SEGUNDA SECCION PODER EJECUTIVO

SECRETARIA DE COMUNICACIONES Y TRANSPORTES

ACUERDO por el que se da a conocer el Código de Prácticas de Seguridad para la Estiba y Sujeción de la Carga, del Convenio Constitutivo de la Organización Marítima Internacional.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Relaciones Exteriores.

JOSÉ ANTONIO MEADE KURIBREÑA y GERARDO RUIZ ESPARZA, Secretarios de Relaciones Exteriores y de Comunicaciones y Transportes, respectivamente, con fundamento en lo dispuesto por los artículos 2 fracción I, 12, 14, 26, 28 fracciones I y XII y 36 fracciones I, XIV, XVI, XVII, XXV, XXVI, XXVII de la Ley Orgánica de la Administración Pública Federal; 4 de la Ley Federal de Procedimiento Administrativo; 2 y 3 fracciones III, IV y VI de la Ley del Diario Oficial de la Federación y Gacetas Gubernamentales; 7 del Reglamento Interior de la Secretaría de Relaciones Exteriores, y 4 párrafo primero y 5 del Reglamento Interior de la Secretaría de Comunicaciones y Transportes, y

CONSIDERANDO

Que la Convención de la Organización Consultiva Marítima Intergubernamental (OCMI), adoptada en Ginebra, Suiza, el 6 de marzo de 1948, fue aprobada por la Cámara de Senadores del H. Congreso de la Unión, el 24 de diciembre de 1953, según Decreto publicado en el Diario Oficial de la Federación del 9 de marzo de 1954;

Que el Gobierno de los Estados Unidos Mexicanos depositó su instrumento de adhesión a la Convención, ante el Secretario General de la OCMI, el 21 de septiembre de 1954;

Que la Convención fue publicada en el Diario Oficial de la Federación del 8 de agosto de 1970;

Que a través de las Enmiendas adoptadas en Londres, Inglaterra el 15 de septiembre de 1964; 28 de septiembre de 1965; 17 de octubre de 1974; 14 de noviembre de 1975; 17 de noviembre de 1977, y 15 de noviembre de 1979, diversas disposiciones de la Convención fueron modificadas;

Que mediante Resolución A.358(IX), aprobada por la Asamblea de la OCMI el 14 de noviembre de 1975, la cual entró en vigor el 22 de mayo de 1982, la OCMI modificó su nombre por el de "Organización Marítima Internacional (OMI)";

Que la OMI tiene como finalidad, entre otros: establecer un sistema de colaboración entre los Estados Miembros en materia de reglamentación concerniente a la navegación comercial internacional, la seguridad marítima, y la eficacia en la navegación, prevención y contención de la contaminación del mar ocasionada por los buques; fomentar la eliminación de las medidas discriminatorias y restricciones innecesarias aplicadas por los Estados Miembros a la navegación comercial internacional; promover la disponibilidad de los servicios marítimos para fomentar un comercio internacional sin discriminación; fomentar el desarrollo de la marina mercante de los Estados Miembros; establecer medidas relativas a las prácticas restrictivas de empresas de navegación marítima, y facilitar el intercambio de información entre los Estados Miembros sobre asuntos de la competencia de dicha Organización;

Que el Comité de Seguridad Marítima de la OMI (MSC) en su 58° periodo de sesiones emitió recomendaciones para la elaboración de un código de prácticas de seguridad para la estiba y sujeción de la carga;

Que el 6 de noviembre de 1991, mediante la Resolución A.714(17), la Asamblea de la OMI en su decimoséptimo periodo de sesiones, aprobó el Código de Prácticas de Seguridad para la Estiba y Sujeción de la Carga ("el Código");

Que el Código tiene por objeto sentar una norma internacional para fomentar la seguridad de la estiba y sujeción de la carga: recordando a los propietarios de buques y a los armadores la necesidad de que los buques sean adecuados para el fin a que se les destine; proporcionando asesoramiento para garantizar que los buques estén equipados con medios adecuados de sujeción de la carga; proporcionando asesoramiento general acerca de la estiba y sujeción correctas de la carga a fin de reducir al mínimo los riesgos a que puedan estar expuestos el buque y el personal; proporcionando asesoramiento específico acerca de las cargas cuya estiba y sujeción presentan dificultades y riesgos; recomendando las medidas que cabe tomar con mar gruesa, y recomendando las medidas que cabe tomar para paliar las consecuencias del corrimiento de la carga;

Que el Código es aplicable a las cargas que se lleven a bordo de los buques (que no sean cargas sólidas y líquidas a granel ni madera estibada en cubierta) y, en particular, a las cargas cuya estiba y sujeción hayan creado dificultades en la práctica;

Que es necesario que el Código sea publicado en el Diario Oficial de la Federación, de conformidad con lo dispuesto por el artículo 4 de la Ley Federal de Procedimiento Administrativo, a fin de darlo a conocer a las instancias públicas y privadas competentes en el cumplimiento de tales disposiciones;

Que la Secretaría de Relaciones Exteriores es la Dependencia del Ejecutivo Federal, responsable de dar seguimiento a los diversos tratados internacionales de los que el Gobierno de los Estados Unidos Mexicanos forma Parte, y que la Secretaría de Comunicaciones y Transportes es la Dependencia encargada de regular, promover y organizar la marina mercante, así como de regular las comunicaciones y transportes por agua, e inspeccionar los servicios de la marina mercante, por lo que hemos tenido a bien expedir el siguiente:

ACUERDO POR EL QUE SE DA A CONOCER EL CÓDIGO DE PRÁCTICAS DE SEGURIDAD PARA LA ESTIBA Y SUJECIÓN DE LA CARGA, DEL CONVENIO CONSTITUTIVO DE LA ORGANIZACIÓN MARÍTIMA INTERNACIONAL

ARTÍCULO ÚNICO.- El presente Acuerdo tiene por objeto dar a conocer el Código de Prácticas de Seguridad para la Estiba y Sujeción de la Carga, aprobado de conformidad con lo previsto en el Convenio Constitutivo de la OMI.

TRANSITORIO

ÚNICO.- El presente Acuerdo entrará en vigor al día siguiente de su publicación en el Diario Oficial de la Federación.

Firmado en la Ciudad de México, a los veintinueve días del mes de mayo de dos mil trece.- El Secretario de Relaciones Exteriores, **José Antonio Meade Kuribreña**.- Rúbrica.- El Secretario de Comunicaciones y Transportes, **Gerardo Ruiz Esparza**.- Rúbrica.

CÓDIGO DE PRÁCTICAS DE SEGURIDAD PARA LA ESTIBA Y SUJECIÓN DE LA CARGA.

Resolución A.714(17)

(Aprobada el 6 de noviembre 1991, por la Asamblea de la Organización Marítima Internacional en su decimoséptimo periodo de sesiones.)

LA ASAMBLEA,

RECORDANDO el artículo 15 j) del Convenio constitutivo de la Organización Marítima Internacional, artículo que trata de las funciones de la Asamblea por lo que respecta a las reglas y directrices relativas a la seguridad marítima,

RECORDANDO ASIMISMO la resolución A.489(XII) sobre la estiba y sujeción seguras de unidades de carga y de otros elementos de carga en buques que no sean portacontenedores celulares, y la circular MSC/Circ.385, de enero de 1985, que contiene las disposiciones que se han de incluir en el manual de sujeción de la carga que los buques deberán llevar a bordo,

RECORDANDO ADEMÁS la resolución A.533(13), relativa a los factores que procede tener en cuenta al examinar la estiba y la sujeción seguras de unidades de carga y de vehículos en los buques,

CONSIDERANDO las Directrices revisadas OMI/OIT (Organización Marítima Internacional/Organización Internacional del Trabajo) sobre la arrumazón de la carga en contenedores o vehículos,

CONSIDERANDO TAMBIEN la resolución A.581(14) relativa a las Directrices sobre medios de sujeción para el transporte de vehículos de carretera en buques de transbordo rodado,

TENIENDO PRESENTE que ha habido varios accidentes porque los medios de sujeción a bordo de los buques eran inadecuados y la estiba y sujeción de cargas en vehículos y contenedores era deficiente, y que sólo la estiba y sujeción apropiadas de la carga en buques adecuadamente proyectados y debidamente equipados puede impedir que ocurran tales accidentes en el futuro,

RECONOCIENDO la necesidad de mejorar la estiba y sujeción de las cargas que, según indica la experiencia, constituyen un riesgo específico para la seguridad de los buques, y la estiba y sujeción de los vehículos de carretera transportados a bordo de buques de transbordo rodado,

RECONOCIENDO ADEMAS que esa mejora podría lograrse mediante un código refundido de prácticas de seguridad para la estiba y sujeción de la carga a bordo de los buques, incluida la arrumazón o la carga de mercancías en vehículos de carretera y contenedores,

CONVENCIDA de que la aplicación de tal código de prácticas de seguridad acrecentaría la seguridad marítima,

HABIENDO CONSIDERADO las recomendaciones hechas por el Comité de Seguridad Marítima en su 58° periodo de sesiones,

- 1. APRUEBA el Código de prácticas de seguridad para la estiba y sujeción de la carga que figura en el anexo de la presente resolución;
 - 2. INSTA a los gobiernos a que implanten ese Código lo antes posible;
- 3. PIDE al Comité de Seguridad Marítima que mantenga dicho Código sometido a examen y que lo enmiende según proceda; y
 - 4. REVOCA la resolución A.288(VIII).

Índice

Anexo: Código de prácticas de seguridad para la estiba y sujeción de la carga

Preámbulo

Principios generales

Capítulo 1 Generalidades

Capítulo 2 Principios relativos a la seguridad de la estiba y sujeción de la carga

Capítulo 3 Sistemas normalizados de estiba y sujeción

Capítulo 4 Estiba y sujeción seminormalizadas

Capítulo 5 Estiba y sujeción no normalizadas

Capítulo 6 Medidas que cabe tomar con mal tiempo

Capítulo 7 Medidas que cabe tomar si se produce el corrimiento de la carga

Anexo 1 Seguridad de la estiba y sujeción de contenedores sobre la cubierta de buques que no

están especialmente proyectados y equipados para ese tipo de transporte

Anexo 2 Seguridad de la estiba y sujeción de cisternas

Anexo 3 Seguridad de la estiba y sujeción de receptáculos portátiles

Anexo 4 Seguridad de la estiba y sujeción de cargas sobre ruedas (cargas rodadas)

Anexo 5 Seguridad de la estiba y sujeción de cargas pesadas, como locomotoras,

transformadores, etc.

Anexo 6 Seguridad de la estiba y sujeción de rollos de chapa de acero

Anexo 7 Seguridad de la estiba y sujeción de productos metálicos pesados

Anexo 8 Seguridad de la estiba y sujeción de cadenas de ancla

Anexo 9 Seguridad de la estiba y sujeción de chatarra de metal a granel

Anexo 10 Seguridad de la estiba y sujeción de recipientes intermedios flexibles para graneles (RIFG)

Anexo 11 Directrices generales para la estiba de troncos bajo cubierta

Anexo 12 Seguridad de la estiba y sujeción de unidades de carga

Apéndices

Apéndice 1 -Resolución A.489(XII): Estiba y sujeción seguras de unidades de carga y de otros elementos relacionados con la carga en buques que no sean portacontenedores celulares (aprobada el 19 de noviembre de 1981)

Apéndice 2 MSC/Circ.385: Contenedores y carga: Manual de sujeción de la carga (8 de enero de 1985)

Apéndice 3 -Resolución A.533(13): Factores que han de tenerse en cuenta al examinar la estiba y la sujeción seguras de unidades de carga y de vehículos en los buques (aprobada el 17 de noviembre de 1983)

Apéndice 4 -Resolución A.581(14): Directrices sobre medios de sujeción para el transporte de vehículos de carretera en buques de transbordo rodado (aprobada el 20 de noviembre de 1985)

Apéndice 5 -MSC/Circ.487: Contenedores y carga: Entrada en espacios cerrados (6 de junio de 1988)

Anexo

Código de prácticas de seguridad para la estiba y sujeción de la carga

PREAMBULO

La estiba y sujeción adecuadas de la carga son importantísimas para la seguridad de la vida humana en el mar. Por no estibar y sujetar las cargas correctamente se han registrado graves siniestros de buques que han causado muertos y heridos no sólo en el mar, sino también durante las operaciones de carga y descarga.

Para hacer frente a los problemas y riesgos debidos a la estiba y sujeción incorrectas de ciertas cargas en los buques, la Organización Marítima Internacional ha publicado directrices en forma de resoluciones de la Asamblea o de circulares aprobadas por el Comité de Seguridad Marítima. Estas se enumeran a continuación:

- Estiba y sujeción seguras de unidades de carga y otros elementos de carga en buques que no sean portacontenedores celulares; resolución A.489(XII) [véase el apéndice 1];
- Disposiciones que se han de incluir en el Manual de sujeción de la carga que los buques han de llevar a bordo; MSC/Circ.385 [véase el apéndice 2];
- Factores que han de tenerse en cuenta al examinar la estiba y la sujeción seguras de unidades de carga y de vehículos en los buques; resolución A.533(13) [véase el apéndice 3];
- Directrices sobre medios de sujeción para el transporte de vehículos de carretera en buques de transbordo rodado, resolución A.581(14) [véase el apéndice 4];
- Directrices OMI/OIT sobre la arrumazón de la carga en contenedores o vehículos [véase el Suplemento al Código IMDG (International Maritime Dangerous Goods Code) (número de venta IMO-212S)];
- Peligros relacionados con la entrada en espacios cerrados. MSC/Circ.487 [véase el apéndice 5].

Las aceleraciones que actúan sobre el buque en mar encrespada se deben a una combinación de movimientos longitudinales, verticales y, principalmente, laterales. Las fuerzas debidas a estas aceleraciones son causa de la mayoría de los problemas de sujeción.

Los riesgos debidos a esas fuerzas se deben evitar tomando medidas que garanticen una estiba y sujeción adecuadas y que reduzcan la amplitud y frecuencia de los movimientos del buque.

La finalidad del presente Código es sentar una norma internacional para fomentar la seguridad de la estiba y sujeción de la carga:

- recordando a los propietarios de buques y a los armadores la necesidad de que los buques sean adecuados para el fin a que se los destine;
- proporcionando asesoramiento para garantizar que los buques estén equipados con medios adecuados de sujeción de la carga;
- proporcionando asesoramiento general acerca de la estiba y sujeción correctas de la carga a fin de reducir al mínimo los riesgos a que puedan estar expuestos el buque y el personal;
- proporcionando asesoramiento específico acerca de las cargas cuya estiba y sujeción presentan dificultades y riesgos;
- recomendando las medidas que cabe tomar con mar gruesa; y
- recomendando las medidas que cabe tomar para paliar las consecuencias del corrimiento de la carga.

Este asesoramiento se presta en el entendimiento de que el capitán es responsable de la seguridad del viaje, el buque, la tripulación y la carga.

PRINCIPIOS GENERALES

Las cargas se deben estibar y sujetar de modo que no se ponga en peligro a las personas a bordo ni al buque.

La seguridad de la estiba y sujeción de la carga requiere una planificación, ejecución y supervisión adecuadas.

El personal encargado de los trabajos de estiba y sujeción de la carga debe tener la competencia y experiencia adecuadas.

El personal que planifique y supervise la estiba y sujeción de la carga debe tener buen conocimiento práctico de la aplicación y el contenido del manual de sujeción de la carga, si lo haya bordo.

En todos los casos, la estiba y sujeción incorrectas de la carga constituirá un peligro para la sujeción de otras cargas y para el propio buque.

Las decisiones relativas a las medidas de estiba y sujeción de la carga deben basarse en las peores condiciones meteorológicas que la experiencia permita prever para el viaje proyectado.

En las decisiones que tome el capitán relativas al gobierno del buque, especialmente en caso de mal tiempo, se deben tener en cuenta el tipo y la disposición de la carga, así como los medios de sujeción.

CAPITULO 1 - GENERALIDADES

1.1 Aplicación

El presente Código es aplicable a las cargas que se lleven a bordo de los buques (que no sean cargas sólidas o líquidas a granel ni madera estibada en cubierta) y, en particular, a las cargas cuya estiba y sujeción hayan creado dificultades en la práctica.

1.2 Definición de las expresiones utilizadas en el presente Código

A efectos del presente Código regirán las siguientes definiciones:

Unidad de transporte: vehículo, contenedor, plataforma, paleta, cisterna portátil, unidad embalada o envasada, o cualquier otro elemento de carga, etc., y el equipo de carga o cualquiera de sus partes que pertenezca al buque pero no esté sujeta a éste, como se define en la resolución A.489(XII) de la Asamblea.

Recipiente intermedio para graneles (RIG): embalaje portátil rígido, semirrígido o flexible, con una capacidad no superior a 3m³ (3 000 f), proyectado de forma que se pueda manipular mecánicamente y sometido a prueba para comprobar que ofrece una resistencia satisfactoria a los esfuerzos producidos por la manipulación y el transporte.

Cisterna portátil: cisterna que no está sujeta permanentemente a bordo del buque, con una capacidad superior a 450l y un cuerpo dotado de elementos estabilizadores externos y del equipo de servicio y los elementos estructurales necesarios para el transporte de gases, líquidos o sólidos.

Vehículo cisterna de carretera: vehículo con ruedas provisto de una o varias cisternas destinadas al transporte, tanto por carretera como marítimo, de gases, líquidos o sólidos y que quedan unidas rígida y permanentemente al vehículo durante todas las operaciones normales de carga, transporte por mar y descarga, sin que se llenen ni vacíen mientras están a bordo.

Vehículo de carretera: vehículo comercial, semirremolque, tren de vehículos carreteros, tren de vehículos carreteros articulados o una combinación de vehículos, tal como se definen éstos en la resolución A.581(14) de la Asamblea.

Remolque de transbordo: vehículo de carga bajo con uno o varios ejes traseros y un soporte delantero, que se remolca o empuja en puerto desde su posición de estiba a bordo del buque o hasta ella mediante un vehículo tractor especial.

Buque de transbordo rodado: buque que tiene una o varias cubiertas cerradas o expuestas, normalmente desprovistas de cualquier subdivisión y que por lo general se extienden a todo lo largo de la eslora, y que transporta mercancías que suelen cargarse o descargarse horizontalmente.

Unidad de carga: cierto número de bultos:

- .1 colocados o apilados y sujetos con flejes, embalados con lámina retráctil u otros medios adecuados, sobre una bandeja de carga, como puede ser una paleta;
- .2 colocados dentro de un embalaje exterior de protección, como puede ser una caja paleta; o
- .3 atados juntos, de manera permanente, por medio de una eslinga.

1.3 Fuerzas

- **1.3.1** Las fuerzas que hay que absorber utilizando medios adecuados de estiba y sujeción a fin de evitar el corrimiento de la carga se pueden separar en componentes que actúan en la dirección de los ejes del buque:
 - longitudinal;
 - transversal; y
 - vertical.

Nota: A efectos de estiba y sujeción de la carga, se consideran predominantes las fuerzas longitudinales y transversales,

- **1.3.2** Las fuerzas transversales solas, o las resultantes de fuerzas transversales, longitudinales y verticales, normalmente aumentan en relación con la altura de la estiba y la distancia en sentido longitudinal entre la estiba y el centro dinámico del buque en mar encrespada. Las mayores fuerzas se suelen ejercer en los lugares de estiba más a proa y más a popa y en los más altos a cada banda del buque.
- 1.3.3 Las fuerzas transversales aumentan con la altura metacéntrica del buque. Una altura metacéntrica excesiva puede deberse a:
 - el proyecto incorrecto del buque;
 - la distribución inadecuada de la carga; y
 - la distribución inadecuada del combustible y el lastre.
- **1.3.4** La carga se debe distribuir de modo que la altura metacéntrica del buque exceda del mínimo prescrito pero, siempre que sea posible, sin rebasar un límite superior aceptable, a fin de reducir al mínimo las fuerzas que actúan sobre la carga.
- **1.3.5** Además de las fuerzas antes citadas, la carga transportada en cubierta puede ser objeto de fuerzas producidas por el viento o los cáncamos de mar.
- **1.3.6** El gobierno incorrecto del buque (rumbo o velocidad) puede originar fuerzas adversas que actúen sobre el buque y la carga.
- **1.3.7** La magnitud de las fuerzas puede calcularse mediante los métodos de cálculo apropiados que figuran en el manual de sujeción de la carga, si lo hay abordo.
- **1.3.8** Si bien la utilización de dispositivos antibalance puede mejorar el comportamiento del buque en mar encrespada, éstos no se deben tener en cuenta al estibar y sujetar la carga.

1.4 Comportamiento de las cargas

- **1.4.1** Algunas cargas tienden a deformarse o compactarse durante la travesía, lo cual hace que sus dispositivos de sujeción se aflojen.
- **1.4.2** Las cargas con bajos coeficientes de fricción, cuando se estiban sin dispositivos adecuados para aumentar la fricción, como madera de estiba, tableros blandos, esteras de goma, etc., resultan difíciles de sujetar a menos que se estiben apretadas, en sentido transversal.

1.5 Criterios para estimar los riesgos de corrimiento de la carga

- 1.5.1 Cuando se calcula el riesgo de corrimiento de la carga conviene tener en cuenta:
- las características físicas y las dimensiones de la carga;
- la ubicación de la carga y su estiba abordo;
- la idoneidad del buque para la carga de que se trate;
- la idoneidad de los medios de sujeción para la carga de que se trate;
- las condiciones meteorológicas y de la mar previstas;
- el comportamiento previsto del buque en el viaje proyectado;
- la estabilidad del buque;
- la zona geográfica del viaje; y
- la duración del viaje.
- **1.5.2** Deben tenerse en cuenta estos criterios para elegir los métodos de estiba y sujeción adecuados y examinar las fuerzas que deberá absorber el equipo de sujeción.
- **1.5.3** Teniendo presentes los criterios mencionados, el capitán sólo debe aceptar la carga a bordo del buque si está convencido de que puede transportarse con seguridad.

1.6 Manual de sujeción de la carga

1.6.1 Según se indica en la resolución A.489(XII), los buques que transporten unidades de carga y otros elementos de carga a los que se aplique el presente Código deben llevar a bordo un manual de sujeción de la carga como el que se describe en la circular MSC/Circ.385.

_

Véase el apéndice 2.

1.6.2 Los medios de sujeción enumerados en el manual de sujeción de la carga se deben basar en las fuerzas que puedan afectar a la carga transportada en el buque, calculadas mediante un método aceptado por la Administración o aprobado por una sociedad de clasificación que la Administración juzque aceptable.

DIARIO OFICIAL

1.7 Equipo

El equipo de sujeción de la carga del buque debe ser:

- suficiente;
- apto para el fin a que se destine, conforme a las recomendaciones que figuran en el manual de sujeción de la carga;
- de resistencia adecuada:
- de fácil manejo; y
- debidamente mantenido.

1.8 Unidades de transporte especiales

Si es necesario, el propietario del buque y el armador deben recurrir a los servicios de expertos cuando tengan la intención de transportar carga de características inusitadas que exija prestar atención especial a su emplazamiento a bordo teniendo en cuenta la resistencia estructural del buque, a su estiba y sujeción y a las condiciones meteorológicas previstas durante el viaje proyectado.

1.9 Información sobre la carga

- 1.9.1 Antes de aceptar el transporte de una carga, el propietario del buque o el armador debe obtener toda la información necesaria sobre ella y asegurarse de que:
 - las diversas mercancías que vayan a transportarse son compatibles o están debidamente separadas;
 - la carga es adecuada para el buque;
 - el buque es adecuado para la carga; y
 - la carga puede estibarse y sujetarse con seguridad a bordo del buque y transportarse en todas las condiciones previstas durante el viaje proyectado.
- 1.9.2 Se debe dar al capitán información suficiente sobre la carga que se va a transportar a fin de que su estiba pueda planificarse debidamente a efectos de la manipulación y el transporte.

CAPITULO 2 - PRINCIPIOS RELATIVOS A LA SEGURIDAD DE LA ESTIBA Y SUJECION DE LA CARGA

2.1 Carga adecuada para el transporte

La carga transportada en contenedores, vehículos de carretera, gabarras de buque, vagones de ferrocarril y otras unidades de transporte debe ir embalada y sujeta dentro de esas unidades a fin de impedir, durante el viaje, que el buque, las personas a bordo y el medio marino sufran daños o corran peligro.

2.2 Distribución de la carga

- 2.2.1 Es de capital importancia que el capitán ejerza sumo cuidado en la planificación y control de la estiba y sujeción de la carga con el fin de impedir que se corra, vuelque, deforme, derrumbe, etc.
- 2.2.2 La carga debe estar distribuida de manera que la estabilidad del buque se mantenga durante toda la travesía dentro de límites aceptables, reduciendo en la medida posible los riesgos de aceleraciones excesivas.
 - 2.2.3 La carga debe distribuirse de manera que no resulte afectada la resistencia estructural del buque.

2.3 Medios de sujeción de la carga

2.3.1 Se debe poner especial cuidado en distribuir las fuerzas de la manera más uniforme posible entre los dispositivos de sujeción de la carga. Si esto no es posible, se deben reforzar los medios de sujeción según proceda.

2.3.2 Si, debido a la compleja estructura de los medios de sujeción o a otras circunstancias, la persona encargada de evaluar la idoneidad de tales medios no puede hacerlo basándose en su experiencia y conocimiento de las buenas prácticas marineras, deben verificarse esos medios utilizando un método de cálculo aceptable.

2.4 Resistencia residual teniendo en cuenta el desgaste

Los medios y el equipo de sujeción de la carga deben tener suficiente resistencia residual para soportar el desgaste normal mientras estén en servicio.

2.5 Fuerzas de fricción

Cuando la fricción entre la carga y la cubierta o estructura del buque o entre unidades de transporte sea insuficiente, se utilizarán materiales apropiados, tales como tableros blandos o madera de estiba para aumentar la fricción, a fin de evitar los riesgos de deslizamiento.

2.6 Supervisión a bordo

- **2.6.1** El principal medio para evitar la estiba y sujeción incorrectas de la carga es supervisar debidamente las operaciones de carga e inspeccionar la estiba.
- **2.6.2** En la medida de lo posible, los espacios de carga se deben inspeccionar con regularidad durante la travesía para comprobar que la carga, las unidades de transporte y los vehículos permanecen bien sujetos.

2.7 Entrada en espacios de carga cerrados

La atmósfera de un espacio cerrado puede no ser apta para la vida humana debido a la falta de oxígeno o a la presencia de gases tóxicos o inflamables. El capitán debe cerciorarse de que se pueda entrar sin riesgo en cualquier espacio cerrado.

2.8 Factores generales que ha de tener en cuenta el capitán

Antes de embarcar cualquier carga, unidad de transporte o vehículo y una vez evaluados los riesgos de corrimiento de la carga, habida cuenta de los criterios enumerados en el párrafo 1.5, el capitán debe cerciorarse de que:

- .1 la zona de la cubierta destinada a la estiba está, dentro de lo posible, limpia, seca y exenta de aceite y grasa;
- **.2** la carga, unidad de transporte, o vehículo, parece estar en condiciones apropiadas para el transporte y puede sujetarse eficazmente;
- .3 el equipo de sujeción de la carga necesario se encuentra a bordo y en buenas condiciones de servicio; y
- .4 la carga que vaya dentro o sobre unidades de transporte o vehículos está, dentro de lo posible, estibada y sujeta correctamente a la unidad o al vehículo.

2.9 Certificado de estiba y sujeción de la carga

- 2.9.1 Cuando existan motivos para sospechar que un contenedor o vehículo, dentro del cual se han arrumado o cargado mercancías peligrosas, no cumple con las disposiciones de la sección 12 ó 17, según proceda, de la Introducción General del Código IMDG, o cuando no se disponga de un certificado de arrumazón del contenedor o declaración de arrumazón del vehículo, no se debe aceptar la unidad para embarque.
- 2.9.2 Siempre que sea posible, los vehículos de carretera deben ir provistos de una declaración de estiba y sujeción de la carga en la que conste que la carga del vehículo de carretera ha sido estibada y sujetada de forma adecuada para el viaje proyectado, teniendo en cuenta las Directrices OMI/OIT sobre la arrumazón de la carga en contenedores o vehículos. A continuación figura un modelo de dicha declaración. Podrá aceptarse para este fin la declaración de arrumazón del vehículo recomendada en el Código IMDG (véase 2.9.1).

Modelo

CAPITULO 3 - SISTEMAS NORMALIZADOS DE ESTIBA Y SUJECION

3.1 Recomendaciones

Los buques destinados al transporte de cargas con un sistema normalizado de estiba y sujeción (como contenedores, vagones de ferrocarril, gabarras de buque, etc.) deben estar:

- .1 proyectados y equipados de modo que las cargas normalizadas de que se trate puedan ser estibadas y sujetadas con seguridad a bordo, cualesquiera que sean las condiciones previstas durante el viaje que se va a realizar;
- .2 proyectados y equipados de manera que sean aceptados por la Administración o aprobados por una sociedad de clasificación aceptada por la Administración; y
- .3 provistos de información apropiada para el capitán sobre los medios destinados a garantizar la seguridad de la estiba y sujeción de las cargas específicas para las que el buque está proyectado o adaptado.

CAPITULO 4 - ESTIBA Y SUJECION SEMINORMALIZADAS

4.1 Medios de sujeción

4.1.1 Los buques destinados al transporte de determinadas cargas, como vehículos de carretera, remolques de transbordo para carga sistematizada y automóviles en buques de transbordo rodado, etc., deben estar provistos de puntos de sujeción suficientemente próximos entre sí, teniendo en cuenta la utilización prevista del buque y de conformidad con lo dispuesto en la sección 4 de las Directrices sobre medios de sujeción para el transporte de vehículos de carretera en buques de transbordo rodado, resolución A.581(14).

- **4.1.2** Los vehículos de carretera que se vayan a transportar por vía marítima deben estar provistos de medios que permitan estibarlos y sujetarlos con seguridad, según se indica en la sección 5 del anexo de la resolución A.581(14).
- **4.1.3** Los remolques de transbordo que lleven carga sistematizada deben disponer de medios para estibar y sujetar con seguridad el vehículo y su carga. Se deben tener especialmente en cuenta la altura y compacidad de la estiba, así como los efectos de la altura del centro de gravedad de la carga.

4.2 Estiba y sujeción de vehículos

- **4.2.1** Los vehículos, incluidos los remolques de transbordo, que no estén provistos de medios de sujeción adecuados se deben estibar y sujetar de conformidad con lo dispuesto en el capítulo 5 del presente Código.
- **4.2.2** Los buques de transbordo rodado que no cumplan las prescripciones de la sección 4 del anexo de la resolución A.581(14), o que no estén provistos de medios equivalentes de estiba y sujeción que ofrezcan un grado de seguridad equivalente durante el transporte por vía marítima, deben ajustarse a lo dispuesto en el capítulo 5 del presente Código.
- **4.2.3** Los vehículos deben estibarse y sujetarse de conformidad con lo dispuesto en las secciones 6 y 7 del anexo de la resolución A.581(14). Se debe prestar especial atención a la estiba y sujeción de los remolques de transbordo que lleven carga sistematizada, vehículos cisterna y cisternas portátiles sobre ruedas, teniendo en cuenta los efectos de la altura del centro de gravedad y la superficie libre de la cisterna.

4.3 Aceptación de vehículos de carretera para el transporte marítimo en buques de transbordo rodado

- **4.3.1** El capitán no debe aceptar un vehículo de carretera para transportarlo a bordo del buque si no está convencido de que dicho vehículo es aparentemente apto para el viaje previsto y dispone como mínimo de los puntos de sujeción indicados en la sección 5 del anexo de la resolución A.581(14).
- **4.3.2** En circunstancias excepcionales, cuando dude de que puedan o deban cumplirse las recomendaciones de 4.3.1, el capitán podrá aceptar el vehículo a bordo tras considerar su estado y el carácter previsto del viaje proyectado.

CAPITULO 5 - ESTIBA Y SUJECION NO NORMALIZADAS

5.1 Recomendaciones

- **5.1.1** El presente capítulo y los anexos ofrecen consejos de carácter general para la estiba y sujeción de las cargas no comprendidas en los capítulos 3 y 4 del presente Código y, en particular, consejos específicos sobre la estiba y sujeción de cargas que se han revelado difíciles de estibar y sujetar a bordo.
- **5.1.2** La lista de cargas que figura en 5.3 no debe considerarse exhaustiva dado que otras cargas pueden constituir un peligro si no se estiban y sujetan debidamente.

5.2 Estiba y sujeción equivalentes

La orientación que se brinda en los anexos incluye algunas medidas preventivas contra los problemas propios de las cargas consideradas. Puede haber otros métodos de estiba y sujeción que ofrezcan el mismo grado de seguridad. Es imprescindible que el método elegido ofrezca como mínimo un grado de seguridad equivalente al de los métodos descritos en las resoluciones, circulares y directrices indicadas en el preámbulo del presente Código.

5.3 Cargas que han resultado ser una posible fuente de peligro

Esas cargas son las siguientes:

.1 contenedores transportados en la cubierta de buques que no están especialmente proyectados y equipados para ese tipo de transporte (anexo 1);

- .2 cisternas portátiles (contenedores cisterna) (anexo 2);
- .3 receptáculos portátiles (anexo 3);
- .4 cargas especiales sobre ruedas (cargas rodadas) (anexo 4);
- .5 cargas pesadas, como locomotoras, transformadores, etc. (anexo 5);
- .6 rollos de chapa de acero (anexo 6);
- .7 productos metálicos pesados (anexo 7);
- .8 cadenas de ancla (anexo 8);
- .9 chatarra de metal a granel (anexo 9);
- .10 recipientes intermedios flexibles para graneles (RIFG) (anexo 10);
- .11 troncos estibados bajo cubierta (anexo 11); y
- .12 unidades de carga (anexo 12).

CAPITULO 6 - MEDIDAS QUE CABE TOMAR CON MAL TIEMPO

6.1 Generalidades

El propósito del presente capítulo no consiste en usurpar las responsabilidades del capitán, sino en ofrecer asesoramiento sobre el modo de evitar los esfuerzos resultantes de aceleraciones excesivas debidas al mal tiempo.

6.2 Aceleraciones excesivas

Las medidas que permiten evitar las aceleraciones excesivas consisten en:

- .1 alterar el rumbo o la velocidad o ambos;
- .2 ponerse al pairo;
- .3 evitar a tiempo las zonas en que haya mala mar o mal tiempo; y
- .4 lastrar o deslastrar oportunamente para mejorar el comportamiento del buque, teniendo en cuenta las condiciones de estabilidad reales (véase también 7.2).

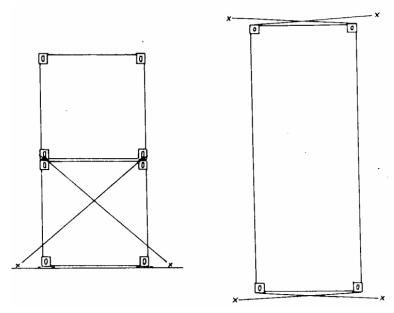
6.3 Planificación del viaje

Una forma de reducir las aceleraciones excesivas es planificar cuidadosamente el viaje, en la medida de lo posible, con objeto de evitar las zonas de mala mar y el mal tiempo. El capitán debe consultar siempre la más reciente información meteorológica disponible.

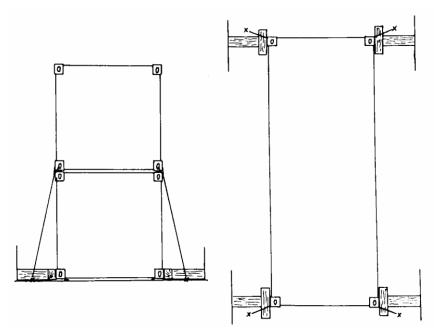
CAPITULO 7 - MEDIDAS QUE CABE TOMAR SI SE PRODUCE EL CORRIMIENTO DE LA CARGA

- 7.1 Las medidas que pueden considerarse son las siguientes:
 - .1 alterar el rumbo para reducir las aceleraciones;
 - .2 aminorar la velocidad para reducir las aceleraciones y la vibración;
 - .3 verificar la integridad del buque;
 - .4 estibar o sujetar la carga de nuevo y, si es posible, aumentar la fricción; y
 - .5 desviarse de la ruta a fin de encontrar una zona abrigada o en que las condiciones meteorológicas y la mar sean mejores.
- **7.2** Sólo debe considerarse la posibilidad de lastrar o deslastrar los tanques si el buque tiene estabilidad suficiente.

