero Alonso QFB Carlos Castellanos Vargas Téc. Jesús Zamora Fabián

QFB Leticia Gutiérrez Martínez Ing. Adamec Gutiérrez Cajero

Syntex, S.A. de C.V.

QFB Carlos Castellanos Vargas Isidro Fabela Nte. No. 1536 Col. Parque Industrial

50030, Toluca, Estado de México Teléfono: (722) 279 17 60 Fax: (722) 279 17 60 ext. 5252

Acreditación: T-54 Vencimiento: 2004-04-16

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia
Termómetros de líquido en vidrio en baño líquido	-20°C a 150°C 150°C a 250°C	± 0,3°C ± 1,8°C	NOM -011-SCFI-1993
Termómetros digitales o analógicos con sensor de resistencia y/o termopar en baño líquido y en pozo seco	-20°C a 150°C 150°C a 250°C	± 0,3°C ± 1,8°C	

Magnitud Temperatura	Alcance	Incertidumbre k=2
Termómetros bimetálicos en baño	-20°C a 150°C	± 0,5°C
líquido y en pozo seco	150°C a 250°C	± 1,8°C
Termopares		
Tipo J	-210°C a 1200°C	± 0,32°C
Tipo K	-200°C a 1372°C	
Tipo T	-250°C a 400°C	
Por simulación eléctrica		

Signatarios autorizados:

Ing. Juan Manuel Romero Alonso QFB Carlos Castellanos Vargas Téc. Jesús Zamora Fabián

QFB Leticia Gutiérrez Martínez Ing. Adamec Gutiérrez Cajero

Centro de Validaciones y Calibraciones de México, S.A. de C.V.

Ing. Esteban A. Escalona González

Av. La Garita No. 231-2 Col. Villa Coapa 14390, México, D.F. Teléfono: (55) 5671 8431 Fax: (55) 5671 9667

Dirección de correo electrónico: cvc_de_mexico@yahoo.com.mx

Acreditación: T-55 Vencimiento: 2004-04-16

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de referencia
Termómetros de Resistencia de Platino	-35°C a 200°C 200°C a 300°C	0,1°C 0,2°C	
Termómetros de Líquido en Vidrio	-35°C a 200°C 200°C a 300°C	0,1°C 0,5°C	NOM-011-SCFI-1993
Termopares	-35°C a 200°C 200°C a 300°C	0,5°C	
Termómetros Bimetálicos	-35°C a 200°C 200°C a 300°C	0,5°C	

Signatarios autorizados:

Téc. María Angélica Vega Sebastián I.M.I. Andrés Daniel Ramírez Villaseca I.M.I. Esteban Adrián Escalona González Téc. Fernando Calixto Godínez Téc. Víctor Manuel Soto Velázquez Téc. Carmen Julia Lobato Galindo

Téc. Samanta López Gómez

Sistemas Integrales de Calibración y Aseguramiento Metrológico, S.A. de C.V.

QFB Ezequiel E. Noguez Sáenz Juan Aldama Sur No. 1135

Col. Universidad

50130, Toluca, Estado de México

Teléfono: (722) 270 15 84 Fax: (722) 270 15 84

Dirección de correo electrónico: dolores.ceron@terra.com.mx Acreditación: T-56 (Norma NMX-EC-17025-IMNC-2000)

Aprobación Secretaría de Economía: T-56

Vencimiento: 2006-04-16

Magnitud Temperatura	Alcance	Incertidumbre k=2	Norma de Referencia
Termómetros de Líquido en Vidrio	-10°C a 0°C 0°C a 200°C	± 0,2°C ± 0,1°C	NOM-011-SCFI-1993
Resistencia de Platino	-10°C a 0°C 0°C a 200°C	± 0,2°C ± 0,1°C	
Termopares	-10°C a 0°C 0°C a 200°C	± 0,3°C ± 0,5°C	
Bimetálicos	-10°C a 100°C -10°C a 200°C	± 0,5°C ± 1,0°C	
Radiación (pirómetros)	35°C a 200°C 200°C a 400°C	± 3,0°C ± 4,0°C	