Anexo 1

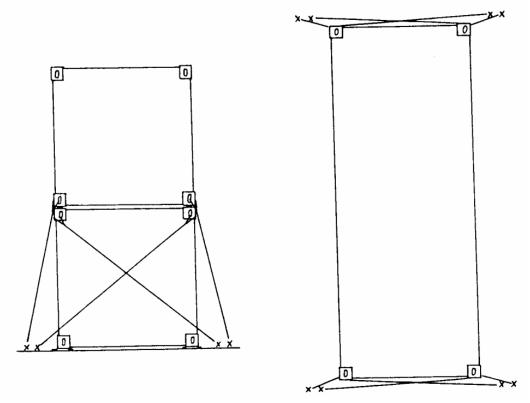

Seguridad de la estiba y sujeción de contenedores sobre la cubierta de buques que no están especialmente proyectados y equipados para ese tipo de transporte

1 ESTIBA

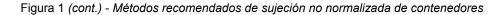

- **1.1** Los contenedores que se transporten sobre la cubierta o las escotillas de tales buques se deben estibar preferentemente en sentido longitudinal.
- **1.2** Los contenedores no deben sobresalir del costado del buque. Se deben utilizar soportes adecuados cuando los contenedores sobresalgan de las escotillas o de las estructuras de cubierta.
- **1.3** Los contenedores se deben estibar y sujetar de modo que permitan al personal desplazarse con seguridad para realizar las operaciones necesarias en el buque.
- 1.4 Los contenedores no deben someter nunca la cubierta ni las escotillas sobre las que estén estibados a fuerzas excesivas.
- **1.5** Los contenedores de la tongada inferior, cuando no descansen en dispositivos de apilamiento, se deben estibar sobre tablones de madera de espesor suficiente, dispuestos de manera que distribuyan uniformemente la carga apilada sobre la estructura de la zona de estiba.
- **1.6** Cuando se apilen contenedores, se deben usar entre ellos dispositivos de fijación, conos u otros accesorios de apilamiento similares, según proceda.
- **1.7** Cuando se estiben contenedores sobre la cubierta o las escotillas, se debe tener en cuenta el emplazamiento y la resistencia de los puntos de sujeción.

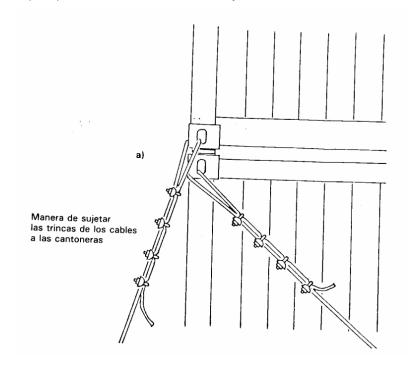
2 SUJECIÓN

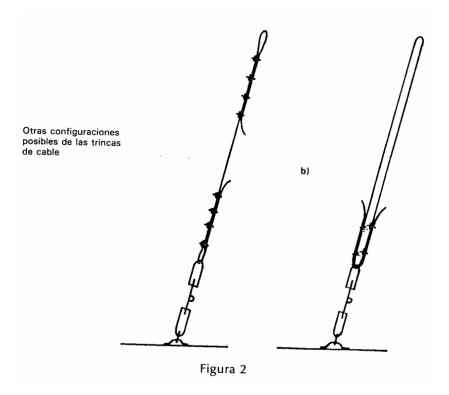
- **2.1** Todos los contenedores deben estar bien sujetos de modo que no puedan deslizarse o volcarse. Las tapas de las escotillas sobre las que se transporten contenedores deben estar sujetas adecuadamente al buque.
- **2.2** Los contenedores se deben sujetar utilizando uno de los tres métodos recomendados en la figura 1, o métodos equivalentes.
- **2.3** Las trincas deben ser preferentemente de cable de acero, cadenas o material con similares características de resistencia y alargamiento.
 - 2.4 Los puntales de madera no deben exceder de 2 m de largo.
- 2.5 Las abrazaderas de cable se deben engrasar adecuadamente y apretar de modo que se vea claramente que el chicote del cable queda comprimido (figura 2).
 - 2.6 En la medida de lo posible, las trincas deben estar sometidas a la misma tensión.



Método A: Contenedores de peso medio; el peso del contenedor de arriba no excede de un 70% del peso de abajo




Método B: Contenedores de peso medio; el peso del contenedor de arriba puede ser superior a un 70% del peso del de abajo


Figura 1 - Métodos recomendados de sujeción no normalizada de contenedores

Método C: Contenedores pesados; el peso del contenedor de arriba puede ser superior a un 70% del peso del de abajo

(Segunda Sección)

Anexo 2

Seguridad de la estiba y sujeción de cisternas portátiles

1 INTRODUCCION

- **1.1** Las disposiciones del presente anexo son aplicables a las cisternas portátiles que, en este contexto, son cisternas no sujetas permanentemente a bordo del buque, con una capacidad superior a 450ℓ un cuerpo dotado de elementos estabilizadores externos, y del equipo de servicio y los elementos estructurales necesarios para el transporte de gases, líquidos o sólidos.
- **1.2** Estas disposiciones no son aplicables a las cisternas cuya capacidad sea igual o inferior a 450ℓ, destinadas al transporte de líquidos, sólidos o gases.

Nota: La capacidad de las cisternas portátiles para gases es igualo superior a 1000 l.

2 DISPOSICIONES GENERALES RELATIVAS A LAS CISTERNAS PORTATILES

- **2.1** Las cisternas portátiles se deben poder cargar y descargar sin que sea necesario retirar su equipo estructural y se deben poder embarcar y desembarcar izándolas cuando estén cargadas.
- 2.2 Todo contenedor que se ajuste a la definición de contenedor en el contexto del Convenio internacional sobre la seguridad de los contenedores, 1972, en su forma enmendada, debe cumplir con las prescripciones de dicho Convenio. Además, las cisternas deben cumplir con las prescripciones de la sección 13 de la Introducción General del Código IMDG cuando se utilicen para el transporte de mercancías peligrosas.
- **2.3** Las cisternas portátiles no deben entregarse para embarque en condiciones de llenado que puedan originar una fuerza hidráulica inaceptable debida al efecto de onda de choque hidráulica dentro de la cisterna.
- 2.4 Las cisternas portátiles utilizadas para el transporte de mercancías peligrosas deben estar certificadas, de conformidad con lo dispuesto en el Código IMDG, por la autoridad aprobadora competente o por un organismo autorizado por ella.

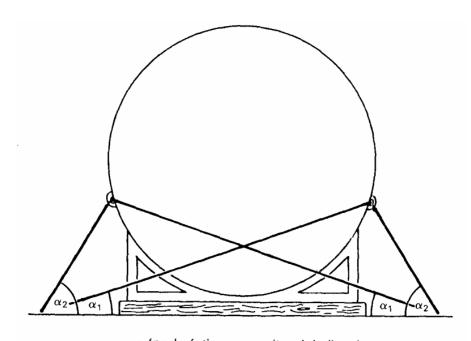
3 DISPOSITIVOS DE LAS CISTERNAS PORTATILES

- **3.1** Los elementos estabilizadores externos de una cisterna portátil pueden consistir en patines o cunas y, además, la cisterna puede estar sujeta a un contenedor plataforma. De igual modo, la cisterna puede estar fijada dentro de un armazón, cuyas dimensiones se ajusten o no se ajusten a las normas de la ISO.
 - 3.2 Los dispositivos de las cisternas portátiles deben incluir herrajes de izada y sujeción.

Nota: Aunque las cisternas portátiles antes mencionadas se pueden transportar en buques polivalentes, el método empleado para trincarlas o sujetarlas a bordo exige especial atención.

4 INFORMACION SOBRE LA CARGA

- 4.1 La información que se facilite al capitán debe incluir por lo menos:
 - .1 las dimensiones de la cisterna portátil y el tipo de mercancía si no es peligrosa, y si lo es, la información prescrita en el Código IMDG;
 - .2 la masa bruta máxima de la cisterna portátil; y
 - .3 si está sujeta de modo permanente a un contenedor plataforma o a un armazón y si está o no provista de puntos de sujeción.


5 ESTIBA

- **5.1** Debe tenerse en cuenta la distribución típica de las aceleraciones del buque antes de decidir si la cisterna portátil se estibará en cubierta o bajo cubierta.
 - 5.2 Las cisternas se deben estibar longitudinalmente, tanto en cubierta como bajo cubierta.
 - 5.3 Las cisternas se deben estibar de modo que no sobresalgan del costado del buque.
- **5.4** Las cisternas se deben estibar de modo que permitan al personal desplazarse con seguridad para realizar las operaciones necesarias en el buque.
- **5.5** Las cisternas no deben someter nunca a un esfuerzo excesivo la cubierta o las escotillas; las tapas de las escotillas deben estar sujetas al buque de modo que no se puedan volcar con la carga que llevan encima.

6 SUJECION PARA EVITAR QUE LA CARGA SE VUELQUE O SE DESLICE

6.1 Cisternas portátiles no normalizadas

6.1.1 Los dispositivos de sujeción de las cisternas portátiles no normalizadas y los del buque deben estar dispuestos de modo que soporten las fuerzas transversales y longitudinales que puedan hacer que la carga se deslice o se vuelque. Los ángulos de trinca para evitar el deslizamiento no deben ser superiores a 25° y los ángulos para evitar el vuelco no deben ser inferiores a un valor comprendido entre 45° y 60° (figura 1).

 α_1 : ángulo óptimo para evitar el deslizamiento α_2 : ángulo óptimo para evitar el vuelco

Figura 1 - Sujeción de cisternas portátiles de modo que el ángulo que forma la trinca con la cubierta asegure una máxima eficacia de sujeción

- **6.1.2** Siempre que sea necesario, deben utilizarse tablones de madera entre la superficie de cubierta y la estructura de base de la cisterna portátil con objeto de aumentar la fricción. Esto no se aplica a las cisternas colocadas sobre unidades de madera o cuya base sea de material análogo, con un elevado coeficiente de fricción.
- **6.1.3** Si se permite estibar bajo cubierta, la estiba debe efectuarse de modo que las cisternas portátiles no normalizadas puedan colocarse directamente en su lugar y asiento.
 - 6.1.4 Los puntos de sujeción de la cisterna deben tener la resistencia adecuada y estar claramente marcados.

Nota: Es posible que los puntos de sujeción proyectados para el transporte por carretera y ferrocarril no sean apropiados para la sujeción en el buque.

6.1.5 Cuando las cisternas carezcan de puntos de sujeción, las trincas deben pasar alrededor de la cisterna y ambos extremos deben sujetarse al mismo lado de ésta (figura 2).

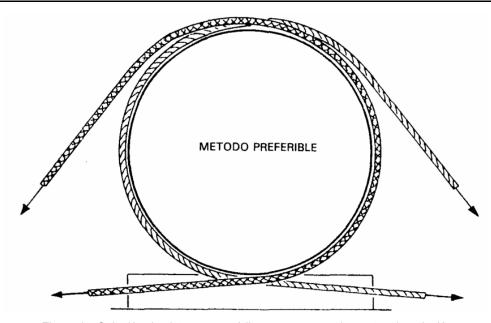


Figura 2 - Sujeción de cisternas portátiles que carecen de puntos de sujeción

- **6.1.6** Se deben disponer suficientes dispositivos de sujeción de modo que cada uno de ellos soporte la parte de la carga que le corresponde con un factor de seguridad adecuado.
- **6.1.7** Se debe tener en cuenta la resistencia de los elementos estructurales de la cubierta o de las escotillas cuando sobre ellas se transporten cisternas y cuando se coloquen y fijen los dispositivos de sujeción.
- **6.1.8** Las cisternas portátiles deben sujetarse de manera que no se ejerzan sobre ellas ni sus accesorios cargas superiores a las proyectadas.

6.2 Cisternas portátiles normalizadas (contenedores cisterna)

6.2.1 Las cisternas portátiles normalizadas que tengan dimensiones ISO deben sujetarse conforme al sistema de trinca con que vaya equipado el buque, tomando en consideración la altura de la cisterna sobre la cubierta y el espacio vacío de la cisterna.

7 MANTENIMIENTO DE LOS MEDIOS DE SUJECION

- 7.1 Se debe mantener durante todo el viaje la integridad de los medios de sujeción.
- **7.2** Se debe prestar atención especialmente a la necesidad de tensar las trincas y de apretar las mordazas y abrazaderas, con objeto de evitar que se aflojen a causa de su desgaste por fricción o rozamiento.
 - 7.3 Se deben comprobar y tensar regularmente las trincas.

Anexo 3

Seguridad de la estiba y sujeción de receptáculos portátiles*

1 INTRODUCCION

- **1.1** Un receptáculo portátil, en el contexto de estas directrices, es un receptáculo distinto de una cisterna portátil, que no está sujeto permanentemente a bordo del buque, con una capacidad igual o inferior a 1000 ℓ , con diferentes dimensiones y formas, y que se utiliza para el transporte de gases o líquidos.
 - 2 Los receptáculos portátiles se pueden dividir en:
 - .1 botellas de diferentes dimensiones, sin puntos de sujeción, que tienen una capacidad no superior a 150 ℓ;
 - .2 receptáculos de diferentes dimensiones, con la excepción de las botellas citadas en el párrafo 2.1, que tienen una capacidad no inferior a 100 ℓ y no superior a 1000 ℓ, estén o no dotados de dispositivos de izada de resistencia suficiente; y

En este anexo, la expresión "receptáculo" incluye también las botellas de gas.

.3 conjuntos de las botellas citadas en el párrafo 2.1, denominados "armazones", en los que las botellas están interconectadas por un colector en el armazón y sujetas firmemente mediante herrajes los armazones disponen de dispositivos de sujeción y manipulación de resistencia suficiente (por ejemplo, los receptáculos cilíndricos tienen aros de rodamiento y los receptáculos van fijados sobre patines).

3 INFORMACION SOBRE LA CARGA

- 3.1 La información que se facilite al capitán debe incluir por lo menos:
 - .1 las dimensiones de los receptáculos y el tipo de mercancía si no es peligrosa, y si lo es, la información prescrita en el Código IMDG;
 - .2 la masa bruta máxima de los receptáculos; y
 - .3 si están o no están equipados con dispositivos de izada de resistencia suficiente.

4 ESTIBA

- **4.1** Debe tenerse en cuenta la distribución típica de las aceleraciones del buque antes de decidir si los receptáculos se estibarán en cubierta o bajo cubierta.
- **4.2** Los receptáculos se deben estibar preferentemente en sentido longitudinal, tanto en cubierta como bajo cubierta.
- **4.3** Los receptáculos deben colocarse sobre madera de estiba para que no se apoyen directamente sobre una cubierta de acero. Se deben estibar y calzar según convenga con objeto de evitar que se muevan, a no ser que estén montados en un armazón formando una unidad, los receptáculos para gases licuados se deben estibar en posición vertical.
- **4.4** Cuando los receptáculos vayan en posición vertical, se deben estibar en bloque, en un bastidor o dentro de una caja construida con tablones adecuados en buen estado. La caja o bastidor se debe colocar sobre madera de estiba a fin de que quede separada de la cubierta de acero. Los receptáculos que estén en una caja o bastidor deben ir trabados para evitar todo movimiento. La caja o bastidor se debe rellenar y trincar de forma segura a fin de evitar movimientos en cualquier dirección.

5 SUJECION PARA EVITAR DESLIZAMIENTOS Y CORRIMIENTOS

5.1 Botellas

Las botellas se deben estibar en sentido longitudinal sobre tablones transversales. Cuando resulte factible deben sujetarse con dos o más cables, colocados transversalmente antes del embarque, que se harán pasar luego alrededor de las botellas afianzándolos en puntos de sujeción en lados opuestos. Se tensarán los cables para que quede firme la carga utilizando dispositivos adecuados. Es posible que durante las operaciones de carga sea necesario utilizar cuñas para impedir que rueden las botellas.

5.2 Botellas en contenedores

En la medida de lo posible, las botellas se deben estibar en posición vertical, con las válvulas hacia arriba y las tapas protectoras bien colocadas. Las botellas deben ir bien sujetas, de modo que soporten los rigores del viaje proyectado, mediante flejes de acero o medios equivalentes trincados a los puntos de sujeción del suelo del contenedor. Si las botellas no pueden ir estibadas en posición vertical dentro de un contenedor cerrado, deben transportarse en un contenedor abierto o en un contenedor plataforma.

5.3 Receptáculos

La sujeción de los receptáculos estibados en cubierta o bajo cubierta se debe efectuar como sigue:

.1 los cables de trinca se deben colocar como se indica en la figura 1;

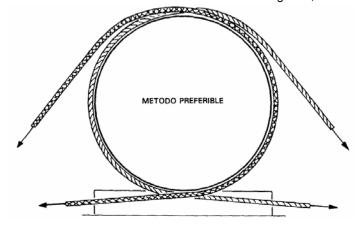


Figura 1 - Sujeción de cisternas portátiles que carecen de puntos de sujeción

- .2 cuando sea posible, deben utilizarse los dispositivos de izada de los receptáculos para trincarlos; y
- .3 las trincas se deben comprobar y tensar regularmente.

Anexo 4

Seguridad de la estiba y sujeción de cargas sobre ruedas (cargas rodadas)

1 INTRODUCCION

En el contexto de las presentes directrices, cargas rodadas son todas las provistas de ruedas o de orugas, incluidas las utilizadas para la estiba y transporte de otras cargas, a excepción de remolques y trenes de vehículos carreteros (comprendidos en el capítulo 4 del presente Código), pero incluidos los autobuses, vehículos militares con o sin orugas, tractores, equipo de movimiento de tierras, remolques de transbordo, etc.

2 RECOMENDACIONES GENERALES

- **2.1** Los espacios de carga en los que se vaya a estibar carga rodada deben estar secos, limpios y exentos de grasa o aceite.
- **2.2** Las cargas rodadas deben estar provistas de puntos de sujeción adecuados y claramente marcados o de otros medios equivalentes de resistencia suficiente que permitan la utilización de trincas.
- 2.3 En las cargas rodadas que no estén provistas de puntos especiales de sujeción se deben marcar claramente los puntos a los que puedan sujetarse las trincas.
- **2.4** Las cargas rodadas que no estén provistas de ruedas de caucho o de orugas con bandas de rodadura que aumenten la fricción se deben estibar siempre sobre maderas de estiba u otros materiales que aumenten la fricción, como planchas de madera blanda, esteras de caucho, etc.
 - 2.5 Cuando la unidad rodada se encuentre en la posición de estiba, si tiene frenos, deben aplicarse.
- **2.6** Las cargas rodadas se deben sujetar al buque mediante trincas de un material cuyas características de resistencia y alargamiento sean equivalentes, como mínimo, a las de las cadenas o cables de acero.
- **2.7** Siempre que sea posible, las cargas rodadas que se transporten como carga parcial se deben estibar cerca del costado del buque o en lugares de estiba que estén provistos de puntos de sujeción de resistencia suficiente, o en bloque de un lado a otro del espacio de carga.
- 2.8 A fin de impedir cualquier corrimiento lateral de las cargas rodadas que no estén provistas de puntos de sujeción adecuados, dichas cargas se deben estibar si es posible cerca de los costados del buque y a proximidad unas de otras o bloquear mediante otras unidades de carga apropiadas, tales como contenedores cargados, etc.
- 2.9 A fin de impedir el corrimiento de las cargas rodadas, es preferible, siempre que sea posible, estibar dichas cargas en el sentido longitudinal del buque en vez de en sentido transversal. Si no hay más remedio que estibar la carga rodada transversalmente, puede ser necesario sujetarla con medios adicionales de resistencia suficiente.
 - **2.10** A fin de impedir el corrimiento de las cargas rodadas, se deben calzar sus ruedas.
- **2.11** Las cargas estibadas sobre unidades rodadas deben sujetarse adecuadamente a las plataformas de estiba o, cuando estén provistas de los medios apropiados, a sus lados. Todo componente exterior móvil montado en la unidad rodante, como grúa, brazo o torreta, se debe inmovilizar o sujetar adecuadamente.

Anexo 5

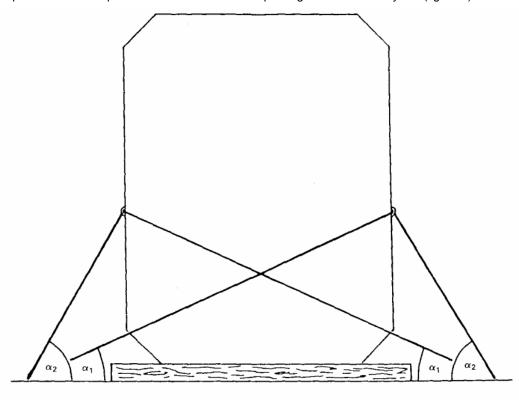
Seguridad de la estiba y sujeción de cargas pesadas, como locomotoras, transformadores, etc.

1 INFORMACION SOBRE LA CARGA

Se debe facilitar al capitán suficiente información sobre la carga pesada que se ofrezca para transporte a fin de que pueda preparar un plan de estiba y sujeción adecuado. Esta información debe incluir como mínimo los siguientes datos:

- .1 masa bruta;
- .2 dimensiones principales con dibujos o descripciones gráficas, si es posible;
- .3 situación del centro de gravedad;
- .4 zonas de asiento de la carga y precauciones particulares que deban tomarse al respecto;
- .5 puntos de izada o posiciones de las eslingas; y
- .6 puntos de sujeción, cuando proceda, y su resistencia.

2 LUGARES DE ESTIBA


- **2.1** Al considerar el lugar en que se estibará una carga pesada se debe tener en cuenta la distribución típica de las aceleraciones del buque, a saber:
 - .1 que las aceleraciones menores se producen en los medios y por debajo de la cubierta de intemperie; y
 - .2 que las aceleraciones mayores se producen en los extremos y por encima de la cubierta de intemperie.
- **2.2** Cuando se vayan a estibar cargas pesadas en cubierta, conviene tener en cuenta, en la medida de lo posible, cuál será la banda de barlovento en el viaje de que se trate.
 - 2.3 Las cargas pesadas se deben estibar preferentemente en sentido longitudinal.

3 DISTRIBUCIÓN DEL PESO

El peso de la carga se debe distribuir de forma que se evite someter a esfuerzos excesivos la estructura del buque. En particular, cuando se transporten cargas pesadas en cubierta o sobre las tapas de escotilla, se deben utilizar vigas de madera o acero de suficiente resistencia que permitan repartir el peso de la carga sobre la estructura del buque.

4 MEDIDAS DE SUJECION PARA EVITAR DESLIZAMIENTOS Y VUELCOS

- **4.1** Siempre que sea posible, se debe colocar madera entre la superficie de estiba y la parte inferior de la unidad con objeto de aumentar la fricción. Esto no se aplica a cargas que vengan en cunas de madera, tengan neumáticos o cuya base esté constituida por materiales similares con un coeficiente de fricción elevado.
- **4.2** Los dispositivos de sujeción se deben colocar de manera que resistan las fuerzas transversales y longitudinales que pueden ocasionar deslizamientos o vuelcos.
- **4.3** El ángulo óptimo de la trinca con la horizontal para evitar los deslizamientos es de unos 25°, y el ángulo óptimo de la trinca para evitar los vuelcos oscila por lo general entre 45° y 60° (figura 1).

α₁: ángulo óptimo para evitar el deslizamiento

α2: ángulo óptimo para evitar el vuelco

Figura 1 - Criterios de sujeción de cargas pesadas para evitar que se deslicen o se vuelquen

an utilizado planchones engrasados u otro dispositivo

(Segunda Sección)

- **4.4** Si para colocar la carga pesada en su lugar se han utilizado planchones engrasados u otro dispositivo destinado a reducir la fricción, se debe aumentar proporcionalmente el número de trincas para evitar los deslizamientos.
- **4.5** Cuando, debido a las circunstancias, las trincas sólo puedan colocarse formando ángulos muy abiertos, se evitará el deslizamiento colocando apeos, accesorios soldados u otros medios apropiados. Las soldaduras se deben efectuar de conformidad con procedimientos de trabajo en caliente aceptados.

5 SUJECION DE LA CARGA EN CUBIERTA EN PREVISION DE MAR GRUESA

Si bien no cabe duda que es difícil sujetar la carga en cubierta en previsión de mar gruesa, se debe procurar por todos los medios sujetar esas cargas y sus soportes de modo que resistan los embates, pudiéndose considerar el uso de medios especiales de sujeción.

6 CARGAS PESADAS QUE SOBRESALEN DEL COSTADO DEL BUQUE

Las unidades que sobresalgan del costado del buque deben ir sujetas por trincas adicionales que actúen en dirección vertical y longitudinal.

7 FIJACION DE LAS TRINCAS A LAS CARGAS PESADAS

- **7.1** Si las trincas se van a fijar a los puntos de sujeción de la unidad, éstos deben tener la resistencia suficiente y estar claramente marcados. Se debe tener en cuenta que los puntos de sujeción concebidos para el transporte por ferrocarril o carretera pueden no ser adecuados para sujetar las cargas a bordo de los buques.
- **7.2** Las trincas para sujetar cargas que no tengan puntos de sujeción se deben pasar alrededor de la carga, o de una parte rígida de ésta, y sus dos extremos se deben sujetar del mismo lado de la carga (figura 2).

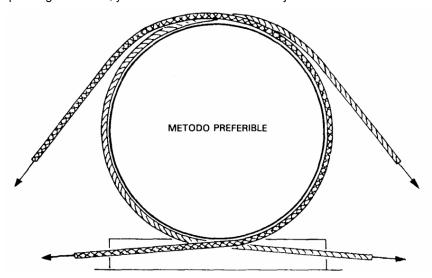


Figura 2 - Criterios de sujeción de cargas pesadas que carecen de puntos de sujeción adecuados

8 MONTAJE Y UTILIZACIÓN DE LOS DISPOSITIVOS DE SUJECION

- **8.1** Los dispositivos de sujeción se deben montar de forma que cada uno de sus componentes tenga la misma resistencia.
- **8.2** Los elementos de unión y los dispositivos tensores se deben utilizar de manera correcta. Se debe tener en cuenta cualquier disminución de la resistencia de las trincas durante el viaje debido a la corrosión, fatiga o deterioro mecánico y compensarla utilizando un material de sujeción más resistente.
- **8.3** Se debe prestar atención especialmente a la utilización correcta de cables, mordazas y abrazaderas. La pieza de apriete de la abrazadera se debe colocar contra la parte firme del cable y el perno en U contra el chicote.
- **8.4** Los dispositivos de sujeción se deben disponer de manera que cada uno de ellos aguante la parte de carga que corresponda a su resistencia.
- **8.5** Se debe evitar la utilización simultánea de medios de sujeción cuyas características de alargamiento o resistencia sean diferentes.

9 MANTENIMIENTO DE LOS MEDIOS DE SUJECION

- 9.1 Los medios de sujeción deben mantenerse en perfecto estado durante el viaje.
- **9.2** Se debe prestar atención especialmente a la necesidad de tensar las trincas y de apretar las mordazas y abrazaderas, con objeto de evitar que se aflojen a causa de su desgaste por fricción o rozamiento. Se debe verificar el estado de las cunas, soleras y apeos de madera.
- **9.3** Conviene engrasar las roscas de las abrazaderas y tensores porque aumenta su poder retentivo e impide la corrosión.

10 CALCULO DE SUJECION

10.1 Cuando proceda, la eficacia de los medios de sujeción para cargas pesadas se debe comprobar mediante cálculos apropiados.

Anexo 6

Seguridad de la estiba y sujeción de rollos de chapa de acero

1 GENERALIDADES

- **1.1** El presente anexo trata sólo de la estiba horizontal de rollos de chapa de acero. No se hace referencia a la estiba vertical dado que ésta no crea ningún problema particular de sujeción.
 - 1.2 Por lo general, la masa bruta de cada rollo de chapa de acero excede de 10 toneladas.

2 ROLLOS

- **2.1** Los rollos deben estibarse en el fondo de las bodegas y, siempre que sea posible, en tongadas regulares de un costado a otro del buque.
- **2.2** Los rollos se deben estibar sobre madera de estiba colocada transversalmente. El eje de los rollos debe ir en sentido longitudinal. Cada rollo debe ir estibado contra el rollo siguiente. Deben utilizarse cuñas como topes cuando sea necesario durante las operaciones de carga y descarga con objeto de evitar que los rollos rueden (figuras 1 y 2).
- 2.3 El último rollo de cada hilera debe apoyarse normalmente sobre los dos rollos adyacentes. La masa de este rollo bloqueará los otros rollos de la hilera.
- **2.4** Si fuera necesario colocar una segunda tongada sobre la primera, los rollos se deben estibar entre los de la primera tongada (figura 2).
- **2.5** Se debe apuntalar de manera adecuada todo espacio vacío entre los rollos de la tongada superior (figura 3).

3 TRINCAS

3.1 El objetivo es formar un bloque grande e inmovible de rollos en la bodega trincándolos juntos. En general, los rollos de chapa de acero en las tres últimas hileras de la tongada superior deben sujetarse con trincas. A fin de evitar el corrimiento hacia popa o hacia proa de los rollos de chapa de acero sin revestir, que no se deben trincar por grupos debido a su fragilidad, la última hilera de la tongada superior debe asegurarse con madera de estiba y cables tensados de banda a banda, así como cables adicionales hasta el mamparo. Cuando los rollos vayan estibados de modo que cubran todo el espacio del fondo y estén bien apuntalados, las trincas no serán necesarias excepto para los rollos de inmovilización (figuras 4, 5 y 6).

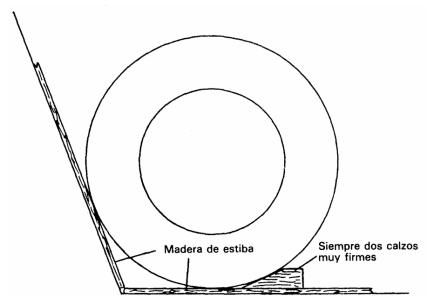


Figura 1 - Modo de hacer la estiba de rollos y de calzarlos

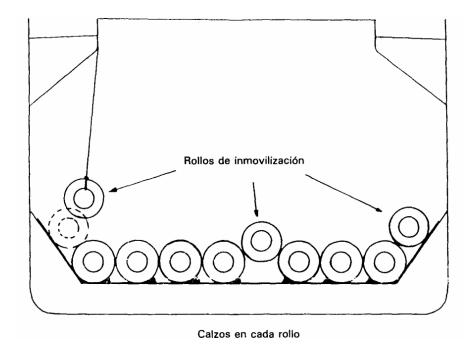


Figura 2 - Colocación de rollos de inmovilización

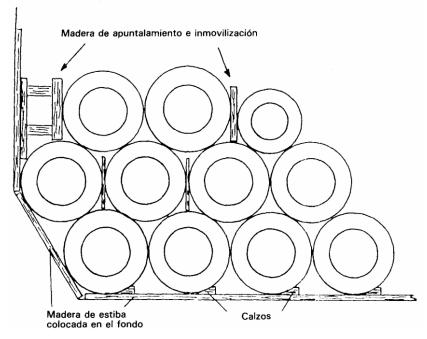


Figura 3 - Apuntalamiento e inmovilización de los rollos

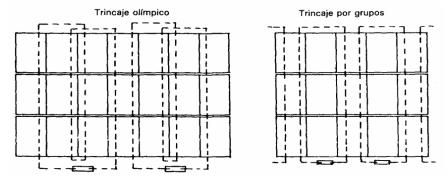


Figura 4 - Sujeción de la tongada superior para impedir el corrimiento en sentido longitudinal (vista en planta)

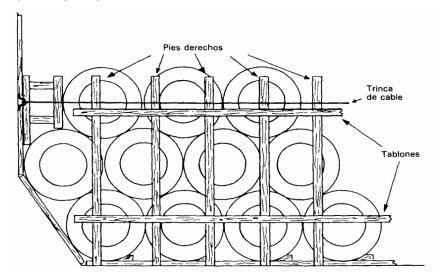


Figura 5 - Sujeción de la última hilera de la tongada superior para impedir el corrimiento en sentido longitudinal

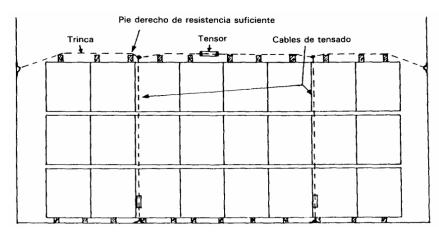


Figura 6 - Sujeción de la última hilera de la tongada superior para impedir el corrimiento en sentido longitudinal (vista en planta)

- 3.2 Las trincas pueden ser de tipo tradicional, de cable o de cualquier otro material equivalente.
- **3.3** Las trincas tradicionales deben ser cables que tengan suficiente resistencia a la tracción. La primera tongada se debe fijar con calzos. Durante el viaje debe ser posible ajustar la tensión de las trincas (figuras 5 y 6).
 - 3.4 Las trincas de cable se deben proteger del roce contra bordes aguzados.
- **3.5** Si hay pocos rollos, o uno sólo, se deben sujetar adecuadamente al buque colocándolos en cunas, poniendo cuñas o apuntalándolos y después sujetándolos con trincas para evitar que se desplacen lateral o longitudinalmente.
- **3.6** Los rollos que se transporten en contenedores, vagones de ferrocarril y vehículos de carga se deben estibar sobre cunas o soleras especialmente construidas, sujetándolos de manera apropiada para evitar que se muevan.

Anexo 7

Seguridad de la estiba y sujeción de productos metálicos pesados

1 GENERALIDADES

- **1.1** En el contexto del presente Código, los productos metálicos pesados son todos los artículos pesados de metal, como barras, tubos, varillas, planchas, rollos de alambre, etc.
- **1.2** El transporte de productos metálicos pesados por mar expone al buque a los principales riesgos siguientes:
 - .1 la estructura del buque puede estar sometida a esfuerzos excesivos si se rebasa el esfuerzo admisible del casco o la carga admisible en cubierta;
 - .2 la estructura del buque puede estar sometida a esfuerzos excesivos como resultado de un periodo de balance corto debido a una altura metacéntrica excesiva; y
 - .3 puede producirse un corrimiento de la carga, debido a una sujeción deficiente, con pérdida de estabilidad, avería en el casco, o ambas cosas.

- **2.1** Los espacios de carga en los que vayan a estibarse productos metálicos deben estar limpios, secos y exentos de grasa y aceite.
 - 2.2 La carga debe distribuirse de manera que el casco no esté sometido a esfuerzos excesivos.
 - 2.3 No debe rebasarse la carga admisible en cubierta o sobre los techos de los tanques.
 - 2.4 Al estibar y sujetar productos metálicos pesados se deben tomar las medidas siguientes:
 - .1 la carga se debe estibar de manera que quede compacta de un costado a otro del buque, sin dejar huecos entre los elementos de que esté compuesta y utilizando calzas de madera entre ellos en caso necesario;
 - .2 siempre que sea posible, la superficie de la carga debe quedar nivelada;

- .3 se debe afianzar la superficie de la carga; y
- .4 los caballetes de apuntalamiento deben ser de madera fuerte, que no se astille, y tener las dimensiones suficientes para resistir las fuerzas de aceleración. Se debe colocar un caballete en cada cuaderna del buque, pero nunca a intervalos de más de 1 mt.
- **2.5** En el caso de planchas finas y bultos pequeños, la estiba alternada en sentido longitudinal y transversal ha demostrado ser eficaz. Se debe aumentar la fricción utilizando suficiente cantidad de madera seca de estiba u otro material entre las distintas tongadas.
- **2.6** Los tubos, raíles, perfiles laminados, tochos, etc., se deben estibar en sentido longitudinal para que no causen daños a los costados del buque en caso de corrimiento de la carga.
 - 2.7 La carga, especialmente la tongada superior, puede sujetarse:
 - .1 estibando otra carga encima de ella; o
 - .2 con trincas de cable, calzas o medios similares.
- **2.8** Cuando los productos metálicos no se estiben de un costado a otro del buque, se debe poner especial cuidado en sujetarlos adecuadamente.
- 2.9 Cuando sea necesario sujetar la superficie de la carga, las trincas deben ser independientes, ejercer una presión vertical sobre la superficie de la carga y colocarse de manera que no quede parte alguna de la carga sin sujetar.

3 ROLLOS DE ALAMBRE

- **3.1** Los rollos de alambre deben estibarse sobre su parte plana de modo que cada rollo descanse contra el rollo adyacente. Los rollos de tongadas sucesivas se deben estibar de manera que cada uno quede colocado entre otros dos de la tongada inferior.
- **3.2** Los rollos de alambre deben estibarse apretados unos contra otros y utilizando fuertes medios de sujeción. Cuando no puedan evitarse los huecos entre los rollos o cuando existan huecos en los costados o extremos del espacio de carga, la estiba debe sujetarse adecuadamente.
- **3.3** Cuando se sujeten rollos de alambre estibados de costado en varias tongadas, al estilo de los barriles, es fundamental recordar que, a menos que se sujete la tongada superior, los rollos que descansen en la estiba pueden ser expulsados por los rollos que se encuentran debajo como consecuencia de los movimientos del buque.