Magnitud Temperatura	Alcance	Incertidumbre k=2
Simulación Eléctrica de Temperatura (Medición) para sensores tipo:		

Miércoles 26 de junio de 2002	DIARIO OFICIAL	(Segunda Sección) 239
Termopar tipo "J"	-210°C a -100°C -100°C a 600°C 600°C a 1200°C	± 0,3°C ± 0,2°C ± 0,2°C
Termopar tipo "K"	-200°C a -100°C -100°C a 100°C 100°C a 1000°C 1000°C a 1300°C	± 0,3°C ± 0,2°C ± 0,3°C ± 0,4°C
Termopar tipo "T"	-200°C a -100°C -100°C a 0°C 0°C a 400°C	± 0,5°C ± 0,3°C ± 0,2°C
Termopar tipo "R"	0°C a 200°C 200°C a 1000°C 1000°C a 1700°C	± 0,5°C ± 0,3°C ± 0,4°C
Termopar tipo "S"	0°C a 200°C 200°C a 1400°C 1400°C a 1700°C	± 0,4°C ± 0,3°C ± 0,4°C
RTD Pt 385 100 4 Terminales	-200°C a 400°C 400°C a 600°C 600°C a 800°C	± 0,1°C ± 0,2°C ± 0,3°C
Simulación Eléctrica de Temperatura (Generación) para sensores tipo		
Termopar tipo "J"	-199,9°C a -99,8°C - 99,8°C a 600°C 600°C a 1200°C	± 0,3°C ± 0,2°C ± 0,3°C
Termopar tipo "K"	-199,7°C a -99,9°C -99,9°C a 100,1°C 100,1°C a 1000°C 1000°C a 1299,9°C	± 0,3°C ± 0,2°C ± 0,3°C ± 0,4°C
Termopar tipo "T"	-199,9°C a -99,8°C -99,8°C a 0°C 0°C a 400°C	± 0,5°C ± 0,3°C ± 0,2°C
Simulación Eléctrica de Temperatura (Generación) para sensores tipo:		
Termopar tipo "R"	0,1°C a 199,9°C 199,9°C a 999,8°C 999,8°C a 1699,8°C	± 0,5°C ± 0,3°C ± 0,4°C
Termopar tipo "S"	0°C a 200°C 200°C a 1399,8°C 1399,8°C a 1699,6°C	± 0,4°C ± 0,3°C ± 0,4°C

Signatarios autorizados:

RTD Pt 385 100

4 Terminales

Ing. Ma. de los Dolores Cerón Toledano

Ing. Felipe de Jesús Noguez Sáenz

-199,9°C a 399,9°C

399,9°C a 599,9°C

± 0,1°C

± 0,2°C

Téc. Jesús Zamora Fabián

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación
Secretaría de Economía: T-36	NOM-011-SCFI-1993	Pruebas metrológicas para
		termómetros de líquido en vidrio.

Area: Tiempo y Frecuencia

Instituto Nacional de Investigaciones Nucleares

Ing. Ariel Villaverde Lozano

km. 36,5 carretera México-Toluca 52045, Ocoyoacac, Estado de México

Teléfono: (55) 5329 7294 Fax: (55) 5329 7294

Dirección de correo electrónico: arielv@nuclear.inin.mx

Acreditación: TF-05 Vencimiento: 2003-12-18

Magnitud Tiempo y frecuencia	Alcance	Incertidumbre
Medición		
Frecuencia	0,01 Hz a 100 MHz	Resolución + (Error de la base de tiempo x f)
Tiempo	2 ns a 10 s	Resolución + (Error de la base de tiempo x T)
Generación		
Frecuencia	100 mHz a 20 MHz	Error de la base de tiempo x f
Tiempo	1 ns a 5 s	Error de la base de tiempo x T

Error de la base de tiempo 1, 23 x 10 -7 Donde: f es frecuencia y T es Periodo

Signatarios autorizados:

Ing. Ariel Villaverde Lozano Ing. Pedro Cruz Estrada

Grupo Canefer, S.A. de C.V. Ing. Fernando Gutiérrez Guzmán

Montes Urales No. 108, Col. Vista Hermosa

76063, Querétaro, Querétaro Teléfono: (442) 213 40 40 Fax: (442) 213 98 89

Dirección de correo electrónico: canefer1@qro1.telmex.net.mx

Acreditación: TF-07 Vencimiento: 2004-04-16

Magnitud Tiempo y Frecuencia	Alcance	Incertidumbre k=2	Norma de referencia
Frecuencia			
Modo de Generación	10 MHz	resolución (error de la	
	0,01 Hz a 200 MHz	base de tiempo) x F	
Modo de Medición	0,01 Hz a 225 MHz		
Tiempo			
Modo de Generación	5 ns a 100 s	resolución (error de la	
Modo de Medición	100 ns a 10 s	base de tiempo) x (error del	
	10 s a 8,64 x 10 ⁺⁵ s	disparo) x T	NOM-007-SCFI-1997 puntos 9.7.2.1 y 9.7.2.2 "Taxímetros"

Donde: F es frecuencia T es el tiempo

Error de la base de tiempo=2 x 10 -8

Error de disparo=1 x 10 -6

Signatarios autorizados:

Ing. Fernando Gutiérrez Guzmán Ing. Oscar Gutiérrez Galván

Ing. Jesús Eduardo Pérez Romero Téc. Roberto Saúl Hernández Miranda

Laboratorio de Pruebas de Equipos y Materiales de la CFE

Ing. Jorge Adolfo Pérez Guzmán

Av. Apaseo Ote. s/n

Cd. Industrial

36541, Irapuato, Guanajuato Teléfono: (462) 623 94 46

Dirección de correo electrónico: jperezg@cfe.gob.mx

Fax: (442) 623 94 06 Acreditación: TF-08 Vencimiento: 2003-09-18

Magnitud	Alcance	Incertidumbre k=2
Frecuencia	0,001 Hz a 1,3 GHz	Resolución + (Error de la base de tiempo x f)
Periodo	10 ns a 10 ⁶ s	Resolución + (Error de la base de tiempo x T)
Intervalo de Tiempo	0 a 10 ⁶ s	Resolución + (Error de la base de tiempo x TI) + (Error de tiempo en el nivel de disparo + 300 ps)
Distorsión Armónica	20 Hz a 50 MHz	0,7 dB
Potencia **	-20 dBm a 20 dBm 100 kHz a 2,5 MHz	$2*\sqrt{0.65^2+U_m^2+U_{kb}^2+U_{aten}^2}$ %
	-100 dBm a 20 dBm 2,5 MHz a 1 300 MHz	$2*\sqrt{0.65^2+U_m^2+U_{kb}^2+U_{aten}^2}$ %
	-20 dBm a 20 dBm 1 300 MHz a 2 600 MHz	$2*\sqrt{0.65^2+U_m^2+U_{kb}^2+U_{aten}^2}$ %

^{*} Se indica k=2 para propósitos de calibración con pocas mediciones

Donde: T es el periodo y f es la frecuencia

	Incertidumbre de lesacoplamiento con generador		Incertidumbre sobre el factor de calibración		or atenuación
SWR	U _m % K=2	Frecuencia (MHz)	U kb% k=2	Intervalo (dBm)	U _{aten} % k=2
2,5	1,7	0,1	0,35	20 – 0	0,0
2,0	1,3	0,3	0,35	-10	0,06
1,8	1,1	1,0	0,4	-20	0,12
1,7	0,99	3,0	0,4	-30	0,18
1,6	0,89	10,0	0,45	-40	0,24
1,5	0,77	30,0	0,45	-50	0,29
1,15	0,27	50,0	0,0	-60	0,35
1,05	0,09	100,0	0,55	-70	0,41
		300,0	0,55	-80	0,47
		1 000,0	0,55	-90	0,52
		2 600,0	0,6	-100	0,58
				-110	1,2
				-120	1,7

Magnitud	Alcance	Incertidumbre k=2
Generación Frecuencia	0,001 Hz a 20,999 999 MHz 23,98 dBm a 127 dBm 100 kHz a 990 MHz 17 dBm a 127 dBm	Error de la base de tiempo x f
Calibración de Osciloscopios		
Ancho de Banda	250 kHz a 250 MHz 100 kHz a 990 MHz	1% 1 dB
Amplitud	40 V a 200 V	0,25 + 0,1 V
Tiempo de Subida	20 mV a 1 V pp 1 V pp	< 1,3 ns < 150 ps
Marcas de Tiempo	0,5 ns a 5 s en serie 1,2,5	3 ppm