Anexo 8

Seguridad de la estiba y sujeción de cadenas de ancla

1 GENERALIDADES

- **1.1** Las cadenas de ancla destinadas a buques y estructuras mar adentro se transportan generalmente en fardos o extendidas a lo largo de los espacios de carga.
- 1.2 A condición de que se adopten ciertas medidas de seguridad antes, durante y después de la estiba, las cadenas de ancla pueden arriarse directamente al lugar de estiba en fardos sin ningún otro tipo de manipulación, o estibarse longitudinalmente a todo lo largo del espacio de carga del buque o parte de él.
- **1.3** Si los planes de estiba indicados en la documentación del buque no especifican prescripciones al respecto, la carga se debe distribuir en la bodega inferior y en los entrepuentes de manera que los valores de estabilidad así obtenidos garanticen una estabilidad adecuada.

- 2.1 Los espacios de carga en que se estiben las cadenas deben estar limpios y exentos de aceite y grasa.
- 2.2 Las cadenas deben estibarse solamente sobre superficies que estén cubiertas permanentemente con un forro de madera o con suficientes capas de madera de estiba u otros materiales apropiados que aumenten la fricción. Las cadenas no deben estibarse nunca directamente sobre superficies metálicas.

3 ESTIBA Y SUJECION DE CADENAS EN FARDOS

- **3.1** Las cadenas en fardos, que son izadas directamente a su lugar de estiba sin ningún otro tipo de manipulación, quedarán atadas con sus cables de izada y preferiblemente deben añadirse cables alrededor de los fardos para sujetar las trincas.
- **3.2** No es necesario separar las capas de cadenas con materiales que aumenten la fricción, como maderos de estiba, dado que los fardos se adhieren unos a otros. La capa superior de fardos se debe sujetar a ambos costados del buque mediante trincas adecuadas. Los fardos pueden trincarse por separado o en grupos, utilizando los cables de izada.

4 ESTIBA Y SUJECION DE CADENAS EN SENTIDO LONGITUDINAL

- **4.1** Siempre que sea posible, la estiba de cada capa de cadenas debe comenzar y terminar cerca de los costados del buque. Se procurará conseguir una estiba apretada.
- **4.2** No es necesario separar las capas de cadenas con materiales que aumenten la fricción, como maderos de estiba, dado que los fardos de cadenas se adhieren unos a otros.
- **4.3** Teniendo presentes las condiciones meteorológicas y el estado de la mar previstos, la duración y la naturaleza del viaje, así como el tipo de carga que hay que estibar encima de las cadenas, la capa superior de cada carga estibada se debe sujetar con trincas de resistencia suficiente que crucen la estiba a intervalos apropiados para mantenerla así apretada en su totalidad.

Anexo 9

Seguridad de la estiba y sujeción de chatarra de metal a granel

1 INTRODUCCION

- **1.1** El presente anexo trata de la estiba de chatarra de metal difícil de estibar de manera compacta debido a su tamaño, forma y masa, pero no es aplicable a la chatarra como virutas de taladro, raspaduras y torneaduras, cuyo transporte se rige por el Código de prácticas de seguridad relativas a las cargas sólidas a granel.
 - **1.2** Los peligros que entraña el transporte de chatarra son los siguientes:
 - .1 el corrimiento de la estiba que, a su vez, puede causar una escora;
 - .2 el desplazamiento de las piezas pesadas que pueden perforar las planchas de costado por debajo de la línea de flotación y causar una inundación grave;
 - .3 el exceso de carga sobre los techos del doble fondo o los entrepuentes; y
 - .4 un balance violento debido a una altura metacéntrica excesiva.

- 2.1 Antes de embarcar la carga, los listones inferiores del forro de serretas deben protegerse con bastante madera de estiba a fin de reducir los daños y evitar que las piezas de chatarra pesadas o con bordes cortantes estén en contacto con las planchas de costado del buque. Deben ser objeto de la misma protección los tubos de aireación y de sonda, así como los conductos de achique y de lastre que estén protegidos únicamente por tablas de madera.
- **2.2** Durante las operaciones de carga se procurará no dejar caer las primeras cargas desde una altura tal que puedan dañar las tapas de doble fondo.
- 2.3 Si hay que estibar en el mismo espacio de carga chatarra ligera y pesada, se debe estibar en primer lugar la chatarra pesada. No debe estibarse nunca la chatarra encima de torneaduras o residuos metálicos análogos.
- **2.4** La chatarra debe estibarse de forma compacta y uniforme, sin que haya huecos ni superficies sin apoyo de porciones sueltas de chatarra.
- 2.5 Las piezas pesadas de chatarra cuyo desplazamiento pueda dañar las planchas de costado o los mamparos de extremo deben ir debidamente estibadas o sujetas con trincas adecuadas. En vista de la naturaleza de la chatarra, no es probable que resulte eficaz la utilización de madera de apuntalamiento.
- **2.6** Se deben tomar las precauciones necesarias para no sobrecargar los techos del doble fondo o las cubiertas.

Anexo 10

Seguridad de la estiba y sujeción de recipientes intermedios flexibles para graneles (RIFG)

1 INTRODUCCION

1.1 Un recipiente intermedio flexible para graneles (RIFG), en el contexto de estas directrices, es un embalaje portátil flexible que se utiliza para el transporte de sólidos, de una capacidad no superior a 3m³ (3000 litros), proyectado de forma que se pueda manipular mecánicamente, sometido a prueba para comprobar que ofrece una resistencia satisfactoria a los esfuerzos producidos por la manipulación y el transporte y destinado a usos específicos o múltiples.

2 INFORMACION SOBRE LA CARGA

La información que se facilite al capitán debe incluir por lo menos:

- .1 el número total de RIFG y las mercancías que contengan;
- .2 las dimensiones del RIFG;
- .3 la masa total bruta de los RIFG;
- .4 si su proyecto es para usos específicos o múltiples; y
- .5 el tipo de mecanismo de izada (si hay que utilizar uno o más ganchos).

3 RECOMENDACIONES

- 3.1 El mejor tipo de buque para el transporte de RIFG es el que tiene anchas escotillas, de modo que los RIFG se puedan cargar directamente en su posición de estiba sin que sea necesario desplazarlos.
- 3.2 Los espacios de carga, siempre que sea posible, deben tener una forma rectangular y carecer de obstáculos.
 - 3.3 El espacio de estiba debe estar limpio, seco y exento de aceite y clavos.
- 3.4 Cuando haya que estibar RIFG en los costados profundos de las bodegas, convendría que las carretillas de horquilla elevadora adaptadas a ese fin puedan acceder fácilmente a dichos lugares y tengan espacio suficiente de maniobra.
- 3.5 Cuando solamente se vayan a estibar RIFG en el hueco de escotilla, las bandas y los extremos de proa y popa del espacio de carga se deben cargar con otra carga adecuada o abarrotar de tal forma que los RIFG tengan un apoyo adecuado.

4 ESTIBA

- 4.1 Al cargar RIFG se debe tener en cuenta la distribución típica de las aceleraciones del buque.
- 4.2 Si se divide la manga del buque por la anchura de los RIFG se obtiene el número de RIFG que se pueden estibar transversalmente y el espacio vacío restante. Si queda algún espacio vacío la estiba de los RIFG se debe iniciar desde ambos costados hacia el centro, de forma que el espacio vacío quede en el centro del hueco de escotilla.
- 4.3 Los RIFG se deben estibar tan próximos entre sí como sea posible y todo espacio vacío se debe rellenar con madera de estiba.
- 4.4 Las tongadas siguientes deben estibarse de forma análoga, de modo que los RIFG cubran completamente los que quedan debajo. Si en esta tongada queda algún espacio vacío, debe estar también en el centro del hueco de escotilla y rellenarse con madera de estiba.
- 4.5 Cuando hay espacio suficiente en el hueco de escotilla para estibar otra capa por encima de las capas inferiores, convendría determinar si las brazolas se pueden utilizar como mamparos. Si no fuese posible, habría que tomar medidas para evitar que los RIFG se desplacen hacia los espacios vacíos de los costados. De lo contrario los RIFG se estibarán entre una brazola y la opuesta. En ambos casos, si queda un espacio vacío debe estar en el centro y rellenarse con madera de estiba.

4.6 El relleno con madera de estiba es necesario en todos los casos a fin de evitar el desplazamiento de los RIFG hacia ambos lados y una posible escora del buque con mal tiempo (figura 1).

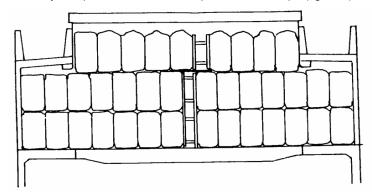


Figura 1 - Estiba de los RIFG con madera de estiba de relleno en el centro de la zona de estiba

5 Sujeción

- **5.1** En los casos en que solamente se utilice una parte del entrepuente o del plan de bodega para la estiba de RIFG, habría que tomar medidas con objeto de evitar el corrimiento de éstos. Tales medidas deben consistir en colocar suficientes enjaretados o láminas de contrachapado contra los RIFG y sujetar la carga con trincas de cable que vayan de lado a lado.
- **5.2** Las trincas de cable y las láminas de contrachapado utilizadas para la sujeción se deben comprobar periódicamente, especialmente antes y después de que haya mal tiempo, volviendo a apretar las trincas si es necesario.

Anexo 11

Directrices generales para la estiba de troncos bajo cubierta

1 INTRODUCCION

Este anexo tiene por objeto recomendar prácticas de seguridad para la estiba de troncos bajo cubierta y otras medidas de seguridad operacional destinadas a garantizar la seguridad del transporte de este tipo de carga.

2 Antes de cargar los troncos

- .1 se deben determinar las dimensiones de cada espacio de carga (longitud, anchura y profundidad), la capacidad para balas de los respectivos espacios de carga, los distintos largos de los troncos que se han de cargar, el volumen de éstos (volumen medio de los troncos) y la potencia del equipo que se ha de utilizar para cargarlos;
- .2 partiendo de la información anterior, se debe hacer un plano de estiba previo que permita aprovechar al máximo el espacio disponible; cuanto mejor se efectúe la estiba bajo cubierta, mayor será la carga que se pueda transportar en condiciones de seguridad en cubierta;
- .3 se deben examinar los espacios de carga y el equipo correspondiente para determinar si el estado de los elementos estructurales, la estructura y el equipo permiten transportar con seguridad el cargamento de troncos. Las averías descubiertas durante dicho examen se deben reparar debidamente;
- .4 se deben examinar los filtros de aspiración de sentina a fin de cerciorarse de que son eficaces y están limpios y conservados debidamente de modo que impidan la entrada de fragmentos en el sistema de tuberías de sentina;
- .5 los pocetes de sentina deben estar exentos de materiales extraños, como astillas y cortezas de madera;
- .6 se debe comprobar la capacidad del sistema de achique de sentinas. Es fundamental para la seguridad del buque que el sistema funcione y esté mantenido debidamente. Una bomba de achique portátil de una capacidad y altura de aspiración suficientes será una garantía adicional contra la obstrucción de las tuberías de sentina;

- .7 las serretas laterales, guardatuberías y demás protecciones de los elementos internos del casco deben estar en su sitio; y
- .8 el capitán debe asegurarse de que la apertura y el cierre de las válvulas de descarga de los tanques superiores de lastre se anotan debidamente en el diario de navegación. Como dichos tanques son necesarios para facilitar el embarque de la carga, y teniendo en cuenta la regla 221) del Convenio internacional sobre líneas de carga, 1966, en la que se prescribe la utilización de una válvula de cierre en las tuberías de descarga al mar por gravedad, el capitán debe cerciorarse de que las válvulas de descarga se verifiquen debidamente para evitar que el agua vuelva a entrar de manera accidental en esos tanques. Si los tanques quedaran en comunicación con la mar, se podría producir una escora aparentemente inexplicable y un corrimiento de la cubertada, y el buque podría zozobrar.

3 Durante las operaciones de carga:

- .1 cada eslingada de troncos se debe izar a bordo manteniéndola muy próxima al costado del buque para reducir al mínimo las posibles oscilaciones de la carga;
- .2 se deben tener en cuenta tanto la posibilidad de que el buque pueda sufrir daños como la seguridad de quienes estén trabajando en los espacios de carga. Los troncos no deben oscilar al ser arriados en la bodega. Se debe utilizar la brazola de escotilla según convenga para eliminar las oscilaciones de los troncos apoyando ligeramente la carga contra el interior de la brazola antes de arriar;
- .3 la estiba de los troncos debe ser compacta a fin de eliminar tantos huecos como sea posible. La cantidad de carga que pueda estibarse con seguridad en cubierta dependerá de la cantidad de troncos estibados bajo cubierta y de su centro de gravedad vertical. Teniendo en cuenta este principio, se deben cargar primero los troncos más pesados en los espacios de carga;
- .4 los troncos se deben estibar por lo general en sentido longitudinal de forma compacta, disponiendo los más largos en las partes anterior y posterior del espacio. Si queda un hueco en el espacio entre los troncos dispuestos longitudinalmente, se debe llenar con troncos estibados transversalmente a fin de rellenar dicho hueco a todo lo ancho del espacio tanto como lo permita la longitud de los troncos;
- .5 cuando en los espacios de carga sólo sea posible estibar en sentido longitudinal un largo como máximo, todo hueco que quede en la parte anterior o posterior se debe llenar con troncos estibados transversalmente de manera que el hueco quede lleno a todo lo ancho del espacio tanto como lo permita la longitud de los troncos;
- .6 los huecos transversales se deben ir llenando tongada por tongada a medida que se van cargando los troncos longitudinalmente;
- .7 las coces de los troncos se deben invertir alternativamente para nivelar la superficie de estiba, salvo cuando sea muy pronunciado el arrufo del doble fondo;
- .8 se debe evitar todo lo posible la colocación de los troncos en pirámide. Cuando la anchura del espacio de carga sea mayor que la anchura de la escotilla, se puede evitar la disposición piramidal deslizando los troncos cargados longitudinalmente hacia los lados de babor y estribor del espacio. Este deslizamiento de los troncos hacia los lados de babor y estribor debe comenzar en la fase inicial de la operación de carga (tras alcanzar una altura de unos 2 m por encima del doble fondo) y continuar durante toda la operación;
- .9 puede resultar necesario usar aparejos portátiles para manipular troncos pesados en zonas bajo cubierta apartadas de las escotillas. Los cuadernales, poleas y otros aparejos portátiles deben sujetarse a elementos debidamente reforzados, como cáncamos o chapas cáncamo, provistos a tal efecto. No obstante, si se utiliza este procedimiento, se tomarán medidas para evitar que se sobrecarque el aparejo;
- .10 el personal del buque debe mantener la guardia atentamente durante toda la operación de carga para cerciorarse de que no se produce ningún daño estructural. Debe repararse todo daño que afecte a la navegabilidad del buque;

- .11 cuando los troncos se estén estibando a una altura de 1 mt aproximadamente por debajo de la brazola transversal proel o popel se debe reducir el tamaño de las eslingadas de troncos para facilitar la estiba en la superficie restante; y
- .12 a la altura de las brazolas de escotilla la estiba de los troncos debe ser lo más compacta posible, utilizando todo el espacio disponible.
- **4** Después de embarcar la carga, se debe examinar detenidamente el buque a fin de determinar el estado de su estructura. Se deben sondear las sentinas para comprobar la integridad de estanquidad del buque.

5 Durante el viaje:

- .1 se debe comprobar con regularidad el ángulo de escora y el periodo de balance del buque en mar encrespada;
- .2 las cuñas, los desechos, los martillos y la bomba portátil, si se dispone de una, se deben guardar en un lugar de fácil acceso; y
- .3 el capitán o el oficial responsable debe cerciorarse de que no es peligroso entrar en el espacio cerrado de que se trate:
 - .3.1 asegurándose de que el espacio ha sido concienzudamente ventilado por medios naturales o mecánicos:
 - .3.2 haciendo, si se dispone de instrumentos adecuados para ello, que la atmósfera del espacio sea objeto de pruebas a distintos niveles para detectar insuficiencias de oxígeno y la presencia de vapores perjudiciales; y
 - .3.3 exigiendo que todas las personas que entren en el espacio lleven un aparato respiratorio autónomo si existen dudas en cuanto a la idoneidad de la ventilación o las pruebas previas.

Anexo 12

Seguridad de la estiba y sujeción de unidades de carga

1 INTRODUCCION

Una unidad de carga, a efectos de este anexo, consiste en cierto número de bultos:

- .1 colocados o apilados y sujetos con flejes, embalados con lámina retráctil u otros medios adecuados, sobre una bandeja de carga, como puede ser una paleta;
- .2 colocados dentro de un embalaje exterior de protección, como puede ser una caja paleta; o
- .3 atados juntos, de manera permanente, por medio de una eslinga.

Nota: Un solo bulto de gran tamaño, como puede ser una cisterna o un receptáculo portátil, un recipiente intermedio para gráneles o un contenedor, queda excluido de las recomendaciones de este anexo.

2 INFORMACION SOBRE LA CARGA

La información que se facilite al capitán debe incluir por lo menos:

- .1 el número total de unidades de carga y las mercancías que contengan;
- .2 el tipo de fleje o envoltura que se utilice;
- .3 las dimensiones de la unidad de carga en metros; y
- .4 la masa bruta de la unidad de carga en kilogramos.

- **3.1** Los espacios de carga del buque en que se vayan a estibar las unidades de carga deben estar limpios, secos y exentos de aceite y grasa.
 - 3.2 Las cubiertas, incluido el techo del doble fondo deben ser corridas en su totalidad.
- **3.3** Los espacios de carga deben ser preferentemente de forma rectangular, tanto horizontal como verticalmente. A los espacios de carga que tengan otra forma en las bodegas de proa o en los entrepuentes se les dará una forma rectangular, tanto transversal como longitudinalmente, utilizando para ello un maderaje adecuado (figura 1).

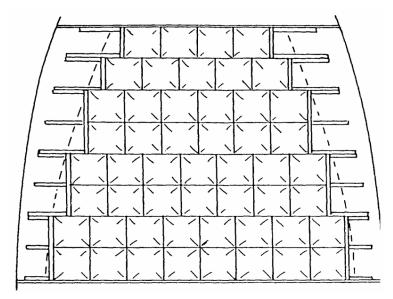


Figura 1 - Estiba y apuntalamiento de unidades de carga en un espacio de carga de sección decreciente (vista en planta)

4 ESTIBA

- **4.1** Las unidades de carga se deben estibar de modo que la sujeción, si resulta necesaria, se pueda efectuar por todos los lados de la carga.
- **4.2** Las unidades de carga se deben estibar de modo que no quede ningún hueco entre éstas y los costados del buque, a fin de evitar que se deformen.
- **4.3** Cuando haya que estibar las unidades de carga unas encima de otras, se debe prestar especial atención a la resistencia de las paletas y a la forma y el estado de las unidades de carga.
- **4.4** Se deben tomar precauciones cuando las unidades de carga se manipulen mecánicamente para evitar dañarlas.

5 SUJECION

Se deben tomar medidas para que la estiba se efectúe en bloque y no queden huecos entre las unidades de carga.

6 SUJECION CUANDO LA ESTIBA SE EFECTUA TRANSVERSALMENTE

- **6.1** Cuando las unidades de carga se estiben en un plan de bodega o un entrepuente, contra un mamparo de banda a banda, se deben colocar enjaretados o láminas de contrachapado verticalmente contra la pila de unidades de carga. Se deben colocar trincas de cable de banda a banda de forma que mantengan los enjaretados o láminas de contrachapado apretadas contra la carga.
- **6.2** Además, se pueden colocar trincas de cable a intervalos diversos desde el mamparo, por encima de la carga, hasta las trincas de cable horizontales con objeto de apretar aún más la carga.

7 ESTIBA EN UNA BANDA DE UN ESPACIO DE CARGA CON DOS LADOS LIBRES

Cuando las unidades de carga se estiben en el extremo de proa o de popa de un espacio de carga y pueda producirse un corrimiento en dos direcciones, se deben colocar verticalmente enjaretados o láminas de contrachapado contra las caras exteriores de la pila de unidades de carga. Se deben pasar trincas de cable alrededor de la carga desde la banda hasta el mamparo. Cuando los alambres puedan dañar las unidades de carga (especialmente en las esquinas), deben colocarse enjaretados o láminas de contrachapado de modo que no pueda producirse ningún daño en las esquinas.

8 ESTIBA CON TRES LADOS LIBRES

Cuando las unidades de carga se estiben contra los costados del buque de tal modo que pueda producirse un corrimiento por tres lados, deben colocarse verticalmente enjaretados o láminas de contrachapado contra las caras exteriores de la pila de unidades de carga. Se debe prestar especial atención a las esquinas de la carga con objeto de evitar que las trincas de cable dañen las unidades de carga. Se debe apretar el conjunto de la carga y los enjaretados o láminas de contrachapado mediante trincas de cable situadas a diferentes alturas (figura 2).

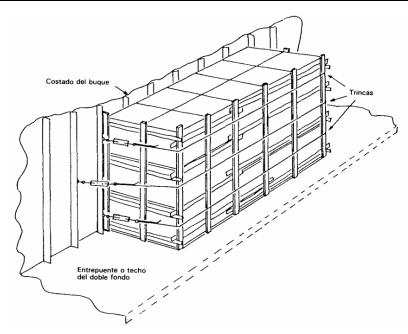


Figura 2 - Sujeción de unidades de carga estibadas contra el costado del buque

9 GENERALIDADES

- **9.1** En vez de enjaretados o láminas de contrachapado, se pueden utilizar candeleros o listones de aluminio de resistencia suficiente.
- **9.2** Durante la travesía deben inspeccionarse periódicamente las trincas de cable, apretando de nuevo los cables flojos si fuera necesario. En especial, se deben verificar y, si es necesario, apretar de nuevo las trincas de cable después de mal tiempo.

Apéndice 1

Estiba y sujeción seguras de unidades de carga y de otros elementos relacionados con la carga en buques que no sean portacontenedores celulares

Resolución A.489(XII) - aprobada 19 noviembre 1981

LA ASAMBLEA,

RECORDANDO el artículo 16 i) de la Convención constitutiva de la Organización Consultiva Marítima Intergubernamental,

RECONOCIENDO que es necesario perfeccionar las normas de estiba y sujeción de las unidades de carga y de otros elementos relacionados con la carga en buques que no sean portacontenedores celulares,

RECONOCIENDO ASIMISMO que hay que prestar atención especial a la estiba de la carga en unidades de carga y en vehículos,

ESTIMANDO que la aplicación universal de normas más rigurosas se vería muy facilitada si todas las unidades de carga, los vehículos y los otros elementos destinados a ser embarcados estuvieran provistos de medios que permitiesen utilizar equipo de sujeción amovible,

CONSIDERANDO que como mejor se lograría el perfeccionamiento universal de las normas sería mediante un concierto internacional.

- 1. APRUEBA las Directrices para la estiba y la sujeción seguras de unidades de carga y de otros elementos relacionados con la carga en buques que no sean portacontenedores celulares, cuyo texto figura en el anexo de la presente resolución;
- 2. RECOMIENDA a los gobiernos que den directrices para la estiba y la sujeción seguras de unidades de carga y de otros elementos relacionados con la carga en buques que no sean portacontenedores celulares, de conformidad con las directrices adjuntas, y especialmente que exijan a los buques de ese tipo con derecho a enarbolar el pabellón de sus respectivos Estados que lleven a bordo un manual de sujeción de la carga que responda a lo indicado en las directrices adjuntas.

En virtud de enmiendas al Convenio constitutivo de la Organización que entraron en vigor el 22 de mayo de 1982, el nombre de la Organización ha pasado a ser "Organización Marítima Internacional" (OMI).

Anexo

Directrices para la estiba y la sujeción seguras de unidades de carga y de otros elementos relacionados con la carga en buques que no sean portacontenedores celulares

- 1 Por *unidades de carga y otros elementos relacionados con la carga* se entienden en el presente contexto cargas llevadas sobre ruedas, contenedores, plataformas, paletas, tanques portátiles, unidades de carga envasada, vehículos, etc., y las partes del equipo de carga que pertenecen al buque y que no están fijadas a éste.
- 2 Las presentes directrices se aplicarán a la sujeción de unidades de carga o de otros elementos relacionados con la carga en las cubiertas expuestas o cerradas de los buques que no sean portacontenedores celulares ni buques especialmente proyectados y equipados para transportar contenedores. Su aplicación quedará siempre a la discreción del capitán.
- 3 Se observarán las partes aplicables del Código marítimo internacional de mercancías peligrosas y de la resolución A.288(VIII), relativas a la seguridad de la estiba y sujeción de los contenedores sobre la cubierta de buques que no estén especialmente proyectados y equipados para el transporte de contenedores.
- 4 Se observarán las instrucciones o las directrices especiales dadas por los expedidores para la manipulación y la estiba de determinadas unidades de carga.
- 5 Cuando ello sea razonable, las unidades de carga y los otros elementos relacionados con la carga estarán provistos de medios que permitan utilizar sin riesgo el equipo de sujeción amovible. Dichos medios serán lo suficientemente resistentes como para hacer frente a las fuerzas que puedan desarrollarse a bordo de los buques en mar gruesa.
- 6 Las unidades de carga y los otros elementos relacionados con la carga irán estibados de forma segura y sujetos según sea necesario para que no puedan volcarse ni resbalar. Se tendrán en cuenta las fuerzas y las aceleraciones a que puedan estar sometidas las unidades de carga y los otros elementos relacionados con la carga.
- 7 Los buques estarán provistos de dispositivos fijos de sujeción de la carga, así como de equipo de sujeción amovible. Se dispondrá de información acerca de las propiedades técnicas y de la utilización en la práctica de los diversos equipos de sujeción existentes a bordo.
- 8 Las Administraciones comprobarán que todo buque al que sean aplicables las directrices está provisto de un manual de sujeción de la carga adecuado para las características del buque y para el servicio a que esté destinado, teniendo en cuenta especialmente las dimensiones principales del buque, sus propiedades hidrostáticas y los estados del tiempo y de la mar que quepa esperar en la zona en que haya de operar, así como la composición de la carga.
- 9 Cuando haya motivos para sospechar que el contenido de cualquier unidad de carga ha sido embalado o estibado de manera poco satisfactoria, que un vehículo se halla en mal estado o que la propia unidad de carga no puede ir estibada ni sujeta a bordo con seguridad y que, por consiguiente, puede ser una fuente de peligro para el buque o su tripulación, no se aceptarán para embarque la unidad o el vehículo de que se trate.

Manual de sujeción de la carga

- 10 La información que debe figurar en el manual de sujeción de la carga abarcará, según proceda, los puntos siguientes:
 - .1 detalles de los dispositivos de sujeción fijos y ubicación de éstos (chapas cáncamo, cáncamos, pies de elefante, etc.);
 - .2 ubicación y estiba del equipo de sujeción amovible;
 - .3 detalles del equipo de sujeción amovible, con un inventario de los componentes provistos y la resistencia que tengan;
 - .4 ejemplos de utilización correcta del equipo de sujeción amovible con diversas unidades de carga, vehículos y otros elementos relacionados con la carga que se lleven en el buque;
 - .5 indicación de la variación de los aceleramientos transversales, longitudinales y verticales que quepa esperar en distintos emplazamientos a bordo del buque.

Apéndice 2

Contenedores y carga:

Manual de sujeción de la carga

MSC/Circ.385 - 8 enero 1985

- 1 De conformidad con la resolución A.489(XII), los buques que no sean portacontenedores celulares y que lleven unidades de transporte de carga y otras unidades deberían ir provistos de un Manual de sujeción de la carga.
- 2 Todo buque es único en lo que se refiere a sus características hidrostáticas y su comportamiento en distintas condiciones meteorológicas. La cantidad y naturaleza de la carga y el plan de estiba utilizado son también únicos para cada viaje, incluso tratándose del mismo buque. Las disposiciones del anexo del presente documento, que se incluirán en el Manual de sujeción de la carga, tienen sólo carácter general y su propósito es dar un esquema general normalizado del manual.
- 3 No se ha considerado conveniente ni necesario exigir el uso de un determinado tipo de equipo de sujeción de la carga, a pesar de la gran diversidad de tipos existentes.
- 4 Se ruega a las Administraciones que distribuyan las disposiciones del anexo a todos los interesados, con objeto de que se preparen cuanto antes los manuales de sujeción de la carga para que todos los buques mencionados en el párrafo 1 *supra* los lleven a bordo.

Anexo

Disposiciones que se incluirán en el Manual de sujeción de la carga que los buques han de llevar a bordo

1 PREAMBULO

- 1.1 De conformidad con la resolución A.489(XII) sobre la Seguridad de la estiba y sujeción de las unidades de transporte de carga y otras unidades en buques que no sean portacontenedores celulares, los gobiernos darán directrices para la seguridad de la estiba y sujeción de las unidades de transporte de carga y otras unidades en dichos buques y recomendarán llevar a bordo un Manual de sujeción de la carga que se ajuste a las directrices expuestas a continuación.
- 1.2 Estas directrices tienen por objeto establecer un planteamiento uniforme para la preparación de manuales de sujeción de la carga, su presentación y su contenido.
- 1.3 Todo buque es único por lo que se refiere a sus características hidrostáticas y su comportamiento con distintos estados del tiempo y de la mar. Es más, la cantidad de carga, la carga misma y el plan de estiba utilizado son únicos no sólo tratándose de buques diferentes, sino del mismo buque en viajes distintos.
- 1.4 No obstante, los dispositivos y el equipo de sujeción de la carga a bordo de los buques pueden y deben ser proyectados de conformidad con criterios comunes y con la misma información pertinente, cualquiera que sea el equipo de sujeción elegido. Sin embargo, es importante que éste responda a los criterios mínimos de funcionamiento y resistencia aplicables al buque y a su carga, Es asimismo importante que los oficiales de a bordo conozcan perfectamente el modo correcto de aplicar y utilizar dicho equipo, así como el orden de magnitud de las fuerzas que se ejercen y las limitaciones del equipo en cuestión. Los tripulantes y las demás personas empleadas en la sujeción de la carga recibirán igualmente instrucción en cuanto al modo correcto de aplicar y utilizar el equipo de sujeción de la carga a bordo del buque.

2 GENERALIDADES

- 2.1 En el Manual de sujeción de la carga debe figurar la siguiente información general:
 - .1 Se elabora el presente Manual de sujeción de la carga de conformidad con la resolución A.489(XII), Seguridad de la estiba y sujeción de las unidades de carga y otras unidades en buques que no sean portacontenedores celulares, aprobada por la Organización Marítima Internacional (OMI).
 - .2 En este Manual de sujeción de la carga se especifican los dispositivos y el equipo de sujeción provistos a bordo del buque para la correcta utilización de los mismos a efectos de sujeción de unidades de transporte de carga, vehículos y otras unidades, tomando como base las fuerzas dinámicas transversales, longitudinales y verticales que puedan ejercerse con estados del tiempo y de la mar desfavorables.

- .3 Es imperativo para la seguridad del buque y la protección de la carga y del personal que el equipo de sujeción sea utilizado como se especifica en este Manual de sujeción de la carga.
- .4 El equipo de sujeción de la carga deberá corresponder a la cantidad de carga que se vaya a transportar y a sus propiedades y, cuando sea necesario, se proveerá equipo adicional.
- .5 A bordo del buque habrá equipo de sujeción de la carga de reserva en cantidad suficiente.
- .6 Se facilitará información sobre la carga de trabajo admisible de cada componente específico del equipo de sujeción de la carga. Este se mantendrá en buen estado. Se renovarán los elementos cuya calidad se haya reducido como consecuencia del desgaste.

Capítulo 1: Detalles de los dispositivos fijos de sujeción de la carga y su ubicación

- 1.1 En este capítulo se indicará, y cuando sea necesario, se ilustrará el número, el tipo y la carga de trabajo de los accesorios fijos utilizados para sujetar las unidades de transporte de carga y vehículos. El Manual de sujeción de la carga incluirá como mínimo la siguiente información:
 - .1 medios de sujeción fijos instalados en mamparos, bulárcamas, candeleros, etc. (por ejemplo, chapas cáncamo, cáncamos, etc.), cuando los haya, y tipo y resistencia de los mismos;
 - .2 medios de sujeción fijos instalados sobre las cubiertas, (por ejemplo, accesorios de pies de elefante, accesorios provistos de orificios para sujetar contenedores, etc.), cuando los haya, y tipo y resistencia de los mismos; y
 - .3 medios de sujeción fijos instalados sobre los forros, cuando los haya, y tipo y resistencia de los mismos.

Capítulo 2: Emplazamiento y estiba del equipo de sujeción amovible

2.1 En este capítulo se indicará detalladamente el emplazamiento y los medios de estiba del equipo de sujeción amovible.

Capítulo 3: Detalles del equipo de sujeción amovible: inventario de los componentes provistos con indicación de su resistencia

- 3.1 En este capítulo se describirán las características de proyecto y funcionamiento del equipo de sujeción de la carga llevado a bordo del buque y se completará con planos y croquis adecuados. Podría ser asimismo útil incluir información como, por ejemplo, el fabricante y el tipo de equipo. Se incluirá, según proceda, la siguiente información:
 - .1 accesorios para apilamiento de contenedores y para acoplamiento de éstos, accesorios de puente, etc., su resistencia y utilización;
 - .2 cadenas, cables, barras, etc., su resistencia y utilización;
 - .3 tensores (tensores de rosca, tensores de cadenas, etc.), su resistencia y utilización;
 - .4 equipo de sujeción para automóviles y otros vehículos (tipo), su resistencia y utilización;
 - .5 caballetes y gatos, etc., para vehículos (remolques) cuando los haya, incluida su resistencia y utilización; y
 - .6 material antirresbaladizo (por ejemplo, tableros blandos) para unidades de transporte de carga que tengan baja resistencia de fricción.

Capítulo 4: Utilización correcta del equipo de sujeción amovible con diversas unidades de transporte de carga, vehículos y otras unidades transportadas a bordo del buque

- 4.1 En este capítulo se describirá la utilización correcta del equipo de sujeción amovible. Cuando sea necesario se completará el texto con planos y croquis adecuados para facilitar la comprensión y utilización correcta del equipo de sujeción de a bordo con diversas cargas y unidades de transporte de carga. En este capítulo se señalará que para ciertas unidades de transporte de carga y otras unidades de baja resistencia de fricción conviene colocar tableros blandos u otro material antirresbaladizo debajo de la carga para aumentar la fricción entre la cubierta y la carga.
 - 4.2 Las disposiciones contenidas en este capítulo se interpretarán como prescripciones mínimas.

- 4.3 En este capítulo se dará asimismo orientación en cuanto al método recomendado para estibar y sujetar contenedores, remolques y otros vehículos de carga, cargas paletizadas, unidades de carga y bultos (pulpa, rollos de papel, etc.), cargas muy pesadas, automóviles y otros vehículos.
 - 4.4 Cuando se utilice el equipo de sujeción amovible, el capitán tendrá en cuenta los elementos siguientes:
 - .1 duración de los viajes;
 - .2 zona geográfica del viaje;
 - .3 estados de la mar previsibles;
 - .4 dimensiones, proyecto y características del buque;
 - .5 fuerzas dinámicas en las condiciones meteorológicas previstas;
 - .6 tipos de unidades de transporte de carga y de vehículos que se van a transportar;
 - .7 plan de estiba previsto de las unidades de transporte de carga y vehículos; y
 - .8 masa de las unidades de carga y los vehículos.

Capítulo 5: Indicación de la magnitud de las fuerzas a que pueden estar sometidas las unidades de transporte de carga en distintos lugares del buque

- 5.1 Este capítulo incluirá la siguiente información:
 - .1 tablas o diagramas que presenten un esquema general de las aceleraciones que se puedan experimentar en diversos lugares del buque con estados de la mar desfavorables;
 - .2 ejemplos de las fuerzas que actúan sobre las unidades de transporte de carga típicas cuando se someten éstas a las aceleraciones mencionadas en el párrafo 5.1.1; y
 - .3 ejemplos del número y la resistencia de los dispositivos de sujeción amovibles necesarios para contrarrestar las fuerzas indicadas en el párrafo 5.1.2.
- 5.2 Cuando sea necesario se incluirán las fórmulas para calcular las fuerzas que puedan ejercerse sobre las unidades de carga y los vehículos.
- 5.3 Cuando se vaya a transportar un número limitado de tipos de unidades de transporte de carga, como, por ejemplo, remolques en un buque de transbordo rodado que efectúe viajes cortos, la información facilitada en este capítulo podrá reducirse al número y disposición de los elementos de sujeción de determinada resistencia necesarios en diversos emplazamientos de estiba y según las variaciones de la altura metacéntrica o del periodo de balance.