Error de base de tiempo 1 x 10 –11 (Determinada por la Varianza de Allan) Responsables técnicos:

^{**} Contribuciones de incertidumbre a mediciones de potencia

Ing. Jorge Adolfo Pérez Guzmán Martín Federico López Martínez

Alberto Alejandro Montoya Vargas Miguel Angel Chávez López

Area: Volumen

Ciateq, A.C.

Ing. Antonio Martínez Saucedo Circuito Aguascalientes Nte. No. 135

Parque Industrial del Valle de Aguascalientes 20355

Aguascalientes, Aguascalientes Teléfono: (449) 973 10 60 Fax: (449) 973 10 70

Dirección de correo electrónico: gnajera@ags.ciateq.mx

Acreditación: V-05 Vencimiento: 2004-01-15

Magnitud Volumen	Alcance	Incertidumbre k=2	Norma de Referencia
Método Gravimétrico/Servicio			
Calibración de micropipetas	10 L a 1 000 L	0,2% del volumen	ISO-8655-6
Calibración de jeringas	10 L a 500 L	0,2% del volumen	ISO-8655-6 NMX-BB-86-1992
Calibración de pipetas	0,1 mL a 500 mL	0,02% del volumen	NMX-BB-86-1992
Calibración de buretas	1 mL a 500 mL	0,02% del volumen	NMX-BB-86-1992
Calibración de matraces	5 mL a 10 000 mL	0,02% del volumen	NMX-BB-86-1992
Calibración de picnómetros	25 mL a 100 mL	0,02% del volumen	ISO-3507-1996
Calibración de recipientes metálicos	1 L a 25 L	0,03% del volumen	NMX-CH-49-1984 NOM-CH-042-1997 Punto 9.1.4
Método Volumétrico/Servicio			
Calibración de recipientes metálicos	1 L a 500 L	0,04% del volumen	

Signatarios autorizados:

Ing. César Guillermo Nájera Martell

Ing. Zaida Mora Alvarez

Centro de Investigación y Asesoría Tecnológica en Cuero y Calzado, A.C.

Ing. José Julio Mares Hernández

Omega No. 201 Fraccionamiento Delta 037540, León, Guanajuato

Teléfono: (477) 710 00 11 ext. 1360 Fax: (477) 710 00 11 ext. 1361

Dirección de correo electrónico: ¡lopez@ciatec.mx

Acreditación: V-06

Vencimiento: 2003-02-20

- 4				
	Magnitud Volumen	Alcance	Incertidumbre k=2	Norma de referencia
	Calibración de recipientes volumétricos por el método gravimétrico	1 ml a 1 L	0,02% *	NOM-042-SCFI-1997 Incisos: 5.6.4, 7.4 y 9.1
	Calibración de recipientes con escala graduada en el cuello por el método volumétrico	1 L a 500 L	0,04% *	NOM-041-SCFI-1997 Incisos: 7.4 y 7.5

^{*} del volumen

Responsables técnicos:

José Julio Mares Hernández Carlos A. Arámbulo Botello

Centro de Investigación Científica de Yucatán, A.C.

Ing. Manuel Jesús Alvarez Díaz

Calle 43 No. 130

Col. Chuburná de Hidalgo 97200, Mérida, Yucatán

Teléfonos y fax: (999) 981 3921, (999) 981 3923

Fax: (999) 981 3900

Dirección de correo electrónico: malvarez@cicy.mx

Acreditación: V-12 Vigencia: 2003-07-17

Magnitud Volumen Servicio	Método	Alcance	Incertidumbre k=2	Norma de referencia
Calibración de material volumétrico de vidrio para laboratorio	Gravimétrico	1 ml a 2 000 ml	0,03% del Volumen	NMX-BB-086:1992-SCFI
Calibración de recipientes volumétricos	Gravimétrico	1 L a 50 L	0,03% del Volumen	NMX-CH-049:1996-IMNC
metálicos con escala graduada	Volumétrico	1 L a 500 L	0,05% del Volumen	