Apéndice 3

Factores que han de tenerse en cuenta al examinar la estiba y la sujeción seguras de unidades de carga y de vehículos en los buques

Resolución A.533(13) - aprobada el 17 de noviembre de 1983

LA ASAMBLEA,

RECORDANDO el artículo 16 j) del Convenio constitutivo de la Organización Marítima Internacional, artículo que trata de las funciones de la Asamblea por lo que respecta a las reglas de seguridad marítima,

RECORDANDO ADEMAS que en su 22° periodo de sesiones aprobó la resolución A.489(XII) relativa a la estiba y la sujeción seguras de unidades de carga y de otros elementos relacionados con la carga en buques que no fuesen portacontenedores celulares,

TENIENDO EN CUENTA las Directrices OMI/OIT sobre formación relativa a la arrumazón de la carga en contenedores,

RECONOCIENDO que el transporte de unidades de carga y de vehículos en buques de navegación marítima va en aumento.

RECONOCIENDO ADEMAS que la estiba y la sujeción de la carga en unidades de carga y en vehículos, se efectúan, en la mayoría de los casos, en los locales del expedidor o en las terminales de tierra, que la carga se lleva por carretera o ferrocarril a puertos antes de transportarla por mar y que no siempre la carga dispuesta en unidades de carga y en vehículos queda estibada o sujeta adecuadamente, de modo que su transporte por mar se efectué sin riesgos,

CONSCIENTE de que la carga adecuadamente estibada y sujeta en unidades de carga y en vehículos para ser transportada por carretera o ferrocarril, podría asimismo resistir en la mayoría de los casos las fuerzas a que es sometida en las fases del transporte correspondiente a la travesía marítima,

RECONOCIENDO la necesidad de que las unidades de carga y los vehículos que se presenten para el transporte marítimo vayan provistos de medios de sujeción satisfactorios que permitan sujetar dichos vehículos y unidades al buque; de que se disponga de medios para sujetar la carga en el interior de la unidad de carga o del vehículo a fin de facilitar su estiba y sujeción seguras, y de que los buques estén provistos de puntos de sujeción adecuados,

ESTIMANDO que la aplicación universal de normas más perfectas y de medios de sujeción mejorados quedaría facilitada al máximo si los factores que hay que tener en cuenta al examinar estas cuestiones son conocidos y estudiados por todas las partes que componen la cadena del transporte,

ESTIMANDO ADEMAS que como mejor se lograría este objetivo sería actuando a nivel internacional,

HABIENDO EXAMINADO la recomendación hecha por el Comité de Seguridad Marítima en su 48° periodo de sesiones.

- 1. INVITA a los gobiernos a que, teniendo en cuenta los factores que figuran en el anexo de la presente resolución, formulen recomendaciones para las diferentes partes que componen la cadena del transporte en sus respectivos países y que son responsables del transporte de unidades de carga y vehículos destinados a ser transportados por mar;
- 2. PIDE al Secretario General que señale estos factores a la atención de los Gobiernos Miembros y organizaciones internacionales responsables de la seguridad en el transporte por carretera, ferroviario y marítimo a fin de que sea posible tenerlos en cuenta en el proyecto y la construcción de unidades de carga y de vehículos de carga y en el proyecto y la construcción de los buques en que tales unidades y vehículos sean transportados.

Anexo

Factores que han de tenerse en cuenta al examinar la estiba y la sujeción seguras de unidades de carga y de vehículos en los buques

Los factores que han de tenerse en cuenta están concretamente relacionados con el embarque sin riesgos de unidades de carga, incluidos vehículos. Se trata de indicar a las diversas partes interesadas los aspectos y las características principales que es necesario estudiar al proyectar y utilizar el buque o al presentar las unidades de carga o los vehículos para tal embarque. Además, se espera que dichos factores facilitaran y fomentarán un mejor entendimiento de los problemas y las necesidades del capitán de los buques dedicados a estas actividades.

1 PARTES INTERESADAS

- 1.1 Los citados factores están principalmente destinados a servir de información y orientación a las partes enumeradas a continuación, las cuales, según se estima, tienen de algún modo relación con el proyecto y la utilización del buque, o bien con el proyecto, la presentación o la carga de las unidades de carga, incluidos vehículos. Dichas partes son:
 - .1 constructores de buques;
 - .2 propietarios de buques;
 - .3 capitanes de buques;
 - .4 autoridades portuarias;
 - .5 expedidores;
 - .6 transitarios;
 - .7 transportistas por carretera;
 - .8 contratistas de estibadores;
 - .9 fabricantes de unidades de carga y de vehículos de carga;
 - .10 aseguradores;
 - .11 empresas explotadoras de ferrocarriles; y
 - .12 arrumadores de mercancía en contenedores, en centros interiores de agrupamiento.

Por unidades de carga se entienden en este contexto cargas llevadas sobre ruedas o sobre orugas, contenedores, plataformas, tanques portátiles, vehículos y equipo móvil de manipulación de la carga que pertenezca al buque pero que no esté fijado a éste.

_

2 FACTORES GENERALES

- 2.1 Es de suma importancia asegurarse de que:
 - .1 las unidades de carga, incluidos los vehículos, destinadas al transporte de carga por vía marítima se encuentran estructuralmente en buen estado y llevan en número suficiente, puntos de sujeción, de la resistencia necesaria para que puedan quedar bien sujetas al buque. Además, los vehículos irán provistos de un sistema de frenado eficaz; y
 - .2 las unidades de carga y los vehículos llevan un número suficiente de puntos de sujeción que permitan sujetar la carga a la unidad de carga o al vehículo, de modo que éstos resistan las fuerzas, especialmente las transversales, que puedan originarse durante el transporte por vía marítima.

3 FACTORES QUE HAN DE TENER EN CUENTA EL PROPIETARIO Y EL CONSTRUCTOR DE BUQUES

- 3.1 El buque llevará un número suficiente de puntos de sujeción, de la resistencia necesaria, un número suficiente de componentes de equipo de sujeción de la carga, de la resistencia necesaria, y un manual de sujeción de la carga. Al considerar el número y la resistencia de los puntos de sujeción, los componentes del equipo de sujeción de la carga y la preparación del manual de sujeción de la carga, se tendrán en cuenta los factores siguientes:
 - .1 duración del viaje;
 - .2 zona geográfica del viaje;
 - .3 estados de la mar que quepa esperar;
 - .4 dimensiones, proyecto y características del buque;
 - .5 fuerzas dinámicas en condiciones meteorológicas desfavorables;
 - .6 tipos de unidades de carga y de vehículos que se vayan a transportar;
 - .7 plan de estiba previsto de las unidades de carga y los vehículos; y
 - .8 peso de las unidades de carga y de los vehículos.
- 3.2 En el Manual de sujeción de la carga habrá información sobre las características de los componentes de sujeción de la carga y su correcta utilización.
- 3.3 El equipo móvil de manipulación de la carga que pertenezca al buque pero que no esté fijado a éste irá provisto de puntos de sujeción adecuados.

4 FACTORES QUE HA DE TENER EN CUENTA EL CAPITAN

- 4.1 Para aceptar a fines de embarque unidades de carga y vehículos, el capitán, tras haber tenido en cuenta los factores enumerados en el párrafo 3.1 *supra*, se cerciorará de que:
 - .1 todas las cubiertas destinadas a la estiba de unidades de carga, incluidos los vehículos, están, en lo posible, limpias de aceite y grasa;
 - .2 las unidades de carga, incluidos los vehículos, se hallan evidentemente en buen estado y en condiciones apropiadas para el transporte por vía marítima, especialmente por lo que respecta a su sujeción;
 - .3 el buque lleva adecuada provisión de equipo de sujeción de la carga, al que se mantiene en buenas condiciones de servicio;
 - .4 las unidades de carga, incluidos los vehículos, van estibadas y sujetas al buque de modo adecuado; y
 - .5 en los casos posibles, la carga está adecuadamente estibada y sujeta en la unidad de carga o en el vehículo.
- 4.2 Además, los espacios de carga se inspeccionarán con regularidad para comprobar que la carga, las unidades de carga y los vehículos siguen sujetos de modo seguro durante todo el viaje.

5 FACTORES QUE HAN DE TENER EN CUENTA LOS EXPEDIDORES, LOS TRANSITARIOS, LOS TRANSPORTISTAS POR CARRETERA Y LOS CONTRATISTAS DE ESTIBADORES (Y, CUANDO PROCEDA, LAS AUTORIDADES PORTUARIAS)

5.1 Los expedidores o cualquier otra parte que intervenga en la presentación de las unidades de carga, incluidos los vehículos, a fines de embarque, han de hacerse cargo de que tales unidades pueden estar sometidas a fuerzas de gran magnitud, sobre todo en sentido transversal y especialmente en condiciones meteorológicas desfavorables. Es importante, pues, que tengan siempre conciencia de esa realidad y que se aseguren de que:

- .1 las unidades de carga, incluidos los vehículos, son apropiadas para el transporte por vía marítima a que se les destina;
- .2 las unidades de carga, incluidos los vehículos, llevan puntos de sujeción adecuados para sujetar la unidad de carga o el vehículo al buque y la carga a la unidad de carga o al vehículo;
- .3 la carga de la unidad de carga o del vehículo está adecuadamente estibada y sujeta para resistir las fuerzas que puedan originarse durante el transporte por vía marítima; y
- .4 en general, la unidad de carga o el vehículo está claramente marcado y provisto de documentación que indique su peso bruto y cualesquiera precauciones que pueda hacer falta observar durante el transporte por vía marítima.

Apéndice 4

Directrices sobre medios de sujeción para el transporte de vehículos de carretera en buques de transbordo rodado

Resolución A.581(14) - aprobada el 20 de noviembre de 1985

LA ASAMBLEA,

RECORDANDO el artículo 15 j) del Convenio constitutivo de la Organización Marítima Internacional, artículo que trata de las funciones de la Asamblea por lo que respecta a las reglas y directrices relativas a la seguridad marítima,

RECORDANDO TAMBIEN la Resolución A.489(XII), relativa a la estiba y sujeción seguras de unidades de carga y de otros elementos relacionados con la carga en buques que no sean portacontenedores celulares, y la circular MSC/Circ.385 de 8 de enero de 1985, en la que figuran las disposiciones que procede incluir en el manual de sujeción de la carga que los buques han de llevar a bordo,

TENIENDO PRESENTE la Resolución A.533(13), relativa a los factores que han de tenerse en cuenta al examinar la estiba y la sujeción seguras de unidades de carga y de vehículos en los buques,

TENIENDO EN CUENTA las directrices revisadas OMI/OIT sobre la arrumazón de la carga en contenedores y vehículos,

RECONOCIENDO que el transporte marítimo de vehículos de carretera en buques de transbordo rodado va en aumento,

RECONOCIENDO TAMBIEN que se han producido varios accidentes graves por la insuficiencia de medios de sujeción en los buques y en los vehículos de carretera,

RECONOCIENDO ADEMAS la necesidad de que la Organización establezca directrices sobre medios de sujeción a bordo de los buques de transbordo rodado y en los vehículos de carretera,

CONSCIENTE de que con buques adecuadamente proyectados y vehículos de carretera debidamente equipados, las trincas de resistencia suficiente podrán soportar las fuerzas a que estén sometidas durante el viaje,

CONSCIENTE ADEMAS de que ciertas prescripciones relativas a las defensas laterales, especialmente las colocadas muy abajo en los vehículos de carretera, obstaculizarán la debida sujeción de dichos vehículos a bordo de los buques de transbordo rodado y que habrá que adoptar medidas apropiadas para satisfacer ambos aspectos de la seguridad,

CREYENDO que la aplicación de directrices acrecentará la seguridad del transporte de los vehículos de carretera en los buques de transbordo rodado y que como mejor se puede lograr tal aplicación es actuando a nivel internacional,

HABIENDO EXAMINADO la recomendación hecha por el Comité de Seguridad Marítima en su 51° periodo de sesiones,

- 1. APRUEBA las Directrices sobre medios de sujeción para el transporte de vehículos de carretera en buques de transbordo rodado, que constituyen el anexo de la presente resolución;
- 2. INSTA a los Gobiernos Miembros a que implanten dichas directrices lo antes posible con respecto a los buques de transbordo rodado nuevos y a los vehículos nuevos y, en la medida de lo posible, con respecto a los vehículos existentes que puedan ser transportados en buques de transbordo rodado;
- 3. PIDE al Secretario General que señale estas directrices a la atención de los Gobiernos Miembros y de las organizaciones internacionales pertinentes que sean responsables de lo referente a seguridad en el proyecto y la construcción de los buques y de los vehículos de carretera, a fin de que puedan adoptar las medidas oportunas.

Anexo

Directrices sobre medios de sujeción para el transporte de vehículos de carretera en buques de transbordo rodado

PREAMBULO

A la vista de la experiencia adquirida en el transporte de vehículos de carretera en buques de transbordo rodado, se recomienda que se sigan las presentes directrices sobre sujeción de los vehículos de carretera a bordo de dichos buques. Al proyectar y construir los buques de transbordo rodado a los que son aplicables estas directrices, los propietarios de buques y los astilleros deberán tener particularmente en cuenta las secciones 4 y 6. Los fabricantes, los propietarios y las empresas explotadoras de los vehículos de carretera que puedan ser transportados a bordo de buques de transbordo rodado tendrán en cuenta particularmente las secciones 5 y 7.

1 ALCANCE

1.1 En las presentes directrices, relativas a la sujeción y la trinca de los vehículos de carretera a bordo de los buques de transbordo rodado, se hace exposición especialmente de los medios de sujeción que debe haber a bordo del buque y en el vehículo, y los métodos de sujeción que deben utilizarse.

2 AMBITO DE APLICACIÓN

- 2.1 Las presentes directrices se aplican a los buques de transbordo rodado que en el curso de viajes internacionales largos o cortos por aguas no abrigadas transporten vehículos de carretera con regularidad. Hacen referencia a:
 - .1 los vehículos de carretera que se definen en 3.2.1, 3.2.2, 3.2.3 y 3.2.5, cuya masa total máxima autorizada de vehículo y carga esté comprendida entre 3,5 y 40 toneladas; y
 - .2 los trenes de vehículos carreteros articulados que se definen en 3.2.4, cuya masa total máxima no exceda de 45 toneladas y que se puedan transportar en buques de transbordo rodado.
 - 2.2 Las presentes directrices no son aplicables a los autocares.
- 2.3 Con respecto a los vehículos de carretera cuyas características queden fuera de los parámetros generales correspondientes a los vehículos de ese género (en particular cuando se exceda de la altura normal del centro de gravedad) habrá que tener especialmente en cuenta la ubicación y el número de los puntos de sujeción.

3 DEFINICIONES

3.1 Buque de transbordo rodado: buque que tiene una o varias cubiertas, cerradas o expuestas, normalmente no subdivididas de ninguna manera y por lo general dispuestas a lo largo de toda la eslora del buque, en las cuales las mercancías (en bultos o a granel, transportadas en o sobre vehículos de carretera incluidos los vehículos tanque de carretera-, remolques, contenedores, paletas o tanques portátiles o desmontables, o en o sobre unidades de transporte de carga semejantes u otros receptáculos), pueden cargarse o descargarse normalmente en sentido horizontal.

- 3.2 En las presentes directrices la expresión vehículos de carretera* hace referencia a:
 - .1 *Vehículo comercial:* vehículo motor que, por su construcción y equipo, se utiliza principalmente para el transporte de mercancías. Puede también arrastrar un remolque.
 - .2 Semirremolque: remolque proyectado para ir acoplado a un vehículo tractor de semirremolques e imponer una parte considerable de su masa total al vehículo tractor.
 - .3 Tren de vehículos carreteros: combinación de vehículo motor y uno o varios remolques independientes enganchados entre sí mediante una barra de tracción; (a los efectos de la sección 5, cada uno de los elementos de un tren de vehículos carreteros se considera un vehículo separado).
 - .4 Tren de vehículos carreteros articulados: combinación de vehículo tractor de semirremolques y un semirremolque.
 - .5 Combinación de vehículos: vehículo motor acoplado a uno o varios vehículos remolcados; (a los efectos de la sección 5, cada uno de los elementos de una combinación de vehículos se considera un vehículo separado).

4 PUNTOS DE SUJECION EN LAS CUBIERTAS DE LOS BUQUES

- 4.1 El buque llevará un Manual de sujeción de la carga, de conformidad con la resolución A.489(XII), en el que figure la información que se cita y recomienda en el párrafo 10 del anexo de dicha resolución.
- 4.2 Las cubiertas del buque destinadas a llevar vehículos de carretera, tal como se definen éstos en 3.2 deberán ir provistas de puntos de sujeción. La disposición de éstos quedará a la discreción del propietario del buque, a condición de que para cada vehículo de carretera o elemento de una combinación de vehículos de carretera haya, como mínimo, la siguiente disposición de puntos de sujeción:
 - .1 La distancia entre puntos de sujeción en sentido longitudinal no excederá en general de 2,5 mts. No obstante, puede ser necesario disponer los puntos de sujeción de modo que a proa y a popa disten menos entre sí que en el centro del buque.
 - .2 El espaciamiento transversal de los puntos de sujeción no deberá ser inferior a 2,8 mts ni superior a 3 mts. No obstante, puede ser necesario disponer los puntos de sujeción de modo que a proa y a popa disten menos entre sí que en el centro del buque.
 - .3 La resistencia mínima sin deformación permanente de cada punto de sujeción será de 120 kN. Si el punto de sujeción está proyectado para que admita más de una trinca (un número "y" de trincas), la resistencia correspondiente no será inferior a y x 120 kN.
- 4.3 En los buques de transbordo rodado que transporten vehículos de carretera sólo ocasionalmente, para el espaciamiento entre puntos de sujeción y la resistencia de éstos habrá que tener en cuenta las precauciones especiales que puedan ser necesarias para estibar y sujetar sin riesgos los vehículos de carretera.

5 PUNTOS DE SUJECION EN LOS VEHICULOS DE CARRETERA

- 5.1 Los puntos de sujeción que se dispongan en los vehículos de carretera se proyectarán con miras a sujetar el vehículo al buque y tendrán una abertura que admita una sola trinca. El punto de sujeción y la abertura deberán permitir que la trinca se fije a la cubierta del buque en diversas direcciones.
- 5.2 De conformidad con lo dispuesto en 5.3, en cada costado del vehículo de carretera habrá el mismo número de puntos de sujeción, número que no será inferior a dos ni superior a seis.

-

Véase la Norma N° 3833 de la ISO (sometida a revisión).

Si se dispone más de una abertura en un punto de sujeción, cada abertura habrá de tener, para dicho punto, la resistencia que se indica en la tabla del párrafo 5.3.

5.3 A reserva de lo dispuesto en las notas 1, 2 y 3 dadas a continuación de la siguiente tabla, el número mínimo de puntos de sujeción y la resistencia mínima de éstos se ajustarán a lo indicado en la tabla:

Masa bruta de vehículo (MBV) en toneladas	Número mínimo de puntos de sujeción en cada costado del vehículo de carretera (n)	Resistencia mínima sin deformación permanente de cada punto de sujeción (kN)
3,5 t ≤ MBV ≤ 20 t	2	$MBV \times 10 \times 1,2$
20 t < MBV <u><</u> 30 t	3	*
30 t < MBV ≤ 40 t	4	n

^{*} n es el número total de puntos de sujeción en cada costado del vehículo de carretera.

- *Nota* 1: Respecto de los trenes de vehículos carreteros, la tabla se aplica a cada componente, es decir, al vehículo motor y a cada remolque, respectivamente.
- Nota 2: Los vehículos tractores de semirremolques están excluidos de esta tabla. Deberán ir provistos en la parte delantera del vehículo de dos puntos de sujeción, cuya resistencia sea suficiente para impedir el movimiento lateral de dicha parte, en la cual se podrán reemplazar los dos puntos de sujeción por un enganche de remolque.
- *Nota* 3: Si se utiliza un enganche de remolque para sujetar vehículos que no sean vehículos tractores de semirremolques, tal enganche no deberá reemplazar a los puntos de sujeción dispuestos a cada costado del vehículo en el número mínimo y con la resistencia mínima citados, ni ser sustituido por éstos.
 - 5.4 Todo punto de sujeción del vehículo irá señalado con una marca de color claramente visible.
- 5.5 Los puntos de sujeción de los vehículos estarán situados de modo que las trincas puedan proporcionar una retención eficaz del vehículo.
- 5.6 Los puntos de sujeción deberán poder transferir las fuerzas de las trincas al chasis del vehículo de carretera y no deberán hallarse nunca en parachoques ni en ejes, a menos que éstos sean de construcción especial y las fuerzas se transmitan directamente al chasis.
- 5.7 Los puntos de sujeción estarán situados de modo que las trincas puedan acoplarse fácilmente y con seguridad, particularmente cuando el vehículo esté equipado con defensas laterales.
- 5.8 El paso libre interior de la abertura de cada punto de sujeción no deberá ser inferior a 80 mm, pero no será necesario que dicha abertura sea circular.
- 5.9 Podrán considerarse otros posibles medios de sujeción, equivalentes o superiores, para vehículos respecto de los cuales las prescripciones que figuran en la tabla dada en 5.3 no sean adecuadas.

6 TRINCAS

- 6.1 Las trincas serán de cadena o responderán a cualquier otro diseño, y el material de que estén hechas habrá de tener características de resistencia y alargamiento equivalentes o superiores a las de la cadena de acero. La resistencia de las trincas, sin deformación permanente, no será inferior a 120 kN.
- 6.2 Las trincas estarán proyectadas y sujetas de manera que sea posible atesarlas si se aflojan. Cuando esto sea factible y necesario, serán examinadas a intervalos regulares durante el viaje y atesadas cada vez que haga falta.
- 6.3 Las trincas se fijarán a los puntos de sujeción con ganchos u otros dispositivos proyectados de modo que no puedan soltarse de la abertura de dichos puntos si las trincas se aflojan durante el viaje.
 - 6.4 Sólo una trinca se fijará en cada una de las aberturas de los puntos de sujeción del vehículo.
 - 6.5 Las trincas sólo se fijarán en los puntos de sujeción provistos con ese fin.
- 6.6 Las trincas se fijarán en los puntos de sujeción del vehículo de manera que el ángulo que forme la trinca con los planos horizontal y vertical esté comprendido preferentemente entre 30° y 60°.
- 6.7 Teniendo presentes las características del buque y las condiciones meteorológicas que quepa esperar durante el viaje proyectado, el capitán decidirá en cuanto al número de puntos de sujeción y de trincas que hayan de utilizarse en cada viaje.
- 6.8 Cuando existan dudas acerca de si un vehículo de carretera cumple con lo dispuesto en la tabla del párrafo 5.3, el capitán podrá, a discreción suya, cargar el vehículo a bordo teniendo en cuenta el estado aparente del vehículo, las condiciones meteorológicas y de la mar que quepa esperar durante el viaje proyectado y las demás circunstancias del caso.

7 ESTIBA

- 7.1 Según sean las zonas de operaciones, las condiciones meteorológicas predominantes y las características del buque, los vehículos de carretera podrán estibarse de manera que el chasis se mantenga tan inmóvil como sea posible impidiendo que la suspensión del vehículo tenga ningún juego libre. Puede lograrse esto, por ejemplo, comprimiendo las ballestas mediante la firme sujeción del vehículo a la cubierta, levantando con gato el chasis antes de sujetar el vehículo o descomprimiendo el aire de los sistemas de suspensión de aire comprimido.
- 7.2 Teniendo en cuenta las condiciones a que se hace referencia en 7.1 y el hecho de que los sistemas de suspensión de aire comprimido pueden perder aire, deberá disminuirse la presión del aire en todo vehículo equipado con uno de tales sistemas si el viaje es de más de 24 horas de duración. Si es factible, la presión del aire se reducirá también en viajes de menor duración. Si no se reduce esa presión, los vehículos deberán ir levantados con gato para impedir que se aflojen las trincas como consecuencia de alguna fuga que pueda producirse en el sistema durante el viaje.
- 7.3 Cuando se utilicen gatos para levantar un vehículo, el chasis deberá estar reforzado en los puntos en que se utilicen los gatos y la ubicación de tales puntos deberá estar claramente indicada.
- 7.4 Se prestará especial atención a la sujeción de los vehículos de carretera estibados en posiciones en que puedan estar expuestos a la acción de fuerzas adicionales. Cuando los vehículos vayan estibados en sentido transversal, se estudiarán especialmente las fuerzas que puedan derivarse de esa estiba.
 - 7.5 Deberán calzarse las ruedas a fin de proporcionar seguridad adicional en condiciones desfavorables.
 - 7.6 Los vehículos con motor diesel no se dejarán con una marcha embragada durante el viaje.
- 7.7 Los vehículos proyectados para el transporte de cargas que puedan afectar desfavorablemente a su estabilidad, como carne en piezas colgadas, llevarán integrados en su proyecto medios neutralizadores del sistema de suspensión.
 - 7.8 La estiba se dispondrá de conformidad con lo siguiente:
 - .1 se aplicarán y asegurarán los frenos de estacionamiento de cada vehículo o de cada elemento de una combinación de vehículos;
 - .2 los semirremolques, por la índole de su proyecto, no deberán descansar sobre sus soportes durante el transporte marítimo a menos que tales soportes estén especialmente proyectados para tal fin y marcados al efecto. Un semirremolque desacoplado tendrá que descansar en un caballete o un dispositivo semejante, colocado en la zona inmediata a la placa de acoplamiento, de modo que no se restrinja la conexión del rodete con el eje de articulación. Los proyectistas de semirremolques deberán considerar el espacio y los refuerzos requeridos y las zonas elegidas tendrán que ir marcadas claramente.

Apéndice 5

Contenedores y carga:

Entrada en espacios cerrados

MSC/Circ.487 - 6 junio 1988

- 1 El Comité de Seguridad Marítima desea nuevamente llamar la atención acerca de los accidentes mortales que continuamente y en número elevado y alarmante se vienen produciendo debido a la entrada del personal en espacios cerrados sin tomar las precauciones adecuadas.
- 2 También desea recordar a las Administraciones y a los propietarios de buques que la nueva edición de 1987 del Código de prácticas de seguridad relativas a las cargas sólidas a granel incluye una sección 3 revisada, "Seguridad del personal y del buque", y un nuevo apéndice F en el que figura una lista de comprobaciones de seguridad, de uso práctico para el personal de a bordo que haya de intervenir directamente en trabajos que entrañen tales peligros.

* La última edición del Código de prácticas de seguridad relativas a las cargas sólidas a granel se publicó en 1991 junto con la enmienda 26-91 al Código IMDG en forma de páginas de sustitución - número de venta: IMO-219S. La edición de 1991 en inglés está disponible en forma de libro - número de venta: IMO-260E.

3 El Comité ha decidido asimismo que se dé toda la publicidad posible a la existencia de esos peligros relacionados con la entrada en espacios cerrados y que se confeccione un modelo de cartel sobre este asunto. Al dorso figura el modelo de cartel recomendado. Se invita a los gobiernos y demás partes interesadas a que lo reproduzcan en su idioma nacional para exponerlo en las zonas de alojamiento u otros lugares a bordo de los buques, según proceda.

DIARIO OFICIAL

Cartel recomendado para que se muestre a bordo de los buques en los espacios de alojamiento o en otros lugares, segun proceda

ACUERDO por el que se da a conocer el Código Internacional de Estabilidad sin Avería, 2008 (Código IS 2008).

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Relaciones Exteriores.

JOSÉ ANTONIO MEADE KURIBREÑA y GERARDO RUIZ ESPARZA, Secretarios de Relaciones Exteriores y de Comunicaciones y Transportes, respectivamente, con fundamento en lo dispuesto por los artículos 2 fracción I, 12, 14, 26, 28 fracciones I y XII y 36 fracciones I, XIV, XVI, XVII, XXVI y XXVII de la Ley Orgánica de la Administración Pública Federal; 4 de la Ley Federal de Procedimiento Administrativo; 2 y 3 fracciones III, IV y VI de la Ley del Diario Oficial de la Federación y Gacetas Gubernamentales; 7 del Reglamento Interior de la Secretaría de Relaciones Exteriores, y 4 párrafo primero y 5 del Reglamento Interior de la Secretaría de Comunicaciones y Transportes, y

CONSIDERANDO

Que el Convenio Internacional para la Seguridad de la Vida Humana en el Mar, 1974 (Convenio SOLAS/74), fue aprobado por la Cámara de Senadores del H. Congreso de la Unión, el 27 de diciembre de 1976, según Decreto publicado en el Diario Oficial de la Federación del 20 de enero de 1977;

Que el Gobierno de los Estados Unidos Mexicanos depositó su instrumento de adhesión al Convenio SOLAS/74, ante el Secretario General de la entonces Organización Consultiva Marítima Intergubernamental (ahora Organización Marítima Internacional –OMI-), el 28 de marzo de 1977;

Que el Convenio SOLAS/74 fue publicado en el Diario Oficial de la Federación del 9 de mayo de 1977;

Que el Convenio SOLAS/74 tiene como finalidad normar, al más alto nivel, las condiciones que deben cumplir los buques para preservar la seguridad de la vida humana en el mar como son: construcción; compartimentado y estabilidad; instalaciones de máquinas e instalaciones eléctricas; prevención, detección y extinción de incendios; dispositivos de salvamento; radiocomunicaciones; seguridad de la navegación; transporte de carga; transporte de mercancías peligrosas; buques nucleares; gestión de la seguridad operacional de los buques; medidas de seguridad aplicables a las naves de gran velocidad; medidas especiales para incrementar la seguridad marítima y las medidas de seguridad adicionales aplicables a los buques graneleros, que sin lugar a duda contribuyen de manera significativa para que nuestros buques sean más seguros, eficientes y competitivos a nivel internacional;

Que el Protocolo de 1988 relativo al Convenio Internacional sobre Líneas de Carga, 1966 (Protocolo de Líneas de Carga, 1988) fue aprobado por la Cámara de Senadores del H. Congreso de la Unión el 13 de diciembre de 1993, según Decreto publicado en el Diario Oficial de la Federación del 17 de enero de 1994;

Que el Gobierno de los Estados Unidos Mexicanos depositó su instrumento de adhesión al Protocolo de Líneas de Carga, 1988, ante el Secretario General de la OMI, el 13 de mayo de 1994;

Que el Protocolo de Líneas de Carga, 1988 fue publicado en el Diario Oficial de la Federación del 6 de febrero de 1995:

Que el Protocolo de Líneas de Carga, 1988 tiene como finalidad establecer principios y reglas uniformes en lo que respecta a los límites autorizados para la inmersión de los buques que realizan viajes internacionales, en atención a la necesidad de garantizar la seguridad de la vida humana y de los bienes, en la mar;

Que el 4 de diciembre de 2008, mediante la Resolución MSC.267(85), el Comité de Seguridad Marítima (MSC) adoptó el Código Internacional de Estabilidad sin Avería, 2008 (Código IS 2008);

Que el Código IS 2008 tiene la finalidad de proporcionar criterios de estabilidad, tanto de carácter obligatorio como de recomendación, y otras medidas que garanticen la seguridad operacional de todos los buques a fin de reducir al mínimo los riesgos para los mismos, el personal de a bordo y el medio ambiente;

Que es necesario que el Código IS 2008 derivado del Convenio SOLAS/74 y del Protocolo de Líneas de Carga, 1988 sea publicado en el Diario Oficial de la Federación, a fin de darlo a conocer a las instancias públicas y privadas competentes en el cumplimiento de tales disposiciones;

Que la Secretaría de Relaciones Exteriores es la Dependencia responsable de dar seguimiento a los diversos tratados internacionales de los que el Gobierno de los Estados Unidos Mexicanos forma parte, y que la Secretaría de Comunicaciones y Transportes es la Dependencia encargada de regular, promover y organizar la marina mercante; regular las comunicaciones y transportes por agua, e inspeccionar los servicios de la marina mercante, hemos tenido a bien expedir el siguiente:

ACUERDO POR EL QUE SE DA A CONOCER EL CÓDIGO INTERNACIONAL DE ESTABILIDAD SIN AVERÍA, 2008

(CÓDIGO IS 2008)

ARTÍCULO PRIMERO.- El presente Acuerdo tiene por objeto dar a conocer el Código Internacional de Estabilidad sin Avería, 2008 (Código IS 2008), del Convenio SOLAS/74, Enmendado y del Protocolo de Líneas de Carga, 1988.

TRANSITORIO

ÚNICO.- El presente Acuerdo entrará en vigor al día siguiente de su publicación en el Diario Oficial de la Federación.

Firmado en la Ciudad de México, a los veintinueve días del mes de mayo de dos mil trece.- El Secretario de Relaciones Exteriores, **José Antonio Meade Kuribreña**.- Rúbrica.- El Secretario de Comunicaciones y Transportes, **Gerardo Ruiz Esparza**.- Rúbrica.

RESOLUCIÓN MSC.267(85)

(Adoptada el 4 de diciembre de 2008)

ADOPCIÓN DEL CÓDIGO INTERNACIONAL DE ESTABILIDAD SIN AVERÍA, 2008 (CÓDIGO IS 2008)

EL COMITÉ DE SEGURIDAD MARÍTIMA,

RECORDANDO el artículo 28 b) del Convenio constitutivo de la Organización Marítima Internacional, artículo que trata de las funciones del Comité,

RECORDANDO TAMBIÉN la resolución A.749(18): "Código de estabilidad sin avería para todos los tipos de buques regidos por los instrumentos de la OMI", enmendada mediante la resolución MSC.75(69),

RECONOCIENDO la necesidad de actualizar dicho Código y la importancia de establecer prescripciones sobre estabilidad sin avería obligatorias a escala internacional,

TOMANDO NOTA de las resoluciones MSC.269(85) y MSC.270(85), mediante las cuales adoptó, entre otras cosas, enmiendas al Convenio internacional para la seguridad de la vida humana en el mar (SOLAS), 1974, enmendado (en adelante "el Convenio SOLAS 1974") y al Protocolo de 1988 relativo al Convenio internacional de líneas de carga, 1966 (en adelante "el Protocolo de Líneas de Carga 1988"), a fin de conferir carácter obligatorio en virtud del Convenio SOLAS 1974 y el Protocolo de Líneas de Carga 1988 a la introducción y las disposiciones de la parte A del Código internacional de estabilidad sin avería, 2008,

HABIENDO EXAMINADO, en su 85° periodo de sesiones, el texto propuesto para el Código internacional de estabilidad sin avería, 2008,

- 1. ADOPTA el Código internacional de estabilidad sin avería, 2008 (Código IS 2008), cuyo texto figura en el anexo de la presente resolución;
- 2. INVITA a los Gobiernos Contratantes del Convenio SOLAS 1974 y a las Partes en el Protocolo de Líneas de Carga 1988 a que tomen nota de que el Código IS 2008 entrará en vigor el 1 de julio de 2010, una vez que entren en vigor las correspondientes enmiendas al Convenio SOLAS 1974 y al Protocolo de Líneas de Carga 1988;
- 3. PIDE al Secretario General que remita copias certificadas de la presente resolución y del texto del Código IS 2008, que figura en el anexo, a todos los Gobiernos Contratantes del Convenio SOLAS 1974 y a las Partes en el Protocolo de Líneas de Carga 1988;
- 4. PIDE ASIMISMO al Secretario General que remita copias de la presente resolución y de su anexo a todos los Miembros de la Organización que no sean Gobiernos Contratantes del Convenio SOLAS 1974 o Partes en el Protocolo de Líneas de Carga 1988;
- 5. RECOMIENDA a los Gobiernos interesados que utilicen las disposiciones de la parte B del Código IS 2008, que tienen carácter de recomendación, como base para establecer las correspondientes normas de seguridad, a menos que sus prescripciones nacionales sobre estabilidad ofrezcan un grado de seguridad equivalente.

ANEXO

CÓDIGO INTERNACIONAL DE ESTABILIDAD SIN AVERÍA, 2008 (CÓDIGO IS 2008)

ÍNDICE

PREÁMBULO
INTRODUCCIÓN

1	Fir	٦al	hi	ചപ

2 Definiciones

PARTE A: CRITERIOS OBLIGATORIOS

Capítulo 1: Cuestiones generales

- 1.1 Ámbito de aplicación
- 1.2 Fenómenos de estabilidad dinámica con olas

Capítulo 2: Criterios generales

- 2.1 Cuestiones generales
- 2.2 Criterios relativos a las propiedades de la curva de brazos adrizantes
- 2.3 Criterio de viento y balance intensos (criterio meteorológico)

Capítulo 3: Criterios especiales para determinados tipos de buques

- 3.1 Buques de pasaje
- 3.2 Petroleros de peso muerto igual o superior a 5000 toneladas
- 3.3 Buques de carga que transporten cubertadas de madera
- 3.4 Buques de carga que transporten grano a granel
- 3.5 Naves de gran velocidad

PARTE B: RECOMENDACIONES APLICABLES A DETERMINADOS TIPOS DE BUQUES Y OTRAS DIRECTRICES

Capítulo 1: Cuestiones generales

- 1.1 Finalidad
- 1.2 Ámbito de aplicación

Capítulo 2: Criterios recomendados de proyecto para determinados tipos de buques

- 2.1 Buques pesqueros
- 2.2 Pontones
- 2.3 Buques portacontenedores de eslora superior a 100 m
- 2.4 Buques de suministro mar adentro
- 2.5 Buques para fines especiales
- 2.6 Unidades móviles de perforación mar adentro

Capítulo 3: Orientaciones para elaborar la información sobre estabilidad

- 3.1 Efecto de las superficies libres de los líquidos en los tanques
- 3.2 Lastre permanente
- 3.3 Evaluación del cumplimiento de los criterios de estabilidad
- 3.4 Condiciones normales de carga que deben examinarse
- 3.5 Cálculo de las curvas de estabilidad
- 3.6 Cuadernillo de estabilidad
- 3.7 Medidas operacionales para buques que transporten cubertadas de madera
- 3.8 Cuadernillos de instrucciones para determinados buques

Capítulo 4: Cálculos de estabilidad efectuados por los instrumentos de estabilidad

4.1 Instrumentos de estabilidad

(Segunda Sección)

Capítulo 5: Disposiciones operacionales contra la zozobra 5.1 Precauciones generales contra la zozobra 5.2 Precauciones operacionales con mal tiempo 5.3 Manejo del buque con mal tiempo Capítulo 6: Consideraciones sobre el engelamiento 6.1 Cuestiones generales 6.2 Buques de carga que transporten cubertadas de madera 6.3 Buques pesqueros 6.4 Buques de suministro mar adentro de eslora comprendida entre 24 y 100m Capítulo 7: Consideraciones sobre la integridad de estanquidad y la estanquidad a la intemperie 7.1 Escotillas 7.2 Aberturas en los espacios de máquinas 7.3 Puertas 7.4 Portas de carga y aberturas similares 7.5 Portillos, imbornales, tomas y descargas 7.6 Otras aberturas de cubierta 7.7 Ventiladores, tubos de aireación y dispositivos de sondeo 7.8 Portas de desagüe 7.9 Cuestiones diversas Capítulo 8: Determinación de los parámetros de desplazamiento en rosca 8.1 Ámbito de aplicación 8.2 Preparativos para la prueba de estabilidad 8.3 Planos necesarios 8.4 Procedimiento de prueba 8.5 Prueba de estabilidad para las unidades móviles de perforación mar adentro 8.6 Prueba de estabilidad para los pontones Anexo 1: Orientación detallada para realizar una prueba de estabilidad 1 Introducción 2 Preparativos para la prueba de estabilidad 2.1 Superficie libre y contenido de los tanques 2.2 Medios de amarre 2.3 Pesos de prueba 2.4 Péndulos 2.5 Tubos en U 2.6 Inclinómetros 3 Equipo necesario 4 Procedimiento de prueba 4.1 Revista inicial y reconocimiento 4.2 Lecturas de francobordo/calado 4.3 Prueba de estabilidad

Anexo 2: Recomendaciones para que los patrones de buques pesqueros se aseguren de la resistencia del buque en condiciones de formación de hielo

- 1 Antes de hacerse a la mar
- 2 En el mar
- 3 Durante la formación de hielo
- 4 Lista de equipo y herramientas de mano

PREÁMBULO

- 1 El presente código ha sido elaborado con objeto de ofrecer en un solo documento las disposiciones obligatorias de la Introducción y la parte A, junto con las disposiciones recomendadas de la parte B sobre estabilidad sin avería, basadas primordialmente en los actuales instrumentos de la OMI. En los casos en que las recomendaciones del presente código difieran aparentemente de las de otros códigos de la OMI, prevalecerá lo dispuesto en dichos códigos. A fin de que sea lo más completo posible y para conveniencia del usuario, el presente código incluye también disposiciones que proceden de instrumentos obligatorios de la OMI.
- 2 El presente código está inspirado en los conceptos más recientes del sector disponibles en el momento de su elaboración, teniendo en cuenta sólidos principios de proyecto e ingeniería y la experiencia adquirida en la explotación de estos buques. Por otra parte, la técnica de proyecto de los buques modernos evoluciona con rapidez, por lo que el código, en lugar de permanecer estático, debería ser objeto de la evaluación y revisión necesarias. Con tal finalidad, la Organización examinará regularmente el presente código teniendo presentes tanto la experiencia como las innovaciones que se produzcan.
- 3 Se tuvieron en cuenta una serie de fenómenos, tales como la condición de buque apagado, la acción del viento en buques con mucha superficie expuesta, las características de balance, mala mar, etc., basados en la tecnología más avanzada y en los conocimientos más recientes del sector en el momento en que se elaboraba el presente código.
- 4 Se ha reconocido que, dada la gran variedad de tipos y tamaños de los buques, así como la diversidad de condiciones operacionales y ambientales, no era posible resolver de manera general todos los problemas de seguridad que desde el punto de vista de la estabilidad se plantean para impedir los accidentes. En particular, la seguridad del buque en mar encrespada encierra fenómenos hidrodinámicos complejos que hasta el momento no se han investigado y comprendido adecuadamente. El buque en mar encrespada ha de concebirse como un sistema dinámico en el que las relaciones que se establecen entre el propio buque y las condiciones ambientales, como por ejemplo la influencia del oleaje y el viento, constituyen elementos sumamente importantes. La elaboración de criterios de estabilidad basados en aspectos hidrodinámicos y en el análisis de la estabilidad del buque en mar encrespada plantea complejos problemas que será preciso continuar investigando.

INTRODUCCIÓN

1 Finalidad

- 1.1 La finalidad del presente código es proporcionar criterios de estabilidad, tanto de carácter obligatorio como de recomendación, y otras medidas que garanticen la seguridad operacional de todos los buques a fin de reducir al mínimo los riesgos para los mismos, el personal de a bordo y el medio ambiente. En esta introducción y en la parte A del presente código se recogen los criterios obligatorios, mientras que la parte B incluye las recomendaciones y otras directrices.
- 1.2 Salvo indicación en otro sentido, el presente código contiene criterios de estabilidad sin avería para los siguientes tipos de buques y otros vehículos marinos de eslora igual o superior a 24m:
 - .1 buques de carga;
 - .2 buques de carga que transporten cubertadas de madera;
 - .3 buques de pasaje;
 - .4 buques pesqueros;
 - .5 buques para fines especiales;
 - .6 buques de suministro mar adentro;
 - .7 unidades móviles de perforación mar adentro;
 - .8 pontones; y
 - .9 buques de carga que transporten contenedores en cubierta y buques portacontenedores.
- 1.3 Las Administraciones podrán imponer prescripciones adicionales sobre aspectos relacionados con el proyecto de buques de carácter innovador o de buques que no estén regidos por el presente código.

2 Definiciones

A los efectos del presente código regirán las definiciones que se indican a continuación. Por lo que respecta a los términos utilizados en el presente código pero no definidos en él, se emplearán las definiciones que figuran en el Convenio SOLAS 1974, enmendado.

- 2.1 Administración: Gobierno del Estado cuyo pabellón tenga derecho a enarbolar el buque.
- 2.2 Buque de pasaje: buque que transporte más de 12 pasajeros, tal como se define en la regla I/2 del Convenio SOLAS 1974, en su forma enmendada.
- 2.3 Buque de carga: todo buque que no sea un buque de pasaje, un buque de guerra o un buque para el transporte de tropas, un buque de propulsión no mecánica, un buque de madera de construcción primitiva, un buque pesquero o una unidad de perforación mar adentro.
- 2.4 Petrolero: todo buque construido o adaptado para transportar principalmente hidrocarburos a granel en sus espacios de carga; este término comprende los buques de carga combinados y los "buques tanque quimiqueros", tal como se definen estos últimos en el Anexo II del Convenio MARPOL, cuando estén transportando cargamento total o parcial de hidrocarburos a granel.
- 2.4.1 *Buque de carga combinado:* todo petrolero proyectado para transportar indistintamente hidrocarburos o cargamentos sólidos a granel.
 - 2.4.2 Petrolero para crudos: petrolero destinado a operar en el transporte de crudos.
- 2.4.3 *Petrolero para productos petroliferos:* petrolero destinado a operar en el transporte de hidrocarburos que no sean crudos.
- 2.5 Buque pesquero: buque utilizado para la captura de peces, ballenas, focas, morsas u otras especies vivas de la fauna y flora marinas.
- 2.6 Buque para fines especiales: rige la misma definición que la del Código de seguridad aplicable a los buques para fines especiales 2008 (resolución MSC.266(84)).
- 2.7 Buque de suministro mar adentro: buque dedicado principalmente a llevar pertrechos, materiales y equipo a las instalaciones mar adentro, proyectado en su parte proel con superestructuras que serán los alojamientos y el puente, y en su parte popel con una cubierta de carga, expuesta a la intemperie, para la manipulación de la carga en la mar.
- 2.8 Unidad móvil de perforación mar adentro o unidad: toda nave apta para realizar operaciones de perforación destinadas a la exploración o a la explotación de los recursos naturales del subsuelo de los fondos marinos, tales como hidrocarburos líquidos o gaseosos, azufre o sal.
- 2.8.1 *Unidad estabilizada por columnas:* toda unidad cuya cubierta principal está conectada a la obra viva o a los pies de soporte por medio de columnas o cajones.
- 2.8.2 *Unidad de superficie:* toda unidad con formas de buque o de gabarra y casco de desplazamiento, ya sea el casco único o múltiple, destinada a operar a flote.
- 2.8.3 *Unidad autoelevadora:* toda unidad dotada de patas móviles, con capacidad para elevar la plataforma por encima de la superficie del mar.
- 2.8.4 Estado ribereño: el Gobierno del Estado que ejerza un control administrativo sobre las operaciones de perforación de la unidad.
- 2.8.5 Modalidad operacional: la condición o forma, en que pueda operar o funcionar una unidad, hallándose ésta en su lugar de trabajo o en tránsito. Entre las modalidades operacionales de una unidad figuran las condiciones siguientes:
 - condiciones operacionales: las que se dan cuando una unidad se halla en su lugar de trabajo para efectuar operaciones de perforación y las cargas ambientales y operacionales combinadas están dentro de los límites de proyecto establecidos para dichas operaciones. La unidad puede estar a flote o apoyada sobre el fondo del mar, según sea el caso;
 - .2 condiciones de temporal muy duro: aquellas en que una unidad puede estar sometida a la máxima carga ambiental para la que fue proyectada. Se supone que las operaciones de perforación quedan interrumpidas debido a la rigurosidad de dicha carga ambiental. La unidad puede estar a flote o apoyada sobre el fondo del mar, según sea el caso; y
 - .3 condiciones de tránsito: las que se dan cuando una unidad se está desplazando de un punto geográfico a otro.

2.9 Nave de gran velocidad (NGV): ¹ nave capaz de desarrollar una velocidad máxima, en metros por segundo (m/s), igual o superior a:

donde: ∇ = desplazamiento correspondiente a la flotación de proyecto (m³).

- 2.10 Buque portacontenedores: buque dedicado principalmente al transporte de contenedores marítimos.
- 2.11 Francobordo: distancia entre la línea de carga asignada y la cubierta de francobordo.²
- 2.12 Eslora: se toma como eslora el 96 % de la eslora total en una flotación situada al 85 % del puntal mínimo de trazado medido desde el canto superior de la quilla, o la eslora tomada en esa línea de flotación medida desde el canto exterior de la roda hasta el eje de la mecha del timón en dicha flotación, si ésta fuera mayor. En los buques proyectados con quilla inclinada, la flotación en que se medirá la eslora será paralela a la flotación de proyecto.
- 2.13 *Manga de trazado:* manga máxima del buque medida en el centro del mismo hasta la línea de trazado de la cuaderna, en los buques de forro metálico, o hasta la superficie exterior del casco, en los buques con forro de otros materiales.
- 2.14 *Puntal de trazado:* distancia vertical medida desde el canto alto de la quilla hasta el canto alto del bao de la cubierta de francobordo en el costado. En los buques de madera y de construcción mixta, esta distancia se medirá desde el canto inferior del alefriz. Cuando la forma de la parte inferior de la cuaderna maestra sea cóncava o cuando existan tracas de aparadura de gran espesor, esta distancia se medirá desde el punto en que la línea del plano del fondo, prolongada hacia el interior, corte el costado de la quilla. En los buques que tengan trancaniles redondeados, el puntal de trazado se medirá hasta el punto de intersección de la línea de trazado de la cubierta con la de las planchas de costado del forro, prolongando las líneas como si el trancanil fuera de forma angular. Cuando la cubierta de francobordo tenga un escalonamiento y la parte elevada de la cubierta pase por encima del punto en el que ha de determinarse el puntal de trazado, éste se medirá hasta una superficie de referencia formada prolongando la parte más baja de la cubierta paralelamente a la parte más elevada.
- 2.15 Viaje próximo a la costa: viaje que se realiza en las cercanías de la costa de un Estado, tal como la defina la Administración de dicho Estado.
 - 2.16 Normalmente se considera que un pontón:
 - .1 no va autopropulsado;
 - .2 no lleva tripulación;
 - .3 transporta sólo carga en cubierta;
 - .4 su coeficiente de bloque es igual o superior a 0,9;
 - .5 su relación manga/puntal es superior a 3; y
 - .6 no tiene escotillas en cubierta, salvo pequeños registros cerrados por tapas y juntas.
- 2.17 *Madera*: madera aserrada o rollizos, trozas, troncos, postes, madera para pasta papelera y cualquier otro tipo de madera suelta o liada. Este término no incluye la pulpa de madera ni cargas análogas.
- 2.18 *Cubertada de madera*.³ carga de madera transportada en una zona expuesta de una cubierta de francobordo o de la superestructura. Esta expresión no incluye la pulpa de madera ni cargas análogas.
- 2.19 Línea de carga para el transporte de madera: línea de carga especial asignada a los buques que cumplen determinadas condiciones de construcción estipuladas en el Convenio internacional sobre líneas de carga, y que se utiliza cuando la carga cumple las condiciones de estiba y sujeción establecidas en el Código de prácticas de seguridad para buques que transporten cubertadas de madera, 1991 (resolución A.715(17)).

El Código para naves de gran velocidad, 2000 (Código NGV 2000) es el resultado de una revisión a fondo del Código para naves de gran velocidad, 1994 (Código NGV 1994), que esta basado en el anterior Código de seguridad para naves de sustentación dinámica (Código DSC), adoptado por la OMI en 1977, y en el que se reconocía que los grados de seguridad podrían mejorarse considerablemente mediante una infraestructura asociada al servicio regular de una ruta determinada, mientras que con los principios de seguridad aplicables a los buques tradicionales se pretende que los buques sean autosuficientes y lleven a bordo todo el equipo de emergencia necesario.

A efectos de la aplicación de los capítulos I y II del Anexo I del Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988 en su forma enmendada, a los buques portacontenedores sin tapas de escotilla, la "cubierta de francobordo" es la que estipula el Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988 en su forma enmendada, suponiendo que en las brazolas de las escotillas de carga hay instaladas tapas de escotilla.

Véase la regla 42 1) del Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988 en su forma enmendada.

- 2.20 Certificación de los pesos de las pruebas de estabilidad: verificación del peso marcado en un peso de prueba. Los pesos de prueba se certificarán utilizando una escala certificada. La pesada se realizará con la mínima antelación posible a la prueba de estabilidad, a fin de asegurar la precisión del peso medido.
 - 2.21 Calado: distancia vertical desde la línea base de trazado hasta la flotación.
- 2.22 Prueba de estabilidad: operación que consiste en desplazar una serie de pesos de valor conocido, normalmente en dirección transversal, y medir seguidamente el cambio resultante en el ángulo de escora de equilibrio del buque. Con esta información y aplicando principios básicos de arquitectura naval, se determina la posición vertical del centro de gravedad del buque (VCG).
- 2.23 Buque en rosca: buque que ha sido acabado en todos los respectos pero que no lleva a bordo productos consumibles, provisiones, carga, tripulación con sus efectos, ni líquidos, salvo los fluidos de la maquinaria y las tuberías, tales como lubricantes y fluidos hidráulicos, que están a nivel de servicio.
- 2.24 Reconocimiento para determinar el peso en rosca: operación que consiste en hacer un inventario, en el momento de realizar la prueba de estabilidad, de todos los elementos que se vayan a añadir, retirar o cambiar de lugar, de modo que de la condición actual del buque pueda deducirse la condición en rosca. El peso y las posiciones longitudinal, transversal y vertical de cada elemento han de ser determinadas con precisión y registradas. Acto seguido puede obtenerse el desplazamiento en rosca del buque y la posición longitudinal de su centro de gravedad (LCG) utilizando respectivamente la información mencionada, la flotación estática del buque en el momento de realizar la prueba de estabilidad -que se determina midiendo el francobordo o verificando la escala de calados-, los datos hidrostáticos del buque y la densidad del agua del mar. También puede determinarse la posición transversal del centro de gravedad (TCG) de las unidades móviles de perforación mar adentro y de otras naves que sean asimétricas con respecto al plano de crujía o cuya disposición interna o armamento es tal que pueda producirse una escora debida a los pesos asimétricos.
- 2.25 Prueba de estabilidad en servicio: prueba de estabilidad que se realiza para comprobar el valor de *GM*_C calculado previamente y el centro de gravedad del peso muerto en una condición de carga real.
- 2.26 Instrumento de estabilidad: es un instrumento instalado a bordo de un buque concreto mediante el cual se puede determinar que las prescripciones relativas a la estabilidad especificadas para el buque en el cuadernillo de estabilidad se cumplen en cualquier condición de carga operacional. El instrumento de estabilidad comprende el soporte físico y el soporte lógico.

PARTE A

CRITERIOS OBLIGATORIOS

CAPÍTULO 1: CUESTIONES GENERALES

1.1 Ámbito de aplicación

- 1.1.1 Los criterios que figuran en el capítulo 2 de esta parte incluyen un conjunto de prescripciones mínimas que se aplicarán a los buques de carga⁴ y a los buques de pasaje de eslora igual o superior a 24 m.
- 1.1.2 Los criterios que figuran en el capítulo 3 son específicos para determinados tipos de buques. A los efectos de la parte A, se aplican las definiciones enumeradas en la Introducción.

1.2 Fenómenos de estabilidad dinámica con olas

alternativa a lo dispuesto en el capítulo 2.2 de esta parte.

Las Administraciones serán conscientes de que algunos buques tienen más riesgo de encontrarse en situaciones críticas de estabilidad con olas. Puede que sea preciso adoptar las disposiciones de precaución necesarias en el proyecto del buque con objeto de abordar la gravedad de dichos fenómenos. A continuación se señalan los fenómenos en mar encrespada que pueden provocar ángulos de balance y/o aceleraciones amplios.

Habida cuenta de los fenómenos descritos en la presente sección, la Administración podrá aplicar para un buque concreto o grupo de buques criterios que demuestren que la seguridad del buque es suficiente. Toda Administración que aplique dichos criterios deberá comunicar a la Organización los pormenores de los mismos. La Organización reconoce que es necesario elaborar e implantar criterios basados en el rendimiento para los fenómenos enumerados *supra* con objeto de garantizar un grado de seguridad uniforme a escala internacional.

En el caso de los buques portacontenedores de eslora igual o superior a 100 m, podrán aplicarse las disposiciones del capítulo 2.3 de la parte B como alternativa a lo dispuesto en el capítulo 2.2 de esta parte. Los buques de suministro mar adentro y los buques para fines especiales no están obligados a cumplir lo dispuesto en el capítulo 2.3 de la parte A. En el caso de los buques de suministro mar adentro, podrán aplicarse las disposiciones del capítulo 2.4 de la parte B como alternativa a lo dispuesto en el capítulo 2.2 de esta parte. En el caso de los buques para fines especiales, podrán aplicarse las disposiciones del capítulo 2.5 de la parte B como

1.2.1 Variación del brazo adrizante

Todo buque que registre variaciones amplias del brazo adrizante entre el seno y la cresta de la ola podrá experimentar un balance paramétrico o una pérdida esencial de estabilidad, o combinaciones de ambas.

1.2.2 Balance de resonancia con el buque apagado

Los buques sin propulsión o capacidad de gobierno pueden peligrar debido al balance de resonancia si van a la deriva.

1.2.3 Caída al través y otros fenómenos relacionados con las maniobras

Cabe la posibilidad de que los buques que naveguen con mar de popa y mar de aleta no puedan mantener un rumbo constante a pesar de realizar esfuerzos máximos de gobierno, lo cual puede provocar ángulos máximos de escora.

CAPÍTULO 2: CRITERIOS GENERALES

2.1 Cuestiones generales

- 2.1.1 Todos los criterios se aplicarán respecto de todas las condiciones de carga que se indican en 3.3 y 3.4 de la parte B.
- 2.1.2 En todas las condiciones de carga que se indican en 3.3 y 3.4 de la parte B se tendrán en cuenta los efectos de superficie libre (3.1 de la parte B).
- 2.1.3 En los buques dotados de dispositivos antibalance, la Administración comprobará que cuando éstos se hallen en funcionamiento se cumplen los criterios de estabilidad y que un fallo del suministro de energía eléctrica o del dispositivo (o dispositivos) no sea impedimento para que el buque pueda satisfacer las disposiciones pertinentes del presente código.
- 2.1.4 Hay una serie de fenómenos, tales como la acumulación de hielo en la obra muerta, el agua embarcada en cubierta, etc., que influyen de manera desfavorable en la estabilidad, por lo que se aconseja a la Administración que los tenga en cuenta siempre que lo juzgue necesario.
- 2.1.5 Se tomarán medidas para disponer de un margen seguro de estabilidad en todas las etapas del viaje teniendo en cuenta la adición de pesos, tales como los debidos a la absorción de agua y al engelamiento (los pormenores figuran en la parte B, capítulo 6: Consideraciones sobre el engelamiento) y la pérdida de peso, tal como la debida al consumo de combustible y provisiones.
- 2.1.6 Todo buque irá provisto de un cuadernillo de estabilidad aprobado por la Administración que contenga suficiente información (véase la parte B, 3.6) para que el capitán pueda manejar el buque de conformidad con las prescripciones aplicables del presente código. Si para determinar el cumplimiento de los criterios de estabilidad pertinentes se utiliza un instrumento de estabilidad como suplemento del cuadernillo de estabilidad, dicho instrumento estará sujeto a la aprobación de la Administración (véase la parte B, capítulo 4: Cálculos de estabilidad efectuados por los instrumentos de estabilidad).
- 2.1.7 Si se utilizan curvas o cuadros de valores de la altura metacéntrica mínima de servicio (GM) o del centro de gravedad máximo (VCG) que garanticen el cumplimiento de los criterios pertinentes de estabilidad sin avería, dichas curvas de valores límite han de abarcar la gama de asientos de servicio, a menos que la Administración admita que los efectos de asiento no son importantes. Cuando no se disponga de curvas o cuadros de valores de la altura metacéntrica mínima de servicio (GM) o del centro de gravedad máximo (VCG) en función del calado que abarquen los asientos de servicio, el capitán deberá comprobar que la condición de servicio no difiere de una condición de carga estudiada, o verificar, mediante los cálculos correspondientes, que los criterios de estabilidad se satisfacen respecto de dicha condición de carga teniendo en cuenta los efectos de asiento.

2.2 Criterios relativos a las propiedades de la curva de brazos adrizantes

2.2.1 El área bajo la curva de brazos adrizantes (curva de brazos GZ) no será inferior a 0,055 metro-radián hasta un ángulo de escora $\phi = 30^\circ$ ni inferior a 0,09 metro-radián hasta $\phi = 40^\circ$, o hasta el ángulo de inundación descendente ϕ_t^5 si éste es inferior a 40°. Además, el área bajo la curva de brazos adrizantes (curva de brazos GZ) entre los ángulos de escora de 30° y 40°, o entre 30° y ϕ_t si este ángulo es inferior a 40°, no será inferior a 0,03 metro-radián.

2.2.2 El brazo adrizante GZ será como mínimo de 0,2 m a un ángulo de escora igual o superior a 30°.

φ es el ángulo de escora al que se sumergen las aberturas del casco, superestructuras o casetas que no puedan cerrarse de modo
estanco a la intemperie. Al aplicar este criterio no hará falta considerar abiertas las pequeñas aberturas por las que no pueda
producirse inundación progresiva.

- 2.2.3 El brazo adrizante máximo corresponderá a un ángulo de escora no inferior a 25°. Si esto no es posible, podrán aplicarse, a reserva de lo que apruebe la Administración, criterios basados en un nivel de seguridad equivalente.⁶
 - 2.2.4 La altura metacéntrica inicial GMo no será inferior a 0,15 m.

2.3 Criterio de viento y balance intensos (criterio meteorológico)

- 2.3.1 Habrá que demostrar la aptitud del buque para resistir los efectos combinados del viento de través y del balance, con referencia a la figura 2.3.1, del modo siguiente:
 - .1 se someterá el buque a la presión de un viento constante que actúe perpendicularmente al plano de crujía, lo que dará como resultado el correspondiente brazo escorante (l_{w1}) ;
 - .2 se supondrá que a partir del ángulo de equilibrio resultante (φ_0) , el buque se balancea por la acción de las olas hasta alcanzar un ángulo de balance (φ_1) a barlovento. El ángulo de escora provocado por un viento constante (φ_0) no deberá ser superior a 16° o al 80 % del ángulo de inmersión del borde de la cubierta, si este ángulo es menor;
 - .3 a continuación se someterá al buque a la presión de una ráfaga de viento que dará como resultado el correspondiente brazo escorante (l_{w2}) ; y
 - .4 en estas circunstancias, el área *b* debe ser igual o superior al área *a*, como se indica en la figura 2.3.1 *infra:*

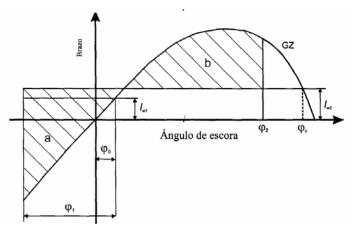


Figura 2.3.1: Viento y balance intensos

donde los ángulos de la figura 2.3.1 se definen del modo siguiente:

- φ_0 = ángulo de escora provocado por un viento constante
- φ₁= ángulo de balance a barlovento debido a la acción de las olas (véanse 2.3.1.2, 2.3.4 y la nota a pie de página)
- ϕ_2 = ángulo de inundación descendente (ϕ_f), o 50°, o ϕ_C , tomando de estos valores el menor, siendo:
 - ϕ_f = ángulo de escora al que se sumergen las aberturas del casco, superestructuras o casetas que no puedan cerrarse de modo estanco a la intemperie. Al aplicar este criterio no hará falta considerar abiertas las pequeñas aberturas por las que no pueda producirse inundación progresiva
 - φ_c = $\,$ ángulo de la segunda intersección entre la curva de brazos escorantes l_{w2} y la de brazos GZ.
- 2.3.2 Los brazos escorantes l_{w1} y l_{w2} provocados por el viento, a que se hace referencia en 2.3.1.1 y 2.3.1.3, son valores constantes a todos los ángulos de inclinación y se calcularán del modo siguiente:

$$l_{w1} = \frac{P \cdot A \cdot Z}{1000 \cdot g \cdot \Delta} \ (m) \ y$$

 $l_{w2} = 1.5 \cdot l_{w1} \ (m)$

⁶ Véanse las Notas explicativas del Código internacional de estabilidad sin avería, 2008 (MSC.1/Circ.1281).

donde:

P = presión del viento de 504 Pa. El valor de P utilizado para los buques en servicio restringido podrá reducirse a reserva de que lo apruebe la Administración

A = área lateral proyectada de la parte del buque y de la cubertada que quede por encima de la flotación (m^2)

Z = distancia vertical desde el centro del área A hasta el centro del área lateral de la obra viva, o aproximadamente hasta el punto medio del calado medio (m)

■ desplazamiento (t)

g = aceleración debida a la gravedad de 9,81 m/s².

 $2.3.3~{
m Si}$ la Administración los considera satisfactorios, podrán aceptarse otros medios para determinar el brazo escorante (l_{w1}) como alternativa equivalente al cálculo que figura en 2.3.2. Cuando se realicen dichas pruebas alternativas, se hará referencia a las Directrices elaboradas por la Organización. La velocidad del viento utilizada en las pruebas será igual a $26~{
m m/s}$ en tamaño natural con un perfil de la velocidad uniforme. El valor de la velocidad del viento utilizado para los buques en servicios restringidos podrá reducirse a un valor que la Administración considere satisfactorio.

2.3.4 El ángulo de balance $(\phi_1)^8$ a que se hace referencia en 2.3.1.2 se calculará del modo siguiente:

$$\varphi_1 = 109 \cdot k \cdot X_1 \cdot X_2 \cdot \sqrt{r \cdot s} \ (grados)$$

donde:

 (X_1) = factor indicado en el cuadro 2.3.4-1

 (X_2) = factor indicado en el cuadro 2.3.4-2

k = factor que corresponde a lo siguiente:

k = 1,0 respecto de un buque de pantoque redondo que no tenga quillas de balance ni quilla de barra

k = 0,7 respecto de un buque de pantoque quebrado

k = el valor que se indica en el cuadro 2.3.4-3 respecto de un buque con quillas de balance, quilla de barra o ambas

 $r = 0.73 + 0.6 \, \text{OG/d}$

donde:

$$OG = KG - d$$

d = calado medio de trazado del buque (m)

s = factor indicado en el cuadro 2.3.4-4, donde *T* es el periodo natural de balance del buque. Si no se dispone de información suficiente, puede utilizarse la siguiente aproximación:

Periodo de balance

$$T = \frac{2 \cdot C \cdot B}{\sqrt{GM}}(s)$$

donde:

$$C = 0.373 + 0.023(B/d) - 0.043(L_{wl}/100)$$

Los símbolos que aparecen en los cuadros 2.3.4-1, 2.3.4-2, 2.3.4-3 y 2.3.4-4 y en la fórmula del periodo de balance tienen los siguientes significados:

 L_{wl} = eslora en la flotación del buque (m)

B = manga de trazado del buque (m)

d = calado medio de trazado del buque (m)

 C_B = coeficiente de bloque (-)

 A_k = área total de las quillas de balance o área de la proyección lateral de la quilla

de barra, o suma de estas áreas (m²)

GM = altura metacéntrica corregida por el efecto de superficie libre (m).

Véanse las Directrices provisionales para la evaluación alternativa del criterio meteorológico (MSC.1/Circ.1200).

En los buques dotados de dispositivos antibalance, el ángulo de balance se determinará sin tomar en consideración el funcionamiento de esos dispositivos, a menos que la Administración juzgue que se ha demostrado satisfactoriamente que los dispositivos son eficaces incluso con una interrupción repentina de la energía eléctrica que los alimenta.

(Segunda Sección)

Cuadro 2.3.4-1:	Valores	del	factor	X_1
-----------------	---------	-----	--------	-------

B/d	X ₁
<u><</u> 2,4	1,0
2,5	0,98
2,6	0,96
2,7	0,95
2,8	0,93
2,9	0,91
3,0	0,90
3,1	0,88
3,2	0,86
3,4	0,82
<u>≥</u> 3,5	0,80

Cuadro 2.3.4-2: Valores del factor X_2

CB	<i>X</i> ₂
<u><</u> 0,45	0,75
0,50	0,82
0,55	0,89
0,60	0,95
0,65	0,97
<u>></u> 0,70	1,00

Cuadro 2.3.4-3: Valores del factor k

$A_k x 100$	k
$L_{wl} \times B$	
0	1,0
1,0	0,98
1,5	0,95
2,0	0,88
2,5	0,79
3,0	0,74
3,5	0,72
<u>≥</u> 4,0	0,70

Cuadro 2.3.4-4: Valores del factor s

T	s
<u><</u> 6	0,100
7	0,098
8	0,093
12	0,065
14	0,053
16	0,044
18	0,038
<u>></u> 20	0,035

- 2.3.5 Los cuadros y fórmulas descritos en 2.3.4 se basan en datos de buques que presentan las siguientes características:
 - .1 B/d inferior a 3,5;
 - .2 (KG/d-1) entre 0,3 y 0,5; y
 - .3 Tinferior a 20 s.

En el caso de los buques cuyos parámetros rebasen los límites indicados *supra*, el ángulo de balance (ϕ_1) podrá determinarse también mediante experimentos con un modelo de buque de ese tipo utilizando el procedimiento descrito en la circular MSC.1/Circ.1200. Asimismo, la Administración podrá aceptar las estimaciones alternativas mencionadas para cualquier buque si lo estima oportuno.

CAPÍTULO 3: CRITERIOS ESPECIALES PARA DETERMINADOS TIPOS DE BUQUES

3.1 Buques de pasaje

Los buques de pasaje cumplirán las prescripciones de 2.2 y 2.3.

- 3.1.1 Además, el ángulo de escora producido por la aglomeración de pasajeros en una banda, tal como se define *infra*, no excederá de 10°.
- 3.1.1.1 Se supondrá una masa mínima de 75 kg por pasajero, si bien se permitirá aumentar este valor, a reserva de lo que apruebe la Administración. La Administración determinará además la masa y la distribución del equipaje.
 - 3.1.1.2 La altura del centro de gravedad de los pasajeros se supondrá igual a:
 - .1 1 m por encima del nivel de cubierta estando los pasajeros de pie. Si es necesario, se tendrán en cuenta la brusca y el arrufo de la cubierta; y
 - .2 0,3 m por encima de los asientos estando los pasajeros sentados.
- 3.1.1.3 Se supondrá que los pasajeros y su equipaje se encuentran en los espacios destinados normalmente para ellos cuando se trate de evaluar el cumplimiento de los criterios que figuran en 2.2.1 a 2.2.4.
- 3.1.1.4 Al comprobar el cumplimiento de los criterios que figuran en 3.1.1 y 3.1.2, se supondrá que los pasajeros sin equipaje están distribuidos de modo que se produzca la combinación más desfavorable de momento escorante y/o de altura metacéntrica inicial que puedan darse en la práctica. A este respecto, no será necesario tomar un valor superior a cuatro personas por metro cuadrado.
- 3.1.2 Además, el ángulo de escora debido a una maniobra de giro no excederá de 10° si se calcula utilizando la fórmula siguiente:

$$M_R = 0.200 \cdot \frac{v_0^2}{L_{Wl}} \cdot \Delta \cdot \left(KG - \frac{d}{2} \right)$$

donde:

 M_R = momento escorante, en (kNm)

 v_o = velocidad de servicio, en (m/s)

 L_{wl} = eslora en flotación del buque, en (m)

 Δ = desplazamiento, en (t)

d = calado medio, en (m)

KG = altura del centro de gravedad sobre la línea de base, en (m).

3.2 Petroleros de peso muerto igual o superior a 5 000 toneladas

Los petroleros que se especifican en la sección 2 de la Introducción (Definiciones), cumplirán lo dispuesto en la regla 27 del Anexo I del MARPOL 73/78.

3.3 Buques de carga que transporten cubertadas de madera

Los buques de carga que transporten cubertadas de madera cumplirán las prescripciones de 2.2 y 2.3, a menos que la Administración juzgue satisfactoria la aplicación de la disposición alternativa 3.3.2.

3.3.1 Ámbito de aplicación

Las disposiciones que figuran a continuación son aplicables a todos los buques de eslora igual o superior a 24 m dedicados al transporte de cubertadas de madera. Los buques que tengan asignada una línea de carga para buques con cubertada de madera y la utilicen, cumplirán también lo prescrito en las reglas 41 a 45 del Convenio de Líneas de Carga 1966 y el Protocolo de 1988 relativo al mismo.