Responsables técnicos:

Ing. José Ricardo Pech Poot

Ing. Javier Enrique Escalante Estrella

Básculas Braunker, S.A. de C.V., División Patrón Braunker

Ing. Federico Jaime Okhuysen Morales

Trípoli No. 413 Col. Portales 03300, México, D.F. Teléfono: (55) 5605 1853

Fax: (55) 5604 3531

Dirección de correo electrónico: fibra@infosel.net.mx

Acreditación: V-14

Aprobación Secretaría de Economía: V-14

Vencimiento: 2003-10-16

Magnitud Volumen	Valor Nominal	Incertidumbre k=2	Norma de referencia
Método Gravimétrico Calibración de recipientes volumétricos de cuello graduado de 5 L a 20 L	5 L	0,05% del Volumen	NOM-042-SCFI-1997 Incisos: 5.6.4, 7.4, 9.1
	10 L a 20 L	0, 035% del Volumen	NOM-041-SCFI-1997 Incisos: 7.4, 7.5

Signatarios autorizados:

Ing. Rosa María Herrera Hernández

Joel Ibáñez González

Aprobación	Norma Oficial Mexicana Aprobada	Campo de aplicación	
Secretaría de Economía: V-14	NOM-042-SCFI-1997	Pruebas metrológicas para	
	Incisos: 5.6.4, 7.4 y 9.1	medidas volumétricas metálicas.	
	NOM-042-SCFI-1997		
	Incisos: 7.4 y 7.5		

Instituto Mexicano del Petróleo Ing. Enrique Ovando Ishikaua Eje Central Lázaro Cárdenas No. 152 Col. San Bartolo Atepehuacan 07730, México, D.F.

Teléfono: (55) 55333 6906 Fax: (55) 5533 6920

Dirección de correo electrónico: eovando@imp.mx

Acreditación: V-15 Vencimiento: 2002-10-17

Magnitud Volumen	Intervalo	Incertidumbre k=2
Recipientes volumétricos	1 ml a 250 ml	0,025% del volumen
Método gravimétrico	250 ml a 4 l	0,002% del volumen

Responsable técnico:

Ing. Enrique Ovando Yshikaua

Internacional de Bienes, Servicios e Ingeniería, S.A. de C.V.

Lic. Salvador Vázquez Vanegas

Rayas 66-B Col. Valle Gómez 15210, México, D.F. Teléfono: (55) 5759 0858 Fax: (55) 5537 4606

Dirección de correo electrónico: ibsei@prodigy.net.mx

Acreditación: V-16 Vencimiento: 2003-02-20

Magnitud Volumen	Alcance	Incertidumbre k=2
Método gravimétrico (patrones volumétricos)	2 L a 200 L	0,03% *
Gravimétrico (autotanques empleando agua)	10 000 L a 70 000 L	0,12% *
Transferencia volumétrica (patrones volumétricos)	5 L a 5 000 L	0,05% *
Transferencia volumétrica (tanques fijos o móviles empleando un medidor de referencia tipo turbina usando agua)	2 000 L a 100 000 L	0,16% *

^{*} del volumen

Responsables técnicos: Técnicos:

Lic. José Manuel Penelas García Ing. Karen Molina Picón Ing. Lázaro Oscar Caiñas Rodríguez Gabriel Ramírez Saucedo

Ing. Alberto Ojeda Senra

Corporación Mexicana de Investigación en Materiales, S.A. de C.V.