3.3.2 Criterios de estabilidad alternativos

En los buques que transporten cubertadas de madera, y siempre que la cubertada se extienda longitudinalmente entre las superestructuras (cuando no haya superestructura que constituya un límite a popa, la cubertada de madera se debe extender por lo menos hasta el extremo popel de la escotilla más a popa) y transversalmente a todo lo ancho de la manga del buque, con excepción de la anchura de un trancanil alomado que no exceda del 4 % de la manga y/o de la necesaria para colocar los pies derechos de soporte, y dado asimismo que la cubertada permanezca firmemente sujeta cuando el buque acuse grandes ángulos de escora, los criterios pueden ser:

- 3.3.2.1 El área bajo la curva de brazos adrizantes (curva de brazos GZ) no será inferior a 0.08 metro-radián hasta un ángulo de escora ϕ = 40° o hasta el ángulo de inundación descendente, si éste es inferior a 40° .
 - 3.3.2.2 El valor máximo del brazo adrizante (brazo GZ) será como mínimo de 0,25 m.
- 3.3.2.3 Durante todo el viaje, la altura metacéntrica GM_0 no será inferior a 0,1 m, teniendo en cuenta la absorción de agua por la carga de cubierta y/o la acumulación de hielo en las superficies a la intemperie (los pormenores figuran en la parte B, capítulo 6: Consideraciones sobre el engelamiento).
- 3.3.2.4 Cuando se determine la aptitud de un buque para soportar los efectos combinados del viento de través y el balance con arreglo a 2.3, se respetará el límite de 16° del ángulo de escora provocado por un viento constante, pero se podrá dejar de lado el criterio adicional del 80 % del ángulo de inmersión de la línea de contorno de la cubierta.

3.4 Buques de carga que transporten grano a granel

La estabilidad sin avería de los buques dedicados al transporte de grano debe ajustarse a las prescripciones del Código internacional para el transporte sin riesgo de grano a granel, adoptado mediante la resolución MSC.23(59)¹⁰

3.5 Naves de gran velocidad

Las naves de gran velocidad que se especifican en la sección 2 de la Introducción (Definiciones), construidas el 1 de enero de 1996 o posteriormente pero antes del 1 de julio de 2002, a las que se aplique el capítulo X del Convenio SOLAS 1974, deberán cumplir las prescripciones de estabilidad del Código NGV 1994 (resolución MSC.36(63)). Toda nave de gran velocidad a la que se aplique el capítulo X del Convenio SOLAS 1974, con independencia de su fecha de construcción, que haya sido objeto de reparaciones, reformas o modificaciones de carácter importante, y las naves de gran velocidad construidas el 1 de julio de 2002 o posteriormente, cumplirán las prescripciones de estabilidad del Código NGV 2000 (resolución MSC.97(73)).

PARTE B

RECOMENDACIONES APLICABLES A DETERMINADOS TIPOS DE BUQUES Y OTRAS DIRECTRICES

CAPITULO 1: CUESTIONES GENERALES

1.1 Finalidad

Esta parte del Código tiene por finalidad:

- .1 recomendar criterios de estabilidad y otras medidas que garanticen la seguridad operacional de determinados tipos de buques a fin de reducir al mínimo los riesgos para los mismos, el personal de a bordo y el medio ambiente; y
- .2 ofrecer directrices con respecto a la información sobre estabilidad, disposiciones operacionales contra la zozobra, consideraciones sobre el engelamiento, así como consideraciones sobre la integridad de estanquidad y la determinación de los parámetros de desplazamiento en rosca.

Véase la regla 44 2) del Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988, enmendado.

¹⁰ Véase la parte C del capítulo 6 del Convenio SOLAS 1974, enmendado por la resolución MSC.23(59).

1.2 Ámbito de aplicación

- 1.2.1 La presente parte del presente código define criterios recomendados sobre estabilidad sin avería aplicables a determinados tipos de buques y otros vehículos marinos que no se han incluido en la parte A y con los que se pretende complementar los criterios de la parte A en el caso de buques de tamaño o funcionamiento particulares.
- 1.2.2 Las Administraciones podrán imponer prescripciones adicionales sobre aspectos relacionados con el proyecto de buques de carácter innovador o de buques que no estén regidos por el presente código.
- 1.2.3 Los criterios establecidos en esta parte deberían servir de orientación a las Administraciones si no se aplican las prescripciones nacionales.

CAPÍTULO 2: CRITERIOS RECOMENDADOS DE PROYECTO PARA DETERMINADOS TIPOS DE BUQUES

2.1 Buques pesqueros

2.1.1 Ámbito de aplicación

Las disposiciones que figuran a continuación son aplicables a los buques pesqueros con cubierta y de navegación marítima, que se especifican en la sección 2 de la Introducción (Definiciones). Los criterios de estabilidad indicados en 2.1.3 y 2.1.4 *infra* se deben cumplir en todas las condiciones de carga especificadas en 3.4.1.6, a menos que la Administración quede satisfecha de que la experiencia operacional justifica desviarse de los mismos.

2.1.2 Precauciones generales contra la zozobra

Además de las precauciones generales mencionadas en 5.1, 5.2 y 5.3 de la parte B, las medidas que se enumeran a continuación deben considerarse como una orientación preliminar sobre aspectos de estabilidad que influyen en la seguridad:

- .1 los artes de pesca y otros objetos pesados se estibarán adecuadamente en un lugar lo más bajo posible del buque;
- .2 se tendrá especial cuidado cuando la tracción del arte de pesca pueda afectar negativamente a la estabilidad, por ejemplo, cuando se izan las redes con halador mecánico o el arte de arrastre se engancha en obstrucciones del fondo. La tracción del arte de pesca deberá ejercerse desde un punto del buque lo más bajo posible, por encima de la flotación;
- .3 el equipo para soltar la cubertada en buques pesqueros que lleven la captura en cubierta, como arenque por ejemplo, se mantendrá en buen estado de funcionamiento;
- .4 cuando la cubierta principal esté preparada para el transporte de cubertadas, subdividida con tablones de encajonar, se dejarán entre éstos espacios de dimensiones apropiadas que permitan que el agua fluya libremente hacia las portas de desagüe para impedir que se acumule;
- .5 para evitar que se corra la carga de pescado transportado a granel, las divisiones amovibles de las bodegas irán debidamente instaladas;
- .6 es peligroso confiar en el gobierno automático, ya que ello puede entorpecer los cambios de rumbo que tal vez sean necesarios en condiciones de mal tiempo;
- .7 se hará todo lo necesario para mantener el francobordo adecuado en las diversas condiciones de carga y, cuando existan normas relativas a la línea de carga, éstas se cumplirán rigurosamente en todo momento; y
- .8 se tendrá especial cuidado cuando la tracción del arte de pesca dé lugar a ángulos de escora peligrosos, lo cual puede suceder cuando dicho arte se engancha en algún obstáculo submarino o al manipular artes de pesca, especialmente las de cerco de jareta, o si se rompe algún cable de las redes de arrastre. Los ángulos de escora producidos en esas situaciones por los artes de pesca pueden eliminarse utilizando dispositivos que permitan reducir o eliminar las fuerzas excesivas que ejerza el propio arte. Tales dispositivos no deberán suponer un peligro para el buque si se utilizan en circunstancias distintas de las previstas.

61

2.1.3 Criterios generales recomendados¹¹

- 2.1.3.1 Los criterios generales de estabilidad sin avería que figuran en 2.2.1 a 2.2.3 de la parte A se aplicarán a los buques pesqueros de eslora igual o superior a 24 m, con la salvedad de que las prescripciones sobre la altura metacéntrica inicial GM (véase el párrafo 2.2.4 de la parte A) en el caso de buques pesqueros de una sola cubierta no será inferior a 0,35 m. En los buques de superestructura corrida o cuya eslora sea igual o superior a 70 m, la altura metacéntrica podrá reducirse a un valor que sea satisfactorio a juicio de la Administración, pero en ningún caso inferior a 0,15 m.
- 2.1.3.2 La adopción por los países de criterios simplificados para aplicar esos valores básicos de estabilidad a sus propios tipos y clases de buques se reconoce como un método práctico y valioso para evaluar la estabilidad de modo económicamente rentable.
- 2.1.3.3 Cuando para limitar el ángulo de balance se utilicen dispositivos que no sean quillas de balance, la Administración habrá de quedar satisfecha de que se observan los criterios de estabilidad mencionados en 2.1.3.1 en todas las condiciones operacionales.

2.1.4 Criterio de viento y balance intensos (criterio meteorológico) para buques pesqueros

- 2.1.4.1 La Administración podrá aplicar lo dispuesto en 2.3 de la parte A, a los buques pesqueros de eslora igual o superior a 45 m.
- 2.1.4.2 En el caso de los buques pesqueros de eslora comprendida entre 24 m y 45 m, la Administración podrá aplicar lo dispuesto en 2.3 de la parte A. Igualmente, los valores de la presión del viento (véase 2.3.2 de la parte A) podrán tomarse del cuadro siguiente:

<i>h</i> (m)	1	2	3	4	5	6 o más
<i>P</i> (Pa)	316	386	429	460	485	504

donde h es la distancia vertical desde el centro del área vertical proyectada del buque por encima de la flotación hasta la flotación.

2.1.5 Recomendaciones sobre un criterio de estabilidad simplificado y provisional para buques pesqueros con cubierta de eslora inferior a 30 m

2.1.5.1 En los buques con cubierta de eslora inferior a 30 m se utilizará como criterio la siguiente fórmula aproximada para calcular la altura metacéntrica mínima GM_{min} (en metros) en todas las condiciones operacionales:

$$GM_{min} = 0.53 + 2B \left[0.075 - 0.37 \left(\frac{f}{B} \right) + 0.82 \left(\frac{f^{2}}{B} \right) - 0.014 \left(\frac{B}{D} \right) - 0.032 \left(\frac{l_{S}}{L} \right) \right]$$

L = la eslora del buque en la flotación, en la condición de carga máxima (en m)

 l_s = la longitud real de la superestructura cerrada que se extienda de banda a banda (en m)

B = la manga máxima del buque en la flotación, en la condición de máxima carga (en m)

 D = el puntal del buque medido verticalmente en los medios desde la línea base hasta la parte alta de la cubierta superior en el costado (en m)

f = el francobordo mínimo medido verticalmente desde la parte alta de la cubierta superior en el costado hasta la flotación real (en m).

Esta fórmula es aplicable a bugues con las características siguientes:

- .1 f/B entre 0,02 y 0,2;
- .2 l_s/L inferior a 0,6;
- .3 B/D entre 1,75 y 2,15;
- .4 las ordenadas de la curva de arrufo a proa y a popa son iguales o superiores a las del arrufo estándar prescrito en la regla 38 8) del Convenio internacional sobre líneas de carga, 1966 o de su Protocolo de 1988, en su forma enmendada; y
- .5 la altura de la superestructura incluida en el cálculo no es inferior a 1,8 m.

En el caso de buques cuyos parámetros difieran de los límites anteriores, la fórmula se aplicará con especial cuidado.

Véase la regla III/2 del Protocolo de 1993 relativo al Convenio de Torremolinos.

- 2.1.5.2 Con la fórmula anterior no se pretende sustituir los criterios básicos que figuran en 2.1.3 y 2.1.4, sino que debe emplearse únicamente en los casos en que no haya ni puedan obtenerse curvas transversales de estabilidad, curvas de alturas KM, ni curvas de brazos GZ para evaluar la estabilidad de un determinado buque.
- 2.1.5.3 El valor calculado de la altura GM deberá compararse con los valores reales de la altura GM para todas las condiciones de carga del buque. Si para determinar la altura GM real se utiliza una prueba de estabilidad basada en un desplazamiento estimado o cualquier otro método aproximado, habrá que añadir un margen de seguridad al valor calculado de la altura $GM_{min.}$

2.2 Pontones

2.2.1 Ámbito de aplicación

Las disposiciones que figuran a continuación son aplicables a los pontones de navegación marítima. Normalmente se considera que un pontón:

- .1 no va autopropulsado;
- .2 no lleva tripulación;
- .3 transporta sólo carga en cubierta;
- .4 su coeficiente de bloque es igual o superior a 0,9;
- .5 su relación manga/puntal es superior a 3; y
- .6 no tiene escotillas en cubierta, salvo pequeños registros cerrados por tapas y juntas.

2.2.2 Planos y cálculos de estabilidad

La información siguiente es la que se suele presentar a la Administración a efectos de aprobación:

- .1 plano de formas;
- .2 curvas hidrostáticas;
- .3 curvas cruzadas de estabilidad;
- .4 informe sobre las lecturas de calado y densidad y cálculo del desplazamiento en rosca y de la posición longitudinal del centro de gravedad;
- .5 justificación de la supuesta posición vertical del centro de gravedad; y
- .6 orientación simplificada sobre estabilidad, tal como un diagrama de carga, que permita cargar el pontón de conformidad con los criterios de estabilidad.

2.2.3 Realización de los cálculos

Por lo que respecta a los cálculos, se sugiere lo siguiente:

- .1 no se tendrá en cuenta la flotabilidad de la cubertada (salvo que se haya autorizado una concesión por flotabilidad en el caso de cubertadas de madera firmemente sujetas);
- .2 se tendrán en cuenta factores tales como la absorción de agua (por ejemplo, de la madera), el agua retenida en la carga (por ejemplo, en tuberías) y la acumulación de hielo;
- .3 al realizar los cálculos de la escora producida por el viento:
 - .3.1 se supondrá que la presión del viento es constante y, para operaciones de índole general, que actúa sobre una masa sólida que se extiende a todo lo largo de la cubierta de carga y hasta una altura supuesta por encima de dicha cubierta,
 - .3.2 se supondrá que el centro de gravedad de la carga está situado en el punto medio de la altura de ésta, y
 - .3.3 el brazo de palanca debido al viento se tomará desde el centro de la cubertada hasta el punto medio del calado medio;
- .4 los cálculos se realizarán de modo que abarquen una gama completa de calados operacionales; y
- .5 se supondrá que el ángulo de inundación descendente es aquel al que se sumerge una abertura por la que puede producirse una inundación progresiva. Estas aberturas no incluyen las que van cerradas con una tapa de registro estanca ni los respiraderos provistos de cierre automático.

2.2.4 Criterios de estabilidad sin avería

- 2.2.4.1 El área bajo la curva de brazos adrizantes hasta el ángulo correspondiente al brazo adrizante máximo no será inferior a 0,08 metro-radián.
- 2.2.4.2 El ángulo de escora estática producido por una carga del viento uniformemente distribuida de 540 Pa (velocidad del viento de 30 m/s) no debe ser superior al ángulo para el que se sumerja la mitad del francobordo en la condición pertinente de carga, donde el brazo de palanca del momento escorante producido por el viento se mide desde el centroide de la superficie expuesta al viento hasta el punto medio del calado.
 - 2.2.4.3 La gama mínima de estabilidad será de:

 20° si $L \le 100 \text{ m}$

15° si *L* ≥ 150 m

Para las esloras intermedias se calculará por interpolación.

2.3 Buques portacontenedores de eslora superior a 100 m

2.3.1 Ámbito de aplicación¹²

Estas prescripciones son aplicables a los buques portacontenedores de eslora superior a 100 m que se especifican en la sección de la Introducción (Definiciones). También podrán aplicarse a otros buques de carga de dicha eslora que tengan un abanico pronunciado o un plano de flotación de gran área. La Administración podrá aplicar los criterios siguientes en lugar de los indicados en la parte A (2.2).

2.3.2 Estabilidad sin avería

- 2.3.2.1 El área bajo la curva de brazos adrizantes (curva de brazos GZ) no será inferior a 0,009/C metro-radián hasta un ángulo de escora φ = 30°, ni inferior a 0,016/C metro-radián hasta φ = 40°, o hasta el ángulo de inundación descendente φ _f (tal como se define en 2.2 de la parte A) si éste es inferior a 40°.
- 2.3.2.2 Además, el área bajo la curva de brazos adrizantes (curva de brazos GZ) entre los ángulos de escora de 30° y 40° , o entre 30° y ϕ_f si este ángulo es inferior a 40° , no será inferior a 0,006/C metro-radián.
- 2.3.2.3 El brazo adrizante GZ será como mínimo de 0,033/C m a un ángulo de escora igual o superior a 30°.
 - 2.3.2.4 El brazo adrizante máximo será como mínimo de 0,042/C m.
- 2.3.2.5 El área total bajo la curva de brazos adrizantes (curva de brazos GZ) hasta el ángulo de inundación ϕ_f no será inferior a 0.029/C metro-radián.
- 2.3.2.6 En los criterios anteriores, el factor de forma C se calculará utilizando la fórmula siguiente y la figura 2.3-1:

$$C = \frac{dD'}{B_m^2} \sqrt{\frac{d}{KG}} \left(\frac{C_B}{C_W}\right)^2 \sqrt{\frac{100}{L}}$$

donde:

d = calado medio, en m;

D' = puntal de trazado del buque, corregido para tener en cuenta partes definidas de los volúmenes delimitados por las brazolas de escotilla con arreglo a la fórmula:

$$D' = D + h \left(\frac{2 b - B_D}{B_D}\right) \left(\frac{2 \Sigma l_H}{L}\right)$$
, como se define en la figura 2.3-1

D = puntal de trazado del buque, en m

 B_D = manga de trazado del buque, en m

KG = altura del centro de masa por encima de la base, corregida para tener en cuenta el efecto de superficie libre no se empleará un valor de la altura KG inferior a d, en m

 C_B = coeficiente del bloque

 C_W = coeficiente del plano de flotación

12

Dado que los criterios de la presente sección se establecieron empíricamente a partir de los datos de buques portacontenedores de eslora inferior a 200 m, deberán extremarse las precauciones al aplicarlos a los buques que rebasen dichos límites.

64

 l_H = longitud de cada brazola de escotilla dentro de L/4 a proa y a popa del centro del buque, en m (véase la figura 2.3-1)

 anchura media de las brazolas de escotilla dentro de L/4 a proa y a popa del centro del buque, en m (véase la figura 2.3-1)

 altura media de las brazolas de escotilla dentro de L/4 a proa y a popa del centro del buque, en m (véase la figura 2.3-1)

L = eslora del buque, en m

B = manga del buque en la línea de flotación, en m

 B_m = manga del buque en la línea de flotación a la mitad del calado medio, en m.

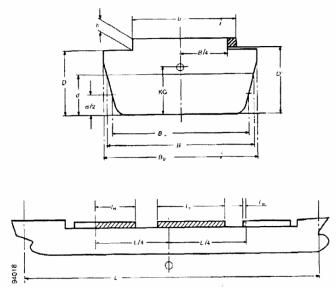


Figura 2.3-1

Las partes sombreadas de la figura 2.3-1 representan volúmenes parciales delimitados por las brazolas de escotilla que se considera contribuyen a la resistencia contra la zozobra con ángulos de escora amplios cuando el buque se encuentra en la cresta de la ola.

2.3.2.7 Se recomienda la utilización de computadores electrónicos de carga y estabilidad para determinar el asiento y la estabilidad del buque en diferentes condiciones operacionales.

2.4 Buques de suministro mar adentro

2.4.1 Ámbito de aplicación

- 2.4.1.1 Las disposiciones que figuran a continuación son aplicables a los buques de suministro mar adentro, según se especifican en la sección 2 de la Introducción (Definiciones), de eslora igual o superior a 24 m. Los criterios de estabilidad indicados en 2.4.5 son aplicables a los buques de eslora no superior a 100 m.
- 2.4.1.2 En lo que respecta a los buques que efectúan viajes próximos a la costa, según se especifican en la sección "Definiciones", los principios señalados en 2.4.2 deben servir de orientación a la Administración para elaborar sus propias normas nacionales. Ésta podrá permitir la atenuación de las prescripciones del presente código en el caso de los buques que efectúen viajes próximos a sus propias costas si, a su juicio, las condiciones operacionales de tales buques hacen irrazonable o innecesario el cumplimiento de las disposiciones del presente código.
- 2.4.1.3 Cuando en un servicio similar se utilicen buques que no sean de suministro mar adentro, según se especifican en la sección "Definiciones", la Administración determinará hasta qué punto cabrá exigirles que cumplan las disposiciones del presente código.

(Segunda Sección)

2.4.2 Principios que rigen los viajes próximos a la costa

- 2.4.2.1 Al definir, a los efectos del presente código, los viajes próximos a la costa, la Administración no impondrá a buques que tengan derecho a enarbolar el pabellón de otro Estado y estén dedicados a realizar tales viajes normas de proyecto y de construcción más rigurosas que las establecidas para los buques con derecho a enarbolar su propio pabellón. La Administración no impondrá en ningún caso, normas más rigurosas respecto de buques que tengan derecho a enarbolar el pabellón de otro Estado que las establecidas en el presente código para los buques no dedicados a realizar viajes próximos a la costa.
- 2.4.2.2 Por lo que respecta al proyecto y la construcción de buques dedicados regularmente a realizar viajes próximos a la costa de otro Estado, la Administración establecerá normas no inferiores a las prescritas por el Gobierno del Estado frente a cuyas costas naveguen esos buques, a condición de que dichas normas no sean más rigurosas que las establecidas en el presente código para los buques no dedicados a realizar viajes próximos a la costa.
- 2.4.2.3 Todo buque dedicado a realizar viaies que rebase los límites de los viaies próximos a la costa cumplirá las disposiciones del presente código.

2.4.3 Precauciones contra la zozobra en la fase de construcción

- 2.4.3.1 Si es posible, el acceso al espacio de máquinas se habilitará en el castillo. Todo acceso al espacio de máquinas desde la cubierta expuesta de carga estará provisto de dos cierres estancos a la intemperie. El acceso a los espacios situados por debajo de la cubierta expuesta de carga se habilitará preferiblemente desde un punto situado dentro o por encima de la cubierta de la superestructura.
- 2.4.3.2 El área de las portas de desagüe situadas en las amuradas de la cubierta de carga se ajustará como mínimo a lo prescrito en la regla 24 del Convenio internacional sobre líneas de carga, 1966 o de su Protocolo de 1988, enmendado. Se estudiará cuidadosamente la disposición de las portas de desagüe para asegurar la máxima eficacia en el drenaje del aqua que se acumule en cubertadas de tuberías o en nichos del extremo popel del castillo. En el caso de los buques que navequen en zonas donde sea probable la formación de hielo, no deberían instalarse obturadores en las portas de desagüe.
- 2.4.3.3 La Administración prestará especial atención al drenaje adecuado de los puestos de estiba de tuberías, teniendo en cuenta las características del buque de que se trate. No obstante, el área prevista para el drenaje de los puestos de estiba de tuberías será superior a la prescrita para las portas de desagüe en las amuradas de la cubierta de carga, y en las aberturas no se instalarán obturadores.
- 2.4.3.4 Todo buque dedicado a operaciones de remolque irá provisto de medios para soltar rápidamente el cabo de remolque.

2.4.4 Precauciones operacionales contra la zozobra

- 2.4.4.1 La carga estibada en cubierta se dispondrá con miras a evitar la obstrucción de las portas de desagüe o de las aberturas necesarias para que el agua corra desde los puestos de estiba de tuberías hacia dichas portas.
- 2.4.4.2 En todas las condiciones operacionales se mantendrá un francobordo a popa de 0,005L como mínimo.

2.4.5 Criterios de estabilidad

- 2.4.5.1 Los criterios de estabilidad que figuran en 2.2 de la parte A se aplicarán a todos los buques de suministro mar adentro, con la salvedad de aquéllos cuyas características les impidan cumplir con la referida disposición.
- 2.4.5.2 Cuando las características de un buque hagan impracticable el cumplimiento de lo dispuesto en 2.2 de la parte A, se recomienda aplicar los siguientes criterios equivalentes:
 - .1 el área bajo la curva de brazos adrizantes (curva de brazos GZ) no será inferior a 0,07 metro-radián hasta un ángulo de 15° si el brazo adrizante máximo (GZ) se da a un ángulo igual a 15° o de 0,055 metro-radián hasta un ángulo de 30° si el brazo adrizante máximo (GZ) se da a un ángulo igual o superior a 30°. Cuando el brazo adrizante máximo (GZ) se dé a un ángulo comprendido entre 15° y 30°, el área correspondiente bajo la curva de brazos adrizantes será igual a:

 $0,055+0,001 (30^{\circ} - \phi_{max})$ metro-radián; ¹³

φ_{max} es el ángulo de escora, expresado en grados, en el que la curva de brazos adrizantes alcanza su valor máximo.

- .2 el área bajo la curva de brazos adrizantes (curva de brazos GZ) entre los ángulos de escora de 30° y 40° , o entre 30° y ϕ_f si este ángulo es inferior a 40° , no será inferior a 0.03 metro-radián;
- .3 el brazo adrizante (GZ) será como mínimo de 0,2 m a un ángulo de escora igual o superior a 30°;
- .4 el brazo adrizante máximo (GZ) se dará a un ángulo de escora no inferior a 15°;
- .5 la altura metacéntrica transversal inicial (GM₀) no será inferior a 0,15 m; y
- .6 véanse además 2.1.3 a 2.1.5 de la parte A y 5.1 de la parte B.

2.5 Buques para fines especiales

2.5.1 Ámbito de aplicación

Las disposiciones que figuran a continuación son aplicables a los buques para fines especiales, según se especifican en la sección 2 de la Introducción (Definiciones), cuyo arqueo bruto no sea inferior a 500 toneladas. La Administración podrá asimismo aplicar dichas disposiciones, dentro de lo razonable y posible, a los buques para fines especiales de arqueo bruto inferior a 500 toneladas.

2.5.2 Criterios de estabilidad

La estabilidad sin avería de los buques para fines especiales debe ajustarse a lo dispuesto en 2.2 de la parte A, aunque podrán utilizarse los criterios especificados en 2.4.5 de la parte B aplicables a los buques de suministro mar adentro si se trata de buques para fines especiales de eslora inferior a 100 m cuyo proyecto y características sean análogos.

2.6 Unidades móviles de perforación mar adentro

2.6.1 Ámbito de aplicación

- 2.6.1.1 Las disposiciones que figuran a continuación son aplicables a las unidades móviles de perforación mar adentro que se especifican en la sección 2 de la Introducción (Definiciones), cuya quilla haya sido colocada, o cuya construcción se halle en una fase equivalente, el 1 de mayo de 1991, o posteriormente. En cuanto a las unidades de perforación construidas antes de esa fecha, se aplicarán las disposiciones correspondientes del capítulo 3 de la resolución A.414(XI).
- 2.6.1.2 El Estado ribereño podrá permitir que cualquier unidad proyectada con arreglo a una norma menos rigurosa que la estipulada en el presente capítulo realice sus operaciones, habida cuenta de las condiciones ambientales locales. No obstante, tal unidad debe cumplir con prescripciones de seguridad que a juicio del Estado ribereño sean adecuadas para las operaciones previstas y garanticen la seguridad general de la unidad y del personal a bordo.

2.6.2 Curvas de momentos adrizantes y momentos escorantes producidos por el viento

2.6.2.1 Se prepararán curvas de momentos adrizantes y de momentos escorantes producidos por el viento análogas a las de la figura 2.6-1, con cálculos que abarquen toda la gama de calados de servicio, incluidos los correspondientes a las condiciones de tránsito, teniendo en cuenta el máximo de carga y de equipo en cubierta en la ubicación más desfavorable aplicable. Las curvas de momentos adrizantes y de momentos escorantes producidos por el viento se referirán a los ejes más críticos. Se tendrá presente la superficie libre de los líquidos en los tanques.

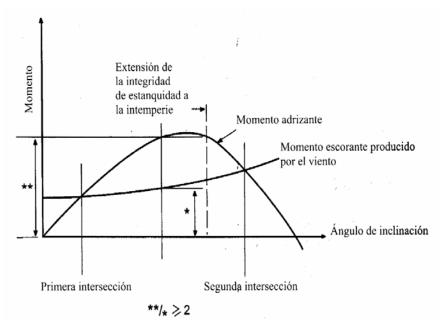


Figura 2.6-1: Curvas de momentos adrizantes y de momentos escorantes producidos por el viento

- 2.6.2.2 Cuando el equipo sea de un tipo tal que pueda arriarse y estibarse, es posible que se necesiten curvas complementarias de momentos escorantes producidos por el viento; los datos correspondientes indicarán claramente la ubicación de dicho equipo.
- 2.6.2.3 Las curvas de momentos escorantes producidos por el viento se trazarán con respecto a las fuerzas del viento calculadas mediante la fórmula siguiente:

$$F = O, 5 \cdot C_S \cdot C_H \cdot p \cdot V^2 \cdot A$$

donde:

F = fuerza del viento (N)

 C_s = coeficiente de forma, que depende de la forma del elemento estructural expuesto al viento (véase la tabla 2.6.2.3-1)

 C_H = coeficiente de altura, que depende de la altura sobre el nivel del mar del elemento estructural expuesto al viento (véase la tabla 2.6.2.3-2)

p = densidad másica del aire (1,222 kg/m³)

V = velocidad del viento (m/s)

A = área proyectada de todas las superficies expuestas con la unidad adrizada o escorada (m^2)

Tabla 2.6.2.3-1: Valores del coeficiente C_s

Forma	C _s
Esférica	0,40
Cilíndrica	0,50
Gran superficie plana (casco, caseta, áreas lisas bajo cubierta)	1,00
Torre de perforación	1,25
Cables	1,20
Baos y esloras expuestos bajo cubierta	1,30
Piezas pequeñas	1,40
Perfiles aislados (grúa, viga, etc.)	1,50
Casetas agrupadas o estructuras similares	1,10

Tabla 2.6.2.3-2: Valores del coeficiente CH

Altura sobre el nivel del mar (metros)	C _H
0 – 15,3	1
15,3 – 30,5	1,1
30,5 – 46	1,2
46,0 – 61	1,3
61,0 – 76	1,37
76,0 – 91,5	1,43
91,5 – 106,5	1,48
106,5 – 122	1,52
122,0 – 137	1,56
137,0 – 152,5	1,6
152,5 – 167,5	1,63
167,5 – 183	1,67
183,0 – 198	1,7
198,0 – 213,5	1,72
213,5 – 228,5	1,75
228,5 – 244	1,77
244,0 – 256	1,79
superior a 256	1,8

- 2.6.2.4 Se considerarán las fuerzas del viento en cualquier dirección con respecto a la unidad, y los valores de la velocidad del viento serán los siguientes:
 - .1 en general, para las condiciones operacionales normales mar adentro se tomará una velocidad mínima del viento de 36 m/s (70 nudos), y de 51,5 m/s (100 nudos) para las condiciones de temporal muy duro; y
 - .2 cuando una unidad sólo vaya a operar en lugares abrigados (aguas interiores protegidas, tales como lagos, bahías, marismas, ríos, etc.), se tendrá en cuenta una velocidad del viento no inferior a 25,8 m/s (50 nudos) para las condiciones operacionales normales.
- 2.6.2.5 En el cálculo de las áreas proyectadas en el plano vertical se incluirán, utilizando el factor de forma adecuado, las áreas de las superficies expuestas al viento a causa de la escora o del asiento, como por ejemplo las superficies bajo cubierta, etc. Si se trata de una estructura de celosía, podrá calcularse aproximadamente su área proyectada tomando un 30 % del área de conjunto proyectada de las secciones frontal y posterior, es decir, el 60 % del área proyectada de uno de los lados.
- 2.6.2.6 En el cálculo de los momentos escorantes producidos por el viento, el brazo de palanca de la fuerza escorante del viento se tomará verticalmente desde el centro de presión de todas las superficies expuestas al viento hasta el centro de resistencia lateral de la obra viva de la unidad. Se supondrá que la unidad flota libremente sin restricciones debidas al amarre.
- 2.6.2.7 La curva de momentos escorantes producidos por el viento se calculará con un número suficiente de ángulos de escora como para definir la curva. En el caso de las unidades con forma de buque se puede suponer que la curva varía en función del coseno de la escora del buque.
- 2.6.2.8 En lugar de utilizar el método indicado en 2.6.2.3 a 2.6.2.7, los momentos escorantes ocasionados por el viento podrán obtenerse mediante pruebas realizadas en un túnel aerodinámico con un modelo representativo de la unidad. En la determinación de esos momentos se considerarán los efectos de sustentación y resistencia correspondientes a los distintos ángulos de escora aplicables.

2.6.3 Criterios de estabilidad sin avería

- 2.6.3.1 La estabilidad de una unidad satisfará en cada una de las modalidades de trabajo los siguientes criterios (véase también la figura 2.6-2):
 - .1 para las unidades de superficie y las autoelevadoras, el área bajo la curva de momentos adrizantes hasta la segunda intersección o hasta el ángulo de inundación descendente, si este valor es menor, debe rebasar en un 40% cuando menos el área bajo la curva de momentos escorantes producidos por el viento, hasta el mismo ángulo límite;

- .2 para las unidades estabilizadas por columnas, el área bajo la curva de momentos adrizantes hasta el ángulo de inundación descendente debe rebasar en un 30 % cuando menos el área bajo la curva de momentos escorantes producidos por el viento, hasta el mismo ángulo límite; y
- .3 la curva de momentos adrizantes debe ser positiva en toda la gama de ángulos comprendida entre la posición de adrizado y la segunda intersección

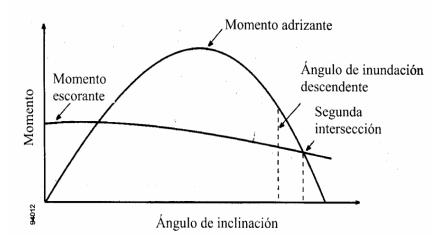


Figura 2.6-2: Curvas de momentos adrizantes y de momentos escorantes

2.6.3.2 Cada unidad tendrá aptitud para quedar en situación de afrontar condiciones de temporal muy duro con la rapidez que exijan las condiciones meteorológicas. Los procedimientos recomendados y el tiempo necesario aproximado, consideradas las condiciones operacionales y las de tránsito, han de figurar en el manual de instrucciones que se indica en 3.6.2. Debería ser posible quedar en dicha situación sin tener que retirar o cambiar de lugar los productos consumibles sólidos u otra carga variable. No obstante, la Administración podrá permitir que para ello se cargue una unidad más allá del punto en que haya que retirar o cambiar de lugar esos productos, en las condiciones siguientes y siempre que no se exceda la altura KG admisible prescrita:

- .1 en una posición geográfica en la que las condiciones meteorológicas, anualmente o en cada estación, no empeoren lo bastante como para exigir que una unidad quede en situación de afrontar condiciones de temporal muy duro, o
- .2 cuando sea necesario que una unidad soporte carga suplementaria en cubierta durante un breve plazo comprendido dentro de los límites de un pronóstico meteorológico favorable.

Las posiciones geográficas y las condiciones meteorológicas y de carga en que esto esté permitido se consignarán en el manual de instrucciones.

- 2.6.3.3 La Administración podrá considerar otros criterios de estabilidad siempre que se mantenga un grado equivalente de seguridad y se demuestre que ofrecen una estabilidad inicial suficiente. Al determinar si tales criterios son aceptables, la Administración se remitirá como mínimo a los puntos siguientes y, según proceda, los tomará en consideración:
 - .1 las condiciones ambientales que representen vientos (incluidas ráfagas) y olas que respondan a la realidad, apropiadas para el servicio de la unidad en cualquier lugar del mundo y con diversas modalidades operacionales
 - .2 la respuesta dinámica de la unidad. El análisis incluirá los resultados de pruebas en túnel aerodinámico, ensayos en estanque de olas artificiales y simulación no lineal, si procede. Los espectros de vientos y olas utilizados abarcarán suficientes gamas de frecuencias de modo que se garantice la obtención de las respuestas dinámicas críticas;
 - .3 el riesgo de inundación teniendo en cuenta las respuestas dinámicas en mar encrespada;
 - .4 el riesgo de zozobra, considerando la energía de recuperación de la unidad y la inclinación estática debida a un viento de velocidad media y a la respuesta dinámica máxima; y
 - .5 un margen de seguridad adecuado para tener en cuenta las incertidumbres.
- En 2.6.4 figura un ejemplo de criterios equivalentes de estabilidad sin avería aplicables a las unidades semisumergibles de pontones gemelos y estabilizadas por columnas.

2.6.4 Ejemplo de criterios equivalentes de estabilidad sin avería aplicables a las unidades semisumergibles de pontones gemelos y estabilizadas por columnas

2.6.4.1 Los criterios que se exponen seguidamente son sólo aplicables a las unidades semisumergibles de pontones gemelos y estabilizadas por columnas, en condiciones de temporal muy duro, cuyos parámetros queden dentro de los límites siguientes:

$$V_p/V_t$$
 entre 0,48 y 0,58
 $A_{wp}/(V_c)^{2/3}$ entre 0,72 y 1,00
 $L_{wp}/[V_c \cdot (L_{ptn}/2)]$ entre 0,40 y 0,70

Los parámetros empleados en estas ecuaciones se definen en 2.6.4.3.

2.6.4.2 Criterios de estabilidad sin avería

La estabilidad de una unidad en la modalidad operacional de aguante debe satisfacer los criterios siguientes:

2.6.4.2.1 Criterios de prevención de la zozobra

Estos criterios se basan en las curvas de momentos escorantes producidos por el viento y de momentos adrizantes, calculadas ambas con respecto al calado de aguante, según se indica en 2.6.2 del código. El área "B", correspondiente a la energía de reserva, será igual o superior al 10 % del área "A", correspondiente a la respuesta dinámica, según se indica en la figura 2.6-3.

Área "B"/Área "A" > 0,10

donde:

 ϕ_2

Área "A" = es el área bajo la curva de momentos adrizantes medida desde φ_1 hasta $(\varphi_1+1,15 . \varphi_{dyn})$

Área "B" = es el área bajo la curva de momentos adrizantes medida desde $(\phi_1+1,15 \cdot \phi_{dyn})$ hasta ϕ_2

 φ₁ = es el ángulo de la primera intersección con la curva de momentos escorantes producidos por un viento de 100 nudos

 el ángulo de la segunda intersección con la curva de momentos escorantes producidos por un viento de 100 nudos

 ϕ_{dvn} = es el ángulo de respuesta dinámica debida a las olas y el viento fluctuante

 $\varphi_{\text{dyn}} = (10.3 + 17.8 \cdot C)/(1 + GM/(1.46 + 0.28 \cdot BM))$

$$C = (L_{ptn}^{5/3} \cdot VCP_{W1} \cdot A_W \cdot V_p \cdot V_c^{1/3}) / (L_{wp}^{5/3} \cdot V_t)$$

Los parámetros empleados en estas ecuaciones se definen en 2.6.4.3.

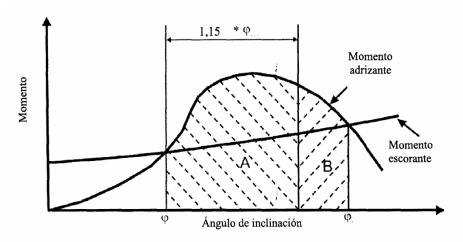


Figura 2.6-3: Curvas de momentos adrizantes y de momentos escorantes

2.6.4.2.2 Criterios de prevención de la inundación descendente

Estos criterios se basan en las dimensiones físicas de la unidad y en los movimientos relativos de la misma con relación al ángulo de inclinación estática producido por un viento de 75 nudos y medido con respecto al calado de aguante. La distancia inicial de inundación descendente (DFD₀) debería ser mayor que la reducción de la distancia de inundación descendente con calado de aguante, según se indica en la figura 2.6-4.

$$DFD_0 - RDFD > 0.0$$

donde:

 DFD_0 = es la distancia inicial de inundación descendente por encima de la flotación con calado D_m , en metros

RDFD = es la reducción de la distancia de inundación descendente, en metros, igual a $SF(k \cdot QSD_1 + RMW)$

SF = es igual a 1,1, factor de seguridad para tener en cuenta incertidumbres en el análisis, como las debidas a efectos no lineales

k = (factor de correlación) es igual a

$$0.55 + 0.08 \cdot (a-4) + 0.056 \cdot (1.52-GM);$$

(no se empleará un valor de GM superior a 2,44 m)

a = es igual a
$$(FBD_0/D_m) \cdot (S_{ptn} \cdot L_{ccc})/A_{wp}$$

(no se empleará un valor inferior a 4)

 QSD_1 = es igual a DFD_0 menos la distancia de inundación descendente cuasiestática a un ángulo ϕ_1 , en metros; no se empleará un valor inferior a 3 m

RMW = es el movimiento relativo producido por las olas con relación al ángulo φ₁, en metros, igual a 9.3+0.11 * (X-12.19)

$$X = \text{es igual a } Dm \cdot (V_t/V_p) \cdot (A_{wp}^2/l_{wp}) \cdot (L_{CCC}/L_{ptn})$$

(no se empleará un valor de X inferior a 12,19 m).

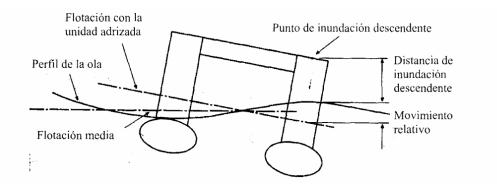


Figura 2.6-4: Definición de la distancia de inundación descendente y el movimiento relativo

Los parámetros empleados en estas ecuaciones se definen en 2.6.4.3.

2.6.4.3 Parámetros geométricos

 A_{wp} = es el área del plano de la flotación con calado de aguante, incluida si procede la aportación de las riostras (m²)

 A_w = es el área efectiva expuesta al viento con la unidad adrizada (área proyectada x coeficiente de forma x coeficiente de altura) (m²)

BM = es la distancia vertical entre el metacentro y el centro de carena, con la unidad adrizada (m)

Datos de entrada

D_m	=	es el calado inicial de aguante (m)
FBD_0	=	es la distancia vertical desde la flotación correspondiente a D_m hasta el borde superior de la cubierta expuesta más alta, en el costado (m)
GM	=	en 2.6.4.2.1, GM es la altura metacéntrica calculada con respecto al eje de balance o al diagonal, si con éste la relación de energía de reserva "B"/"A" es menor. Generalmente es el eje diagonal, ya que en esa posición la unidad presenta una mayor área proyectada expuesta al viento, lo cual influye en los tres ángulos característicos mencionados <i>supra</i> (m)
GM	=	en 2.6.4.2.2, GM es la altura metacéntrica calculada con respecto al eje que dé lugar al margen mínimo de distancia de inundación descendente (o sea, generalmente el eje que supone la distancia QSD_1 mayor) (m)
I_{wp} L_{ccc}	=	es el momento de área de segundo orden del plano de la flotación con calado de aguante, incluida si procede la aportación de las riostras (m ⁴)
L_{ccc}	=	es la distancia longitudinal entre los centros de las columnas de las esquinas (m)
L_{ptn}	=	es la eslora total de cada pontón (m)
S_{ptn}	=	es la distancia transversal entre los planos de crujía de los pontones (m)
V_c	=	es el volumen total de todas las columnas, desde la parte superior de los pontones hasta el tope de la estructura de las columnas, sin contar el volumen incluido en la cubierta superior (m³)
V_p	=	es el volumen total combinado de ambos pontones (m³)
V_t	=	es el volumen total de las estructuras (pontones, columnas y riostras) que contribuyen a la flotabilidad de la unidad desde su línea base hasta el tope de la estructura de las columnas, sin contar el volumen incluido en la cubierta superior (m³)
VCP_{w}	1=	es la altura del centro de presión del viento por encima de la flotación con calado D_{m} (m)

2.6.4.4 Formulario para la evaluación de los criterios de prevención de la zozobra

GM	=	m
BM	=	m
VCP_{w1}	=	m
A_w	=	m ²
V_t	=	m ³
V_c	=	m ³
V_p	=	m ³
I_{wp}	=	m ⁴
L_{ptn}	=	m
Datos calculados	3	
Φ1	=	grados
ϕ_2	=	grados
С	$(L_{ptn}^{5/3} \cdot VCP_{w1} \cdot A_w \cdot V_p \cdot V_c^{1/3})/(I_{wp}^{5/3} \cdot V_t) =$	m ⁻¹
$oldsymbol{arphi}_{dyn}$	(10,3 + 17,8C)/(1+GM /(1,46 + 0,28BM)) =	grados
Área "A"	=	m-grados
Área "B"	=	m-grados
Resultados	Relación de energía de reserva:	
	"B"/"A" = (mínimo = 0,1)	
	GM = m (KG =	m)
Nota: La altura GM mínima es la que produce una relación "B"/"A"=0,1		

2.6.4.5 Formulario para la evaluación de los criterios de prevención de la inundación descendente

DIARIO OFICIAL

Datos de entrada

DFD ₀	=	m
FBD ₀	=	m
GM	=	m
<i>D_m</i>	=	m
V _t	=	${\rm m}^3$
V _p	=	${\rm m}^3$
A _{wp}	=	m^2
I _{wp}	=	m^4
L _{ccc}		
L _{ptn}	=	m
S _{ptn}	=	m
SF	=	1,1

Datos calculados

Nota: La altura GM mínima es la que produce un margen de inundación descendente = 0,0 m.

=.....m

CAPÍTULO 3: ORIENTACIONES PARA ELABORAR LA INFORMACIÓN SOBRE ESTABILIDAD

3.1 Efecto de las superficies libres de los líquidos en los tanques

3.1.1 En todas las condiciones de carga, la altura metacéntrica inicial y la curva de los brazos adrizantes deberán corregirse con el efecto de superficie libre de los líquidos en los tanques.

(KG =....m)

3.1.2 El efecto de superficie libre deberá tenerse en cuenta siempre que el nivel de llenado de un tanque sea inferior al 98 % del nivel de llenado total. No será necesario considerar el efecto de superficie libre cuando un tanque esté nominalmente lleno, es decir, cuando su nivel de llenado sea igual o superior al 98 %. Los efectos de superficie libre en los tanques pequeños podrán no considerarse cuando se dé la condición indicada en 3.1.12.¹⁴

Sin embargo, los tanques de carga nominalmente llenos deberían ser objeto de una corrección para tener en cuenta los efectos de las superficies libres con un nivel de llenado del 98 %. Al hacerlo, la corrección de la altura metacéntrica inicial debería basarse en el momento de inercia de la superficie del líquido con un ángulo de escora de 5° dividido por el desplazamiento, y se sugiere que la corrección del brazo adrizante se haga teniendo en cuenta el momento de desplazamiento real de las cargas líquidas.

Véanse los criterios relativos al proyecto de estabilidad sin avería que figuran en la regla I/27 del MARPOL 73/78, así como la Interpretación unificada 45.

_

- 3.1.3 Los tanques que se tienen en cuenta al determinar la corrección por superficie libre quedan comprendidos en una de las dos categorías siguientes:
 - 1 tanques con niveles de llenado fijos (por ejemplo: cargas líquidas, lastre de agua). La corrección por superficie libre se determina con arreglo al nivel de llenado real de cada tanque; o
 - 2 tanques con niveles de llenado variables (por ejemplo, líquidos consumibles, tales como fueloil, gasoil, agua dulce, y también cargas líquidas y lastre de agua durante las operaciones de trasvase de líquidos). Salvo por lo autorizado en 3.1.5 y 3.1.6, la corrección por superficie libre es el valor máximo alcanzable entre los límites de llenado previstos para cada tanque que sea compatible con cualquier instrucción de funcionamiento.
- 3.1.4 Al calcular los efectos de superficie libre de los tanques que contengan líquidos consumibles se dará por supuesto que, para cada tipo de líquido, al menos un par de tanques transversales o un solo tanque central tienen una superficie libre, y el tanque o la combinación de tanques considerados serán aquellos en los que el efecto de superficie libre sea mayor.
- 3.1.5 Cuando los tanques de lastre de agua, incluidos los tanques antibalance y los tanques adrizantes, tengan que ser llenados o descargados durante la travesía, el efecto de superficie libre se calculará de modo que se tenga en cuenta la fase más crítica relacionada con tales operaciones.
- 3.1.6 En los buques que estén realizando operaciones de trasvase de líquidos, las correcciones por superficie libre para cada fase¹⁵ de la operación de trasvase de líquidos podrán determinarse con arreglo al nivel de llenado de cada tanque correspondiente a tal fase de la operación de trasvase.
- 3.1.7 Las correcciones de la altura metacéntrica inicial y de la curva de brazos adrizantes han de considerarse por separado, como sigue.
- 3.1.8 Al determinar la corrección de la altura metacéntrica inicial, los momentos de inercia transversales de los tanques se calculan con un ángulo de escora de 0°, en función de las categorías indicadas en 3.1.3.
- 3.1.9 La curva de brazos adrizantes podrá corregirse siguiendo uno de los métodos indicados a continuación, a reserva del consentimiento de la Administración:
 - .1 corrección basada en el momento real del trasvase de líquidos para cada ángulo de escora calculado; o
 - 2 corrección basada en el momento de inercia, calculado con un ángulo de escora de 0°, modificada para cada ángulo de escora calculado.
 - 3.1.10 Las correcciones podrán calcularse con arreglo a las categorías indicadas en 3.1.2.
- 3.1.11 Cualquiera que sea el método seleccionado para corregir la curva de brazos adrizantes, en el cuadernillo de estabilidad del buque sólo debe presentarse el método elegido. No obstante, cuando se describa otro método opcional para el cálculo manual de las condiciones de carga, procederá añadir una explicación de las diferencias que puedan surgir en los resultados, así como un ejemplo de corrección para cada variante.
- 3.1.12 No será necesario incluir en la corrección los tanques pequeños que cumplan la condición dada por la fórmula siguiente, que corresponde a una inclinación de 30°:

$$M_{fs}/\Delta_{min} < 0.01 m$$

donde:

 M_{fs} = es el momento de superficie libre, en mt

 Δ_{min} = es el desplazamiento mínimo del buque calculado en d_{min} en toneladas

d_{min} = es el calado medio de servicio mínimo de un buque sin carga, con el 10 % de provisiones y el mínimo de agua de lastre, si es necesario, en m.

3.1.13 No es necesario tener en cuenta, en los cálculos de correcciones, los residuos de líquidos que quedan normalmente en los tanques vacíos, siempre y cuando el total de los residuos de líquidos no produzca un efecto de superficie libre considerable.

A fin de cumplir esta recomendación, podrá evaluarse una cantidad suficiente de condiciones de carga que representen las fases inicial, intermedia y final de la operación de llenado o descarga, utilizando la corrección por superficie libre al nivel de llenado en cada tanque en la fase correspondiente.

3.2 Lastre permanente

Si se utiliza lastre permanente, éste deberá colocarse con arreglo a un plan aprobado por la Administración y de forma que no pueda variar de posición. El lastre permanente no se retirará del buque ni se cambiará de lugar dentro del mismo sin el permiso de la Administración. La información sobre este tipo de lastre deberá quedar registrada en el cuadernillo de estabilidad del buque.

3.3 Evaluación del cumplimiento de los criterios de estabilidad¹⁶

- 3.3.1 Salvo que el presente código estipule lo contrario, para evaluar en general si se satisfacen los criterios de estabilidad, se trazarán, a partir de los supuestos del código, las curvas de estabilidad correspondientes a las condiciones principales de carga previstas por el propietario en relación con las operaciones del buque.
- 3.3.2 Si el propietario del buque no facilita información suficientemente detallada acerca de las mencionadas condiciones de carga, se realizarán los cálculos correspondientes a las condiciones normales de carga.

3.4 Condiciones normales de carga que deben examinarse

3.4.1 Condiciones de carga

Las condiciones típicas de carga a que se hace referencia en el texto del presente código son las siguientes:

3.4.1.1 Buques de pasaje:

- .1 buque en la condición de salida a plena carga, con la totalidad de provisiones y combustible y de pasajeros con su equipaje;
- .2 buque en la condición de llegada a plena carga, con la totalidad de pasajeros con su equipaje, pero con sólo el 10 % de provisiones y combustible;
- .3 buque sin carga pero con la totalidad de provisiones y combustible y de pasajeros con su equipaje; y
- .4 buque en las mismas condiciones que en 3.4.1.1.3 *supra,* pero con el 10 % de provisiones y combustible.

3.4.1.2 Buques de carga:

- .1 buque en la condición de salida a plena carga, distribuida ésta de forma homogénea en todos los espacios de carga y con la totalidad de provisiones y combustible;
- .2 buque en la condición de llegada a plena carga, distribuida ésta de forma homogénea en todos los espacios de carga y con el 10 % de provisiones y combustible;
- .3 buque en la condición de salida en lastre, sin carga, pero con la totalidad de provisiones y combustible; y
- .4 buque en la condición de llegada en lastre, sin carga, pero con el 10 % de provisiones y combustible.

3.4.1.3 Buques de carga destinados a llevar carga en cubierta:

- .1 buque en la condición de salida a plena carga, distribuida ésta de forma homogénea en las bodegas, con una cubertada de medidas y masa especificadas y con la totalidad de provisiones y combustible; y
- .2 buque en la condición de llegada a plena carga, distribuida ésta de forma homogénea en las bodegas, con una cubertada de medidas y masa especificadas y con el 10 % de provisiones y combustible.

3.4.1.4 Buques de carga destinados a transportar cubertadas de madera:

Las condiciones de carga que han de tenerse en cuenta para los buques que transporten cubertadas de madera se especifican en 3.4.1.3. La estiba de las cubertadas de madera debe satisfacer las disposiciones del capítulo 3 del código de prácticas de seguridad para buques que transporten cubertadas de madera, 1991 (resolución A.715(17)).¹⁷

La evaluación del cumplimiento de los criterios de estabilidad deberá llevarse a cabo con cautela, especialmente en lo que respecta a las condiciones en que puedan preverse operaciones de trasvase de líquidos, a fin de garantizar el cumplimiento de los criterios de estabilidad en todas las etapas del viaje.

Véase el capítulo VI del Convenio SOLAS 1974 y la parte C del capítulo VI de dicho Convenio, en su forma enmendada por la resolución MSC.22(59).

- 3.4.1.5 En el caso de los buques de suministro mar adentro, las condiciones típicas de carga son las siguientes:
 - .1 buque en la condición de salida a plena carga, distribuida ésta bajo cubierta y con una cubertada de posición y peso especificados y la totalidad de provisiones y combustible, según corresponda a la condición de servicio más desfavorable en que se satisfagan todos los criterios de estabilidad pertinentes;
 - .2 buque en la condición de llegada a plena carga, tal como se indica en 3.4.1.5.1, pero con el 10 % de provisiones y combustible;
 - .3 buque en la condición de salida en lastre y sin carga, pero con la totalidad de provisiones y combustible;
 - .4 buque en la condición de llegada en lastre y sin carga, pero con el 10 % de provisiones y combustible; y
 - .5 buque en las peores condiciones operacionales previstas.
- 3.4.1.6 En el caso de los buques pesqueros, las condiciones típicas de carga a que se hace referencia en 2.1.1 son las siguientes:¹⁸
 - .1 salida hacia el caladero con abastecimiento completo de combustible, provisiones, hielo, artes de pesca, etc.;
 - .2 salida del caladero con captura completa y un porcentaje de las provisiones, el combustible, etc., que haya aceptado la Administración;
 - .3 Ilegada al puerto de origen con el 10 % de provisiones, combustible, etc., y captura completa; y
 - .4 llegada al puerto de origen con el 10 % de provisiones, combustible, etc., y una captura mínima de normalmente el 20 % de la captura completa, pero que podría ser del 40 % si a juicio de la Administración las pautas operacionales justifican dicho valor.

3.4.2 Supuestos para el cálculo de las condiciones de carga

- 3.4.2.1 En las condiciones de plena carga mencionadas en 3.4.1.2.1, 3.4.1.2.2, 3.4.1.3.1 y 3.4.1.3.2, si un buque de carga seca tiene tanques para carga líquida, el peso muerto efectivo en las condiciones de carga aquí descritas se distribuirá partiendo de dos supuestos, a saber, con los tanques de carga llenos y con los tanques de carga vacíos.
- 3.4.2.2 En las condiciones indicadas en 3.4.1.1.1, 3.4.1.2.1 y 3.4.1.3.1, se supondrá que el buque está cargado hasta su línea de carga de compartimentado o su línea de carga de verano o, si está destinado a transportar cubertadas de madera, hasta su línea de carga de verano para buques con cubertada de madera con los tanques de lastre vacíos.
- 3.4.2.3 Si en alguna condición de carga es necesario tomar agua de lastre, se calcularán diagramas adicionales para esta situación, indicándose la cantidad y disposición del agua de lastre.
- 3.4.2.4 Se supondrá en todos los casos que la carga en las bodegas es totalmente homogénea, a menos que esta condición sea incompatible con el servicio normal a que esté dedicado el buque.
- 3.4.2.5 Siempre que se transporte carga en cubierta, se supondrá e indicará una masa de estiba que se ajuste a la realidad, indicando también la altura de la cubertada.
- 3.4.2.6 En cuanto a las cubertadas de madera, en el cálculo de las condiciones de carga mencionadas en 3.4.1.4:
 - .1 se supondrá que la cantidad de carga y de lastre es la correspondiente a la condición de servicio más desfavorable en que se cumplan todos los criterios de estabilidad indicados en 2.2 de la parte A, o los criterios facultativos que figuran en 3.3.2 de la parte A. En la condición de llegada se supondrá que el peso de la cubertada ha aumentado un 10 % debido a la absorción de agua.
- 3.4.2.7 En el caso de los buques de suministro mar adentro, los supuestos para el cálculo de las condiciones de carga serán los siguientes:
 - si el buque tiene tanques de carga, se modificarán las condiciones de plena carga indicadas en 3.4.1.5.1 y 3.4.1.5.2, suponiendo en primer lugar que los tanques de carga están llenos y a continuación que están vacíos;

Véase la regla III/7 del Protocolo de 1993 relativo al Convenio de Torremolinos.

- .2 si en alguna condición de carga es preciso lastrar el buque con agua, se calcularán diagramas adicionales teniendo en cuenta el agua de lastre, cuya cantidad y disposición se indicará en la información sobre estabilidad;
- .3 siempre que se transporten cubertadas habrá que suponer un peso de estiba que se ajuste a la realidad, y éste se hará constar en la información sobre estabilidad, junto con la altura de la carga y su centro de gravedad;
- .4 cuando se transporten tuberías en cubierta, se supondrá que dentro de ellas y en sus inmediaciones se acumula agua en cantidad equivalente a un determinado porcentaje del volumen neto de la cubertada de tuberías. Se considerará que el volumen neto es igual al volumen interior de las tuberías más el volumen que media entre ellas. Dicho porcentaje será de 30 si el francobordo en los medios es igual o inferior a 0,015 *L* y de 10 si dicho francobordo es igual o superior a 0,03 *L*. Para valores intermedios del francobordo, el porcentaje correspondiente podrá obtenerse por interpolación lineal. Al determinar la cantidad de agua acumulada, la Administración podrá tener en cuenta el arrufo positivo o negativo a popa, el asiento real y la zona de operaciones; o
- .5 si un buque opera en zonas donde es probable la acumulación de hielo, se aplicará un margen por ese concepto de conformidad con lo dispuesto en el capítulo 6: Consideraciones sobre el engelamiento.
- 3.4.2.8 En el caso de los buques pesqueros, los supuestos para el cálculo de las condiciones de carga serán los siguientes:
 - .1 se aplicará un margen por el peso de las redes, aparejos y otros objetos mojados que haya sobre cubierta:
 - .2 se aplicará un margen por acumulación de hielo, si se prevé que ésta va a producirse, de conformidad con lo dispuesto en la sección 6.3;
 - .3 en todos los casos se supondrá que la carga es homogénea, a menos que ello no ocurra en la práctica;
 - .4 en las condiciones mencionadas en 3.4.1.6.2 y 3.4.1.6.3, se incluirá la cubertada, si está previsto llevarla;
 - .5 normalmente, sólo se incluirá el agua de lastre si se lleva en tanques que estén especialmente previstos para ese fin.

3.5 Cálculo de las curvas de estabilidad

3.5.1 Cuestiones generales

Las curvas hidrostáticas y de estabilidad se trazarán con arreglo a la gama de asientos de las condiciones de carga operacionales teniendo en cuenta los cambios de asiento debidos a la escora (cálculo hidrostático del asiento libre). Al realizar los cálculos se tendrá en cuenta el volumen del casco hasta la superficie exterior del revestimiento de la cubierta. Asimismo, los apéndices y los cajones de toma de mar deberán tenerse en cuenta cuando se calculen las curvas hidrostáticas y las curvas cruzadas de estabilidad. Cuando exista una asimetría entre babor y estribor, se elegirá la curva de brazos adrizantes menos favorable.

3.5.2 Superestructuras, casetas, etc., que pueden tenerse en cuenta

- 3.5.2.1 Pueden tenerse en cuenta las superestructuras cerradas que cumplan con la regla 3 10) b) del Convenio de Líneas de Carga, 1966 y del Protocolo de 1988 relativo al mismo, enmendado.
- 3.5.2.2 También podrán tenerse en cuenta otros pisos de superestructuras cerradas similares a las citadas. A modo de orientación, las ventanas (vidrio y marco) consideradas sin tapas ciegas en otros niveles por encima del segundo (supuesto flotante) deberán proyectarse con una resistencia capaz de mantener un margen de seguridad¹⁹ con respecto a la resistencia prescrita de la estructura circundante.²⁰
- 3.5.2.3 Las casetas situadas en la cubierta de francobordo, siempre que cumplan con las condiciones exigidas para las superestructuras cerradas, según se estipulan en la regla 3 10) b) del Convenio de Líneas de Carga, 1966 y del Protocolo de 1988 relativo al mismo, enmendado.

-

¹⁹ Como orientación para las Administraciones, deberá aplicarse un margen de seguridad del 30%.

La OMI deberá elaborar orientaciones para poner a prueba dichas ventanas.

- 3.5.2.4 No se pueden considerar como espacios cerrados las casetas que, cumpliendo con las condiciones anteriores, no tengan otra salida a una cubierta superior; sin embargo, las aberturas de cubierta en el interior de esas casetas se considerarán cerradas aunque no tengan medios de cierre propios.
- 3.5.2.5 Las casetas cuyas puertas de acceso no cumplan con lo dispuesto en la regla 12 del Convenio de Líneas de Carga, 1966 y del Protocolo de 1988 relativo al mismo, enmendado tampoco se tendrán en cuenta; sin embargo, cualquier abertura de cubierta situada en el interior de dichas casetas se considerará cerrada si sus medios de cierre cumplen con lo prescrito en las reglas 15, 17 ó 18 de dichos Convenio y Protocolo, enmendados.
- 3.5.2.6 No se tendrán en cuenta las casetas sobre cubiertas situadas por encima de la de francobordo, pero las aberturas que contengan podrán considerarse cerradas.
- 3.5.2.7 Las superestructuras y casetas que no se consideren cerradas podrán tenerse en cuenta al realizar los cálculos de estabilidad hasta el ángulo de escora al que se sumerjan sus aberturas. (La curva de estabilidad estática presentará para este ángulo uno o más escalones, y en los cálculos siguientes se supondrá que no existe un espacio inundado.)
- 3.5.2.8 En los casos en que el buque pudiera llegar a hundirse por causa de inundación a través de cualquier abertura, la curva de estabilidad se interrumpirá en el ángulo de inundación correspondiente y se considerará que el buque, en ese instante, ha perdido por completo su estabilidad.
- 3.5.2.9 Las pequeñas aberturas, como las que dan paso a cables o cadenas, apareios o anclas, así como los orificios de imbornales y de tubos de descarga al mar, se considerarán cerrados si se sumergen a un ángulo de escora superior a 30°. Si se sumergen a un ángulo de escora igual o inferior a 30° y la Administración considera que pueden dar lugar a inundación apreciable, estas aberturas se supondrán abiertas.
- 3.5.2.10 También podrán tenerse en cuenta los troncos, así como las escotillas, teniendo en cuenta la eficacia de los cierres de éstas.

3.5.3 Cálculo de las curvas de estabilidad para buques que transporten cubertadas de madera

Además de las disposiciones anteriores, la Administración podrá permitir que se tome en consideración la flotabilidad de la cubertada, suponiendo que ésta tiene una permeabilidad igual al 25 % del volumen ocupado por la misma. La Administración podrá prescribir curvas de estabilidad adicionales si considera necesario investigar la influencia de las diversas permeabilidades y/o la supuesta altura efectiva de la cubertada.

3.6 Cuadernillo de estabilidad

- 3.6.1 La información sobre estabilidad y los planos correspondientes irán redactados en el idioma de trabajo del buque o en cualquier otro idioma que la Administración pueda determinar. También se remite al Código internacional de gestión de la seguridad (Código IGS), aprobado por la Organización mediante la resolución A.741(18). Todas las traducciones del cuadernillo de estabilidad deberán ser aprobadas.
- 3.6.2 Todo buque debe ir provisto de un cuadernillo de estabilidad aprobado por la Administración que contenga suficiente información para que el capitán pueda manejar el buque de conformidad con las prescripciones aplicables del presente código. La Administración podrá imponer prescripciones adicionales. En las unidades móviles de perforación mar adentro, el cuadernillo de estabilidad podrá denominarse manual de instrucciones. El cuadernillo de estabilidad podrá incluir información sobre resistencia longitudinal. En el presente código sólo se hace referencia a los aspectos de estabilidad del cuadernillo.²¹
 - 3.6.3 En el caso de buques que transporten cubertadas de madera:
 - .1 el buque debe llevar a bordo información completa sobre estabilidad que tenga en cuenta la cubertada de madera. Dicha información debe permitir que el capitán obtenga de modo rápido y sencillo una orientación exacta de la estabilidad del buque en diversas condiciones de servicio. La experiencia ha demostrado que los cuadros o diagramas completos de periodos de balance resultan muy útiles para verificar las condiciones reales de estabilidad:22
 - .2 la Administración podrá considerar necesario que se entregue al capitán información en la que se especifiquen cambios en la cubertada con respecto a la indicada en las condiciones de carga, cuando la permeabilidad de dicha cubertada difiera considerablemente del 25 % (véase 3.5.3); y
 - se indicarán las condiciones correspondientes a la máxima cantidad de carga admisible sobre cubierta, teniendo en cuenta el menor coeficiente de estiba que se pueda encontrar en servicio.

Véase respectivamente la regla II-1/22 del Convenio SOLAS 1974, en su forma enmendada, la regla 10 del Convenio internacional sobre líneas de carga, 1966, o del Protocolo de 1988 relativo al mismo, enmendado, y a la regla III/10 del Protocolo de 1993 relativo al

Véase la regla II-1/22 del Convenio SOLAS 1974, en su forma enmendada, y a la regla 10 2) del Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988, en su forma enmendada.

- 3.6.4 El formato del cuadernillo de estabilidad y la información en él incluida variarán en función del tipo de buque de que se trate y de las operaciones que realice. Al preparar el cuadernillo de estabilidad se estudiará la posibilidad de incluir la siguiente información: 23
 - una descripción general del buque;

Martes 26 de noviembre de 2013

- .2 instrucciones para la utilización del cuadernillo;
- .3 planos de la disposición general del buque en que figuren los compartimientos estancos, cierres, respiraderos, ángulos de inundación descendente, lastre permanente, cargas de cubierta permitidas y diagramas de francobordo;
- curvas o tablas hidrostáticas y curvas cruzadas de estabilidad, calculadas con asiento libre .4 para la gama prevista de desplazamientos y asientos de servicio en condiciones operacionales normales;
- .5 plano o tablas de capacidades en que figuren la capacidad y el centro de gravedad de cada uno de los espacios de carga;
- .6 tablas de sondas de los tanques en que se indiquen la capacidad, el centro de gravedad y los datos de superficie libre de cada tanque;
- .7 información sobre las restricciones de carga, tales como curvas o tablas de alturas KG máximas o de alturas GM mínimas, que puedan utilizarse para determinar si el buque cumple los criterios de estabilidad aplicables;
- 8. condiciones operacionales típicas y ejemplos para desarrollar otras condiciones de carga aceptables utilizando la información que figura en el cuadernillo de estabilidad;
- .9 una breve descripción de los cálculos de estabilidad, incluidos los supuestos en que estén basados:
- .10 precauciones generales para evitar la inundación no intencionada;
- .11 información sobre la utilización de cualquier dispositivo de adrizamiento por inundación transversal, con una descripción de las condiciones de avería que puedan exigir la inundación transversal;
- .12 cualquier otra orientación necesaria para la seguridad operacional del buque en circunstancias normales y en casos de emergencia;
- .13 un índice de materias y un índice analítico para cada cuadernillo;
- .14 el informe sobre la prueba de estabilidad del buque, o:
 - .14.1 si la información sobre estabilidad se basa en la de un buque gemelo, el informe sobre la prueba de estabilidad de dicho buque, junto con un informe sobre el peso en rosca del buque de que se trate; o
 - .14.2 si las características del buque en rosca se determinan por métodos distintos de la prueba de estabilidad de dicho buque o de su gemelo, un resumen del método utilizado para determinar esas características;
- .15 recomendación para determinar la estabilidad del buque mediante una prueba de estabilidad en servicio.
- 3.6.5 En lugar del cuadernillo de estabilidad mencionado en 3.6.1 el buque podrá llevar, a discreción de la Administración interesada, un cuadernillo simplificado de formato aprobado que contenga información suficiente para que el capitán pueda manejar el buque de conformidad con las disposiciones aplicables del presente código.

3.7 Medidas operacionales para buques que transporten cubertadas de madera

- 3.7.1 La estabilidad del buque en todo momento, incluso durante el embarque y desembarque de la cubertada de madera, deberá ser positiva y ajustarse a una norma que sea aceptable a juicio de la Administración. La estabilidad se debe calcular teniendo en cuenta:
 - .1 el aumento de peso de la cubertada de madera debido a:
 - .1.1 la absorción de agua por la madera seca o curada; y
 - .1.2 la formación de hielo, dado el caso (capítulo 6: Consideraciones sobre el engelamiento);

Véase el Modelo de manual de carga y estabilidad (MSC/Circ.920).

- .2 las variaciones de peso debidas al consumo de provisiones y combustible;
- 3 el efecto de superficie libre del líquido en los tanques; y
- .4 el peso de agua acumulada en los huecos de estiba formados en la cubierta de madera, especialmente cuando sean troncos.

3.7.2 El capitán debe:

- .1 interrumpir todas las operaciones de carga si se produce una escora para la que no haya una explicación satisfactoria y resulte imprudente seguir cargando
- .2 antes de hacerse a la mar, cerciorarse de que el buque:
 - .2.1 está adrizado;
 - .2.2 tiene la altura metacéntrica adecuada; y
 - .2.3 satisface los criterios de estabilidad prescritos.
- 3.7.3 Los capitanes de buques de eslora inferior a 100 m deben, además:
 - 1 aplicar su buen criterio para asegurarse de que el buque que transporte troncos estibados en cubierta tiene flotabilidad adicional suficiente, a fin de evitar un exceso de carga y la pérdida de estabilidad en el mar;
 - .2 ser conscientes de que la altura GM_0 calculada en la condición de salida puede disminuir continuamente debido a la absorción de agua por la cubertada de troncos y el consumo de combustible, agua y provisiones, y asegurarse de que el buque cuenta con una altura GM_0 adecuada a lo largo del viaje; y
 - .3 ser conscientes de que si el buque se lastra después de la salida, el calado operacional puede exceder la línea de carga para el transporte de madera. Las operaciones de lastrado y deslastrado se llevarán a cabo de conformidad con las directrices del Código de prácticas de seguridad para buques que transporten cubertadas de madera, 1991 (resolución A.715(17)).
- 3.7.4 Los buques que transporten cubertadas de madera deben operar, en la medida de lo posible, con un margen seguro de estabilidad y una altura metacéntrica ajustada a las prescripciones de seguridad, pero no ha de permitirse que dicha altura metacéntrica sea inferior al mínimo recomendado que se especifica en 3.3.2 de la parte A.
- 3.7.5 No obstante, debe evitarse una estabilidad inicial excesiva que produzca movimientos rápidos y violentos en mar gruesa que a su vez ejercerán sobre la carga grandes esfuerzos de deslizamiento y traslación, sometiendo las trincas a grandes esfuerzos. La experiencia de servicio indica que, preferiblemente, la altura metacéntrica no debe exceder del 3 % de la manga con objeto de impedir aceleraciones excesivas en el balance, siempre y cuando se cumplan los criterios de estabilidad que figuran en 3.3.2 de la parte A. Es posible que esta recomendación no se aplique a todos los buques, por lo que el capitán debe tener en cuenta la información extraída del cuadernillo de estabilidad del buque.

3.8 Cuadernillos de instrucciones para determinados buques

- 3.8.1 Los buques para fines especiales y las embarcaciones de carácter innovador deberán llevar información adicional en su cuadernillo de estabilidad, tal como limitaciones de proyecto, velocidad máxima, condiciones meteorológicas más desfavorables para las que estén proyectados y cualquier otra información sobre el gobierno del buque que deba conocer el capitán para manejarlo de manera segura.
- 3.8.2 Los petroleros de doble casco con tanques de carga corridos de banda a banda deberán llevar un manual de instrucciones para las operaciones de carga y descarga de hidrocarburos que incluya los procedimientos de carga y descarga de hidrocarburos e información pormenorizada sobre la altura metacéntrica inicial del petrolero y la resultante de la corrección por superficie libre de los líquidos de los tanques de carga de hidrocarburos y de los tanques de lastre durante la carga y descarga de hidrocarburos (incluidos el lastrado y la descarga) y durante el lavado de los tanques de carga de hidrocarburos.²⁴
- 3.8.3 El cuadernillo de estabilidad de los buques de pasaje de transbordo rodado deberá contener información sobre la importancia que reviste el garantizar que todos los cierres sean y se mantengan estancos, debido a la rápida pérdida de estabilidad que puede ocasionar la entrada de agua en la cubierta para vehículos y a la zozobra que rápidamente puede seguir.