Ing. Raúl Herrera Mendoza

Fraccionamiento Saltillo 400 No. 190

25290, Saltillo, Coahuila

Teléfono: (84) 11 32 00 ext. 11 y 42

Fax: (84) 15 21 51 Acreditación: V-17 Vencimiento: 2003-03-20

Magnitud Volumen	Método	Alcance	Incertidumbre
Calibración de patrones volumétricos	Volumétrico	5 L a 5 000 L	0,05% *

^{*} del volumen

Responsables técnicos:

Ing. José Santos Espino Tristán

Ing. Francisco Hernández García

Fujisan Survey, S.A. de C.V. Ing. José Carmen Pérez Flores

Av. Revolución No. 1008

Col. Centro

96400, Coatzacoalcos, Veracruz

Teléfonos y fax: (921) 212 51 52, 212 98 60

Dirección de correo electrónico: fujisan@prodigy.net.mx

Acreditación: V-18

Vencimiento: 2003-07-17

Magnitud Volumen	Método	Alcance	Incertidumbre k=2	Norma de referencia
Servicios Calibración de tanques de almacenamiento en forma de cilindros verticales	Volumétrico y Optico empleando una línea de referencia	Hasta 80 000 m ³	0,30% del volumen determinado	API-2550 API-2555 ASTM-D-4738/1220
Calibración de tanques esféricos	Geométrico	Hasta 4 000 m ³	0,30% del volumen determinado	API-2552
Calibración de tanques de almacenamiento horizontales	Volumétrico y Geométrico	Hasta 160 m ³	0,30% del volumen determinado	API-2551

Responsables técnicos:

Ing. José Carmen Pérez Flores Ing. Hiram Castillo Velázquez Ing. Hugo H. Pérez Flores

Ing. Iván Job Contreras Córdova Marco Antonio García Urgell Alejandro Rosas Rosendo

Centro de Ingeniería y Desarrollo Industrial, A.C.

Ing. Fernando Motolinía Velázquez Avenida Playa Pie de la Cuesta No. 702

Col. Desarrollo San Pablo 76130, Querétaro, Querétaro Teléfono: (442) 211 9844

Fax: (442) 211 9800 ext. 243 y 269

Dirección de correo electrónico: fmotolinia@cidesi.mx

Acreditación: V-19 Vencimiento: 2003-09-18

Magnitud Volumen	Método	Alcance	Incertidumbre k=2 (% del volumen)	Norma de referencia
Calibración de pipetas de pistón	Método gravimétrico	1 μL a 1 000 μL	0,4% del volumen	ISO/DIS 8655-6-2000
Calibración de pipetas volumétricas y graduadas	Método gravimétrico	1 ml a 100 ml	0,04% del volumen	NMX-BB-86-1982 ISO 4787-1984
Calibración de recipientes volumétricos de cuello graduado	Método gravimétrico	1L	0,25% del volumen	
-		5 L a 50 L	0,04% del volumen	NMX-049-CH-1996
Calibración de recipientes volumétricos de cuello graduado	Método Volumétrico	1 L	0,35% del volumen	
		5 L a 500 L	0,05% del volumen	

Responsables técnicos:

Ing. Beatriz Rangel Centeno

Ing. Jaime de Jesús Almaguer Palomares

Unidad de Control Técnico de Insumos del Instituto Mexicano del Seguro Social Ing. Luis Enrique Arteaga Granados José Urbano Fonseca No. 6 Col. Magdalena de las Salinas

07760, México, D.F.

Teléfono: (55) 5747 3500 ext. 1361, 1336

Fax: (55) 5754 6590

Dirección de correo electrónico: earteaga@compaq.net.mx

Acreditación: V-20 Vencimiento: 2003-09-18

Magnitud: Volumen	Método	Alcance	Incertidumbre k=2 (% del volumen)	Norma de referencia
Calibración de matraces	Método	5 ml a 25 ml	0,06% del volumen	NMX-BB-86-1982
volumétricos	gravimétrico	50 ml a 4 000 ml	0,02% del volumen	
Calibración de pipetas	Método	1 ml a 10 ml	0,06% del volumen	
	gravimétrico	15 ml a 100 ml	0,01% del volumen	
Calibración de probetas	Método	5 ml a 100 ml	0,25% del volumen	NMX-BB-86-1982
	gravimétrico	250 ml a 4 00 ml	0,03% del volumen	
Calibración de buretas	Método gravimétrico	5 ml a 100 ml	0,02% del volumen	

Responsable técnico:

Ing. Luis Enrique Arteaga Granados

Naucalpan de Juárez, Edo. de Méx., a 7 de junio de 2002.- El Director General de Normas, Miguel Aguilar Romo.- Rúbrica.