Véase la Orientación sobre la estabilidad sin avería de los buques tanque existentes durante las operaciones de trasvase de líquidos (MSC/Circ.706-MEPC/Circ.304).

CAPÍTULO 4: CÁLCULOS DE ESTABILIDAD EFECTUADOS POR LOS INSTRUMENTOS DE ESTABILIDAD

4.1 Instrumentos de estabilidad²⁵

El instrumento de estabilidad instalado a bordo deberá abarcar todas las prescripciones de estabilidad aplicables al buque. El soporte lógico debe someterse a la aprobación de la Administración. En 4.1.2 se definen los sistemas activos y pasivos. Dichas prescripciones sólo se refieren a los sistemas pasivos y el modo de funcionamiento autónomo de los sistemas activos.

4.1.1 Cuestiones generales

- 4.1.1.1 El alcance del soporte lógico para el cálculo de estabilidad deberá ajustarse a la información sobre estabilidad aprobada y, como mínimo, incluirá la información íntegra y permitirá efectuar todos los cálculos o comprobaciones necesarios a fin de garantizar el cumplimiento de las prescripciones de estabilidad aplicables.
- 4.1.1.2 Un instrumento de estabilidad aprobado no sustituye al cuadernillo de estabilidad aprobado, sino que lo complementa con objeto de facilitar los cálculos de estabilidad.
- 4.1.1.3 La información de entrada/salida deberá ser fácilmente comparable con el cuadernillo de estabilidad aprobado, a fin de evitar cualquier confusión y posibles interpretaciones erróneas del operador.
 - 4.1.1.4 Debería facilitarse un manual de instrucciones para el instrumento de estabilidad.
- 4.1.1.5 El idioma en el que se presenten e impriman los cálculos de estabilidad y el manual de instrucciones deberá coincidir con el del cuadernillo de estabilidad aprobado del buque. Es posible que se pida su traducción a un idioma considerado oportuno.
- 4.1.1.6 El instrumento de estabilidad es equipo específico del buque y los resultados de los cálculos sólo son aplicables al buque para el que se haya aprobado.
- 4.1.1.7 Si las modificaciones del buque dan lugar a alteraciones en el cuadernillo de estabilidad, la aprobación específica del soporte lógico original para el cálculo de estabilidad dejará de ser válida. El soporte lógico debería modificarse como corresponda y ser aprobado de nuevo.
- 4.1.1.8 Todo cambio en la versión del soporte lógico relacionada con el cálculo de estabilidad deberá notificarse a la Administración y ser aprobado por ésta.

4.1.2 Sistema de registro de datos

- 4.1.2.1 Los sistemas pasivos requieren el registro manual de los datos.
- 4.1.2.2 En los sistemas activos se sustituye en parte el registro manual por sensores que leen y registran el contenido de los tanques, etc.
- 4.1.2.3 Los sistemas integrados que controlan o ejecutan medidas a partir de la información facilitada por los sensores no son objeto del presente código, a excepción de la parte en la que se calcula la estabilidad.

4.1.3 Tipos de soporte lógico de estabilidad

Con arreglo a las prescripciones de estabilidad del buque, son aceptables tres tipos de cálculo para el soporte lógico de estabilidad.

Tipo 1

Soporte lógico que sólo realice cálculos de estabilidad sin avería (para buques que no deban cumplir un criterio de estabilidad con avería).

Tino 2

Soporte lógico que realice cálculos de estabilidad sin avería y compruebe la estabilidad con avería a partir de una curva límite (p.ej., para buques que se ajusten a los cálculos de estabilidad con avería de la parte B-1 del Convenio SOLAS, etc.) o condiciones de carga aprobadas previamente.

Tipo 3

Soporte lógico que realice cálculos de estabilidad sin avería y estabilidad con avería aplicando directamente los casos de avería programados con anterioridad para cada condición de carga (para algunos buques tanque, etc.). La Administración podría aceptar los resultados de los cálculos directos realizados por el instrumento de estabilidad incluso si difieren del mínimo GM o de la máxima altura del centro de gravedad especificados en el cuadernillo de estabilidad aprobado.

Podrán aceptarse tales desviaciones a condición de que los resultados de los cálculos directos cumplan todas las prescripciones pertinentes de estabilidad.

²⁵

4.1.4 Prescripciones funcionales

- 4.1.4.1 El instrumento de estabilidad deberá presentar los parámetros pertinentes para cada condición de carga, a fin de que el capitán pueda evaluar si la carga del buque respeta los límites de la aprobación. Deberán presentarse los parámetros siguientes para una condición de carga dada:
 - .1 datos detallados sobre el peso muerto, incluidos, si procede, el centro de gravedad y las superficies libres;
 - .2 asiento, escora;
 - .3 calado en las marcas de calado y perpendiculares;
 - .4 resumen de la condición de carga: desplazamiento, VCG, LCG, TCG, VCB, LCB, TCB, LCF, GM y GML;
 - .5 cuadro que muestre el brazo adrizante con respecto al ángulo de escora, incluidos el asiento y el calado;
 - .6 ángulo de inundación descendente y abertura respectiva de inundación descendente; y
 - .7 cumplimiento de los criterios de estabilidad: relación de todos los criterios de estabilidad, valores límite, valores obtenidos y conclusiones (criterios cumplidos o no).
- 4.1.4.2 Si se efectúan cálculos directos de estabilidad con avería, han de definirse previamente los casos de avería pertinentes con arreglo a las reglas aplicables, a fin de realizar la comprobación automática de una condición de carga determinada.
- 4.1.4.3 En el caso de que no se cumpla alguna de las limitaciones de carga, debe aparecer claramente un aviso tanto en la pantalla como en la copia impresa.
- 4.1.4.4 Los datos deberían presentarse de forma clara e inequívoca tanto en la pantalla como en la copia impresa.
 - 4.1.4.5 En la pantalla y en la copia impresa deberían figurar la fecha y la hora de los cálculos registrados.
 - 4.1.4.6 Toda copia impresa debería incluir el nombre del programa de cálculo y su versión.
- 4.1.4.7 En los cálculos de carga, las unidades de las mediciones deberían identificarse con claridad y utilizarse de forma congruente.

4.1.5 Tolerancias aceptables

Las tolerancias aceptables se determinarán según el tipo y ámbito de aplicación de los programas, de conformidad con lo dispuesto en 4.1.5.1 ó 4.1.5.2. No se aceptarán desviaciones con respecto a dichas tolerancias, salvo que la Administración estime que existe justificación suficiente para ello y que la decisión no tendrá repercusiones negativas en la seguridad de los buques.

La precisión de los resultados se calculará mediante un programa independiente o el cuadernillo de estabilidad aprobado de entrada idéntica.

4.1.5.1 Los programas que, para los cálculos de estabilidad, sólo utilicen datos del cuadernillo de estabilidad aprobado que hayan sido programados previamente deberían tener tolerancia nula para la impresión de los datos de entrada.

Las tolerancias de los datos de salida deberían aproximarse a cero, si bien son aceptables pequeñas diferencias asociadas al redondeo del cálculo o la condensación de los datos de entrada. Siempre que la Administración las examine, serán aceptables las diferencias que presentan los datos hidrostáticos y de estabilidad para el asiento y el método de cálculo de los momentos de las superficies libres con respecto al cuadernillo de estabilidad aprobado.

4.1.5.2 Los programas que se basen en modelos de la forma del casco para los cálculos de estabilidad deberían tener tolerancias para la impresión de los cálculos básicos, establecidos ya sea a partir de los datos del cuadernillo de estabilidad aprobado o bien del modelo de la Administración que conceda la aprobación.

4.1.6 Procedimiento de aprobación

4.1.6.1 Condiciones de aprobación del instrumento de estabilidad

La aprobación del soporte lógico incluirá:

- .1 la comprobación de la homologación, si la hay;
- .2 la comprobación de que los datos utilizados son congruentes con respecto a la condición actual del buque (véase 4.1.6.2);

- .3 la comprobación y aprobación de las condiciones de prueba; y
- .4 la comprobación de que el soporte lógico es adecuado para el tipo de buque y los cálculos de estabilidad prescritos.

El funcionamiento satisfactorio del instrumento de estabilidad deberá ponerse a prueba tras su instalación (véase 4.1.8). A bordo se dispondrá de una copia de las condiciones de prueba aprobadas y del manual de instrucciones del instrumento de estabilidad.

4.1.6.2 Aprobación específica

- 4.1.6.2.1 La precisión de los resultados computacionales y de los datos reales del buque que el programa de cálculo utilice para el buque concreto en el que esté instalado ha de ser satisfactoria a juicio de la Administración.
- 4.1.6.2.2 Tras la solicitud de comprobación de los datos, deberían extraerse del cuadernillo de estabilidad aprobado cuatro condiciones de carga como mínimo, que se utilizarán como condiciones de prueba. En el caso de buques que transporten líquidos a granel, al menos una de las condiciones debe incluir tanques parcialmente llenos. En el caso de buques que transporten grano a granel, una de las condiciones de carga del grano incluirá un compartimiento parcialmente lleno. En las condiciones de prueba, cada compartimiento debe cargarse una vez como mínimo. Las condiciones de prueba han de abarcar la gama completa de calados de carga, desde el más profundo previsto hasta el correspondiente a la condición de lastre ligero, e incluir al menos una condición de salida y una de llegada.
- 4.1.6.2.3 Los datos que se enumeran a continuación, presentados por el solicitante, han de ser congruentes con respecto a la disposición y las últimas características aprobadas del buque en rosca, de conformidad con los planos y documentación actuales en archivo, a reserva de su posible comprobación a bordo:
 - .1 identificación del programa de cálculo y de su versión. Dimensiones principales, características hidrostáticas y, si procede, perfil del buque;
 - .2 posición de las perpendiculares de proa y popa y, si procede, método de cálculo para obtener los calados a proa y popa en la posición real de las marcas de calado del buque;
 - .3 desplazamiento en rosca y centro de gravedad del buque obtenidos a partir de la prueba de estabilidad o del reconocimiento del desplazamiento en rosca efectuados en fecha más reciente;
 - .4 plano de formas, cuadros de desplazamiento u otra presentación apropiada de los datos sobre la forma del casco, incluidos todos los apéndices correspondientes, que sean necesarios para configurar el modelo del buque;
 - .5 definiciones relativas a los compartimientos, incluidos la separación entre cuadernas y los centros de volumen, además de los cuadros de capacidad (cuadros de sondeo/altura del espacio vacío) y las correcciones relativas a las superficies libres, si procede; y
 - .6 distribución de la carga y de los productos consumibles en cada una de las condiciones de carga.

La comprobación de la Administración no exime al propietario del buque de su responsabilidad de garantizar que la información programada en el instrumento de estabilidad sea congruente con respecto a la condición actual del buque y la información sobre estabilidad aprobada.

4.1.7 Manual del usuario

Debería facilitarse un manual de usuario sencillo, redactado en el mismo idioma que el cuadernillo de estabilidad, que incluya las descripciones e instrucciones oportunas, al menos sobre los aspectos siguientes:

- .1 instalación;
- .2 teclas de función;
- .3 ventanas de menú;
- .4 datos de entrada y salida;
- .5 soporte físico mínimo necesario para utilizar el soporte lógico;
- .6 empleo de las condiciones de carga de prueba;
- .7 fases de diálogo asistidas por ordenador; y
- .8 lista de advertencias.

Además del manual impreso, podrá disponerse de un manual de usuario en formato electrónico.

4.1.8 Pruebas de instalación

4.1.8.1 A fin de garantizar el funcionamiento correcto del instrumento de estabilidad después de que se haya instalado el soporte lógico definitivo o actualizado, el capitán del buque ha de encargarse de que los cálculos de prueba se realicen de acuerdo con las pautas siguientes, en presencia de un inspector de la Administración. Para las condiciones de prueba aprobadas, los cálculos deben incluir, como mínimo, un supuesto de carga (distinto del desplazamiento en rosca).

Nota: Los resultados de las condiciones de carga real no son apropiados para comprobar el buen funcionamiento del instrumento de estabilidad.

- 4.1.8.2 Las condiciones de prueba suelen almacenarse permanentemente en el instrumento de estabilidad. He aquí las pautas a seguir:
 - .1 recuperar el supuesto de carga de prueba e iniciar un cálculo; comparar los resultados de estabilidad con los de la documentación;
 - .2 modificar diversos aspectos del peso muerto (pesos de los tanques y peso de la carga) lo suficiente como para cambiar el calado o el desplazamiento al menos un 10 %. Los resultados deberán examinarse para garantizar que sus diferencias con respecto a los de la condición de prueba aprobada sean lógicas:
 - .3 revisar dicha condición de carga modificada para restablecer la condición de prueba inicial y comparar los resultados. Deberán reproducirse los datos de entrada y salida pertinentes de la condición de prueba aprobada; y
 - .4 de otro modo, deberán seleccionarse una o más condiciones de prueba y los cálculos de prueba se realizarán introduciendo en el programa todos los datos relativos al peso muerto para la condición de prueba seleccionada, como si se tratara de una carga propuesta. Deberá comprobarse que los resultados son idénticos a los que figuran en la copia aprobada de las condiciones de prueba.

4.1.9 Pruebas periódicas

- 4.1.9.1 En el reconocimiento anual, el capitán del buque debe encargarse de comprobar la precisión del instrumento de estabilidad utilizando, como mínimo, una condición de prueba aprobada. Si no hay ningún representante de la Administración presente en la comprobación del instrumento de estabilidad, debería guardarse a bordo, para documentar que la prueba se ha realizado de manera satisfactoria, una copia de los resultados de dicho examen a efectos de comprobación por parte del representante de la Administración.
- 4.1.9.2 En los reconocimientos de renovación, la comprobación de todas las condiciones de carga de prueba aprobadas debe realizarse en presencia del representante de la Administración.
 - 4.1.9.3 El procedimiento de prueba deberá llevarse a cabo de conformidad con lo especificado en 4.1.8.

4.1.10 Otras prescripciones

- 4.1.10.1 Deberá facilitarse protección contra la modificación involuntaria o no autorizada de los programas y datos.
- 4.1.10.2 El programa debe supervisar el funcionamiento, activando una alarma cuando el instrumento de estabilidad se utilice de forma incorrecta o poco ortodoxa.
- 4.1.10.3 El programa y los datos almacenados en el sistema deberán protegerse de modo que no se vean afectados por una pérdida de energía.
- 4.1.10.4 Deberán incluirse mensajes de error sobre las limitaciones relativas al llenado de un compartimiento por encima de su capacidad o a su llenado repetido, o al rebasamiento de la línea de carga asignada.
- 4.1.10.5 Si se instala a bordo un soporte lógico para efectuar medidas de estabilidad, tales como la capacidad de navegación del buque, la evaluación de las pruebas de estabilidad en servicio, el procesamiento de resultados para cálculos posteriores o la evaluación de las mediciones del periodo de balance, la instalación mencionada deberá notificarse a la Administración para su examen.
- 4.1.10.6 Entre las prestaciones del programa deben figurar los cálculos de masas y momentos con presentación numérica y gráfica de los resultados, tales como los valores de la estabilidad inicial, la curva de brazos adrizantes, las áreas bajo la curva de brazos adrizantes y la gama de estabilidad.
- 4.1.10.7 Todos los datos de entrada procedentes de sensores de medición automática, como dispositivos de medición o sistemas de lectura del calado, deberán presentarse al usuario para su comprobación. El usuario habrá de contar con la posibilidad de corregir manualmente las lecturas incorrectas.

CAPÍTULO 5: DISPOSICIONES OPERACIONALES CONTRA LA ZOZOBRA

5.1 Precauciones generales contra la zozobra

- 5.1.1 El cumplimiento de los criterios de estabilidad no garantiza la inmunidad contra la zozobra, cualesquiera que sean las circunstancias, ni redime al capitán de sus responsabilidades. Por consiguiente, los capitanes deben ejercer prudencia y buenas prácticas marineras, teniendo en cuenta la estación del año, los pronósticos meteorológicos y la zona de navegación, así como tomar las medidas adecuadas que justifiquen las circunstancias reinantes en lo que se refiere a la velocidad y el rumbo.²⁶
- 5.1.2 Habrá que asegurarse de que la carga asignada al buque puede estibarse de manera que se cumplan los criterios. Si fuese necesario, se limitará la cantidad hasta el punto que sea preciso lastrar el buque.
- 5.1.3 Antes de comenzar un viaje habrá que asegurarse de que la carga, las grúas de manipulación de la carga y los elementos voluminosos de equipo han quedado estibados o trincados adecuadamente a fin de reducir al mínimo la posibilidad de su corrimiento longitudinal o lateral durante la navegación, producido por la aceleración debida al balance o el cabeceo.²⁷
- 5.1.4 Cuando un buque esté realizando operaciones de remolque dispondrá de una reserva de estabilidad suficiente para soportar el momento escorante previsto provocado por el cable de remolque sin que esto ponga en peligro su seguridad. La carga de cubierta a bordo del buque remolcador estará situada de manera que no menoscabe la seguridad de la tripulación que esté trabajando en cubierta ni impida el funcionamiento correcto del equipo de remolque, y estará debidamente sujeta. El equipo del cable de remolque incluirá muelles de remolque y medios para la suelta rápida del remolque.
- 5.1.5 Se reducirá al mínimo el número de tanques parcialmente llenos, habida cuenta de las repercusiones desfavorables para la estabilidad. Se tendrán en cuenta las repercusiones negativas sobre la estabilidad de los vasos de piscina que estén llenos.
- 5.1.6 Los criterios de estabilidad enunciados en la parte A (capítulo 2) fijan valores mínimos, pero no se recomiendan valores máximos. Es aconsejable evitar alturas metacéntricas excesivas, ya que éstas posiblemente ocasionen fuerzas debidas a la aceleración que podrían ser perjudiciales para el buque, su dotación y equipo y el transporte seguro de la carga. Los tanques parcialmente llenos se podrán utilizar en casos excepcionales como medios para reducir el valor excesivo de la altura metacéntrica. En dichos casos, sé deberá tener debidamente en cuenta el efecto del chapoteo.
- 5.1.7 Se tendrán en cuenta los posibles efectos desfavorables sobre la estabilidad cuando se transporten determinadas cargas a granel. A este respecto convendrá tomar en consideración el Código de prácticas de seguridad relativas a las cargas sólidas a granel, de la OMI.

5.2 Precauciones operacionales con mal tiempo

- 5.2.1 Todas las puertas y demás aberturas por las que pueda entrar agua en el casco o en las casetas, el castillo, etc., irán debidamente cerradas cuando las condiciones meteorológicas sean desfavorables y, por lo tanto, todos los dispositivos necesarios para este fin deberán mantenerse a bordo y en buen estado.
- 5.2.2 Las escotillas, puertas, etc., que sean estancas ó estancas a la intemperie se mantendrán cerradas durante la navegación, salvo cuando sea necesario abrirlas por razones operacionales del buque, en cuyo caso se tendrán siempre listas para cerrarlas inmediatamente, y estarán claramente marcadas para indicar que deben mantenerse cerradas, salvo que haya que utilizarlas para acceso. En los buques pesqueros, las tapas de escotilla y portas a ras de cubierta se mantendrán debidamente sujetas mientras no se estén utilizando durante las operaciones de pesca. Todas las tapas ciegas desmontables se mantendrán en buenas condiciones y firmemente cerradas cuando haga mal tiempo.
- 5.2.3 Los dispositivos de cierre de los tubos de aireación de los tanques de combustible irán sujetos cuando haga mal tiempo.
- 5.2.4 Nunca se transportará pescado a granel sin asegurarse antes de que las divisiones amovibles de las bodegas van instaladas adecuadamente.

Véase la Orientación revisada que sirva de guía al capitán para evitar situaciones peligrosas en condiciones meteorológicas y estados de la mar adversos (MSC.1/Circ.1228).

_

²⁷ Véanse las Directrices para la elaboración del Manual de sujeción de la carga (Circular MSC/Circ.745).

5.3 Manejo del buque con mal tiempo

- 5.3.1 En todas las condiciones de carga se tomarán las medidas necesarias para mantener un francobordo adecuado.
- 5.3.2 En condiciones de mal tiempo se reducirá la velocidad del buque si se experimenta emersión de la hélice, embarque de agua en cubierta o fuertes pantocazos.
- 5.3.3 Se prestará especial atención cuando el buque navegue con mar de popa, de aleta o de proa, ya que pueden producirse fenómenos peligrosos, tales como resonancia paramétrica, caída al través, reducción de la estabilidad en la cresta de la ola y balance excesivo, ya sea de forma aislada, consecutiva o simultánea en una combinación múltiple, con el consiguiente peligro de zozobra. Para evitar dichos fenómenos deberá alterarse convenientemente la velocidad y/o el rumbo del buque.²⁸
- 5.3.4 Es peligroso confiar en el gobierno automático, ya que ello puede entorpecer las rápidas maniobras que tal vez sean necesarias con mal tiempo.
- 5.3.5 Se deberá evitar la acumulación de agua en los pozos de cubierta. Si las portas de desagüe no son suficientes para drenar el pozo, habrá que reducir la velocidad del buque, cambiar el rumbo o ambos. Las portas de desagüe que lleven dispositivos de cierre estarán siempre en buen estado de funcionamiento y no se llevarán trabadas.
- 5.3.6 Los capitanes serán conscientes de que pueden encontrarse olas rompientes o de gran pendiente en determinadas zonas o cuando se dan ciertas combinaciones de viento y corriente (en estuarios, zonas de aguas poco profundas, bahías con forma de embudo, etc.). Estas olas son muy peligrosas, especialmente para los buques pequeños.
- 5.3.7 En condiciones de mal tiempo, la presión de los vientos laterales puede provocar un ángulo de escora considerable. Si se recurre a procedimientos antiescora (tales como el lastrado, la utilización de dispositivos antiescora, etc.) para corregir la escora debida al viento, los cambios de rumbo del buque con respecto a la dirección del viento pueden ocasionar ángulos de escora peligrosos o la zozobra. Por ello, la escora debida al viento no debe compensarse con procedimientos antiescora, a menos que, a reserva de la aprobación de la Administración, se haya comprobado mediante cálculos que el buque tiene suficiente estabilidad en las peores condiciones posibles (es decir, manejo inadecuado o erróneo, fallo del mecanismo, cambio de rumbo, etc.). El cuadernillo de estabilidad debe incluir orientación sobre el uso de los procedimientos antiescora.
- 5.3.8 Se recomienda el empleo de directrices operacionales para evitar situaciones peligrosas en condiciones atmosféricas muy desfavorables, o un sistema informatizado a bordo. El método debería ser fácil de usar.
- 5.3.9 Las naves de gran velocidad no se deben manejar deliberadamente en condiciones peores que las más desfavorables previstas ni fuera de los límites especificados en los certificados pertinentes o en los documentos que en ellos se mencionan.

CAPÍTULO 6: CONSIDERACIONES SOBRE EL ENGELAMIENTO

6.1 Cuestiones generales

- 6.1.1 Para los buques que operen en zonas en las que sea probable la formación de hielo y ésta pueda repercutir desfavorablemente en su estabilidad, se incluirán márgenes por engelamiento en el análisis de las condiciones de carga.
- 6.1.2 Se recomienda a las Administraciones que tengan en cuenta el engelamiento, permitiéndoseles que apliquen las normas nacionales cuando se considere que las condiciones ambientales justifican la aplicación de normas más rigurosas que las recomendadas en las secciones siguientes.

6.2 Buques de carga que transporten cubertadas de madera

- 6.2.1 El capitán debe establecer o verificar la estabilidad de su buque en las condiciones de servicio más desfavorables, teniendo en cuenta los aumentos de peso de la cubertada debidos a la absorción de agua y/o la formación de hielo y las variaciones en las provisiones de consumo.²⁹
- 6.2.2 Cuando se transporten cubertadas de madera y se prevea la formación de hielo, se aplicará un margen en la condición de llegada para tener en cuenta el peso adicional.

Véase la Orientación revisada que sirva de guía al capitán para evitar situaciones peligrosas en condiciones meteorológicas y estados de la mar adversos (MSC.1/Circ.1228).

_

Véase la regla 44 10) del Convenio de Líneas de Carga, 1996, y la regla 44 7) de su Protocolo de 1988, en su forma enmendada.

(Segunda Sección)

6.3 Buques pesqueros

En los cálculos de las condiciones de carga de los buques pesqueros (véase 3.4.2.8) se incluirá, según proceda, un margen por acumulación de hielo de conformidad con las disposiciones siguientes:

6.3.1 Margen por acumulación de hielo³⁰

Para los buques que operen en zonas en las que sea probable la formación de hielo, en los cálculos de estabilidad se aplicarán los siguientes márgenes por engelamiento:

- .1 30 kg por m² de cubiertas expuestas a la intemperie y pasarelas;
- .2 7,5 kg por m² del área lateral proyectada de cada costado del buque que quede por encima del plano de flotación;
- .3 el área lateral proyectada de superficies discontinuas de barandillas, botalones diversos, arboladura (exceptuados los palos) y jarcia de los buques que no tienen velas, así como el área lateral proyectada de otros objetos pequeños, se calcularán aumentando en un 5 % el área total proyectada de las superficies continuas y en un 10 % los momentos estáticos de esta área.

Los buques destinados a faenar en zonas en las que se sabe que se produce acumulación de hielo estarán:

- .4 proyectados de modo que se aminore la acumulación de hielo; y
- .5 equipados con los medios que la Administración pueda prescribir para retirar el hielo, por ejemplo, dispositivos eléctricos o neumáticos y/o herramientas especiales, tales como hachas o bastones de madera para quitar el hielo de las amuradas, barandillas y demás estructuras en cubierta.

6.3.2 Orientación relacionada con la acumulación de hielo

En la aplicación de lo anterior conviene tener en cuenta las siguientes zonas de engelamiento:

- .1 la zona situada al norte de la latitud 65°30' N, entre la longitud 28° W y la costa occidental de Islandia; al norte de la costa septentrional de Islandia; al norte de la loxodrómica trazada entre los puntos de latitud 66° N, longitud 15° W y latitud 73°30' N, longitud 15° E; al norte de la latitud 73°30' N entre las longitudes 15° E y 35° E, y al este de la longitud 35° E, así como al norte de la latitud 56° N en el mar Báltico;
- .2 la zona situada al norte de la latitud 43° N, limitada al oeste por la costa norteamericana y al este por la loxodrómica trazada entre los puntos de latitud 43° N, longitud 48° W y latitud 63° N, longitud 28° W y, desde ahí, a lo largo de la longitud 28° W;
- .3 todas las zonas marítimas situadas al norte de Norteamérica y al oeste de las zonas definidas en los apartados 6.3.2.1 y 6.3.2.2;
- .4 los mares de Bering y Ojotsk y el estrecho de Tartaria durante la temporada de hielos; y
- .5 al sur de la latitud 60° S.

Al final del capítulo se adjunta un mapa ilustrativo de esas zonas.

Para los buques que operen en zonas en que quepa esperar acumulación de hielo:

- .6 en las zonas definidas en 6.3.2.1, 6.3.2.3, 6.3.2.4 y 6.3.2.5, en las que, según se sabe, se dan condiciones de formación de hielo claramente diferentes de las descritas en 6.3.1, las prescripciones relativas a la acumulación de hielo pueden oscilar, por lo que respecta a los márgenes exigidos, entre la mitad y el doble de los valores admisibles; y
- .7 en la zona definida en 6.3.2.2, en la que cabe esperar una acumulación de hielo superior al doble de los márgenes exigidos en 6.3.1, podrán aplicarse prescripciones más rigurosas que las dadas en 6.3.1.

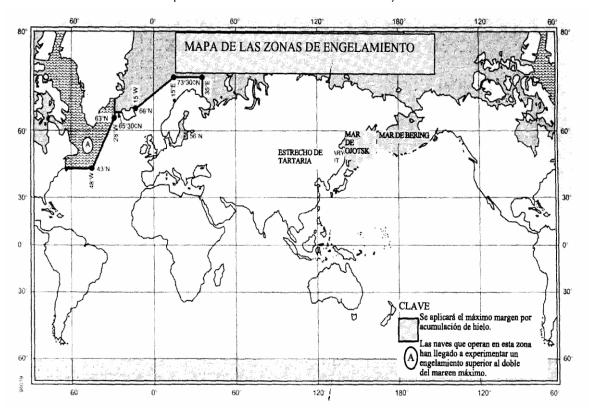
³⁰

6.3.3 Breve examen de las causas de la formación de hielo y su influencia en la navegabilidad del buque

- 6.3.3.1 El patrón de un buque pesquero tendrá presente que la formación de hielo es un proceso complicado en el que influyen las condiciones meteorológicas, la condición de carga y el comportamiento del buque con mal tiempo, así como el tamaño y el emplazamiento de las superestructuras y el aparejo. La causa más corriente de formación de hielo es la acumulación de gotas de agua en la estructura del buque. Estas gotas proceden de los rociones producidos por las crestas de las olas y de los generados por el propio buque.
- 6.3.3.2 La formación de hielo se puede producir también cuando nieva, cuando hay niebla, incluida la niebla ártica humeante, si desciende la temperatura ambiente de manera repentina, y por la congelación de las gotas de lluvia al dar contra la estructura del buque.
- 6.3.3.3 En algunos casos, la formación del hielo puede darse o acentuarse cuando el buque embarca agua y la retiene en cubierta.
- 6.3.3.4 La formación intensa de hielo ocurre por lo general en la roda, amurada y tapas de regala, paredes frontales de superestructuras y casetas, escobenes, anclas, equipo de cubierta, castillo y cubierta superior, portas de desagüe, antenas, estays, obenques, palos y arboladura.
- 6.3.3.5 Se tendrá en cuenta que las regiones subárticas son las más peligrosas desde el punto de vista de la formación de hielo.
- 6.3.3.6 La formación de hielo es máxima con la mar y el viento por la proa. Con vientos del través y de aleta, el hielo se acumula más rápidamente en el costado de barlovento, lo cual puede producir una escora constante extremadamente peligrosa.
- 6.3.3.7 A continuación se enumeran las condiciones meteorológicas que originan el tipo más común de formación de hielo debido a los rociones. También se dan ejemplos del peso del hielo formado en un buque pesquero típico de desplazamiento comprendido entre 100 y 500 toneladas. Para buques de más porte, el peso será proporcionalmente superior.
 - 6.3.3.8 La acumulación de hielo es lenta:
 - .1 a temperaturas ambiente de -1 °C a -3 °C con vientos de cualquier velocidad;
 - .2 a temperaturas ambiente de -4 °C o inferiores y vientos de 0 m/s a 9 m/s; y
 - .3 en condiciones de precipitación, niebla o neblina, seguidas de un descenso repentino de la temperatura ambiente.

En las condiciones indicadas, es posible que la acumulación de hielo no exceda de 1,5 t/h.

- 6.3.3.9 A temperaturas ambiente de -4 °C a -8 °C y vientos de 10 m/s a 15 m/s, la acumulación de hielo es rápida. En estas condiciones, el hielo puede acumularse a razón de 1,5 t/h a 4 t/h.
 - 6.3.3.10 La acumulación de hielo es muy rápida:
 - .1 a temperaturas ambiente de -4°C o inferiores y vientos de 16 m/s o de mayor intensidad; y
 - .2 a temperaturas ambiente de -9°C o inferiores y vientos de 10 m/s a 15 m/s.


En estas condiciones, la acumulación de hielo puede exceder de 4 t/h.

- 6.3.3.11 El patrón deberá tener presente que la formación de hielo repercute desfavorablemente en la navegabilidad del buque, ya que da lugar a:
 - .1 un aumento del peso del buque debido a la acumulación de hielo en su superficie, lo cual contribuye a reducir el francobordo y la flotabilidad;
 - .2 una elevación del centro de gravedad del buque debido a que el hielo se acumula en las partes altas de la superestructura, con la correspondiente reducción del grado de estabilidad;
 - .3 un aumento de la superficie expuesta al viento debido a la formación de hielo en las partes altas del buque, con el consiguiente aumento del momento escorante producido por la acción del viento:
 - .4 un cambio de asiento debido a la distribución irregular del hielo a lo largo del buque;
 - .5 la aparición de una escora constante debida a la distribución irregular del hielo a lo ancho del buque; y
 - .6 un deterioro de la maniobrabilidad y una disminución de la velocidad del buque.
- 6.3.4 Los procedimientos operacionales para asegurar la capacidad de resistencia del buque en condiciones de formación de hielo figuran en el anexo 2 (Recomendaciones para que los patrones de buques pesqueros se aseguren de la resistencia del buque en condiciones de formación de hielo).

6.4 Buques de suministro mar adentro de eslora comprendida entre 24 m y 100 m

En los buques que operen en zonas en los que se pueda producir acumulación de hielo:

- .1 no se instalarán cierres en las portas de desagüe; y
- .2 por lo que respecta a las precauciones operacionales contra la zozobra, véanse las Recomendaciones para que los patrones de buques pesqueros se aseguren de la capacidad de resistencia del buque en condiciones de formación de hielo, que figuran en el párrafo 6.3.3 y el anexo 2 (Recomendaciones para que los patrones de buques pesqueros se aseguren de la resistencia del buque en condiciones de formación de hielo).

CAPÍTULO 7: CONSIDERACIONES SOBRE LA INTEGRIDAD DE ESTANQUIDAD Y LA ESTANQUIDAD A LA INTEMPERIE

7.1 Escotillas

- 7.1.1 Las escotillas de carga o de otro tipo de los buques regidos por el Convenio internacional sobre líneas de carga, 1966, y el Protocolo de 1988 relativo al mismo cumplirán lo dispuesto en las reglas 13, 14, 15, 16 y 26 5) de dichos Convenio y Protocolo.
- 7.1.2 Las escotillas de los buques pesqueros regidos por el Protocolo de 1993 relativo al Convenio de Torremolinos cumplirán con lo dispuesto en las reglas II/5 y II/6 de dicho Protocolo.
- 7.1.3 Las escotillas de los buques pesqueros con cubierta y de eslora comprendida entre 12 m y 24 m cumplirán con las disposiciones siguientes:
- 7.1.3.1 Todas las escotillas irán provistas de tapas, y las que puedan abrirse durante las operaciones de pesca irán normalmente dispuestas cerca de crujía.
- 7.1.3.2 En los cálculos de resistencia se supondrá que las tapas de escotilla que no sean de madera están sometidas a una carga estática igual a 10 kN/m² o al peso de la carga que se tiene previsto llevar sobre ellas, si este valor es mayor.
- 7.1.3.3 Si las tapas son de acero dulce, el esfuerzo máximo indicado en 7.1.3.2 multiplicado por 4,25 no excederá de la resistencia mínima a la rotura del material. Con estas cargas, la flecha no excederá de 0,0028 veces el vano de la escotilla.

- 7.1.3.4 Las tapas que no sean de acero dulce o madera tendrán por lo menos una resistencia equivalente a las de acero dulce y se construirán con la rigidez suficiente para garantizar la estanquidad a la intemperie cuando estén sometidas a las cargas que se indican en 7.1.3.2.
- 7.1.3.5 Las tapas irán provistas de dispositivos de trinca y frisas, u otros medios equivalentes, que sean suficientes para garantizar la estanquidad a la intemperie.
- 7.1.3.6 En general, no se recomienda el empleo de tapas de escotilla de madera por la dificultad que entraña sujetarlas rápidamente para que queden estancas a la intemperie. No obstante, si ya existen, deberán poder fijarse de manera estanca a la intemperie.
- 7.1.3.7 Al grosor neto de las tapas de escotilla de madera se aplicará un margen por la abrasión debida al duro manejo de que serán objeto. En todo caso, el grosor neto de dichas tapas será como mínimo de 4 mm por cada 100 mm de vano, pero nunca inferior a 40 mm, y la anchura mínima de las superficies de apoyo será de 65 mm.
- 7.1.3.8 La altura sobre cubierta de las brazolas de escotilla en las partes expuestas de la cubierta de trabajo será como mínimo de 300 mm para buques de eslora igual a 12 m y de 600 mm para buques de eslora igual a 24 m. En el caso de buques de eslora intermedia, la altura mínima se obtendrá por interpolación lineal. La altura sobre cubierta de las brazolas de escotilla en las partes expuestas de la cubierta de superestructuras será como mínimo de 300 mm.
- 7.1.3.9 Cuando la experiencia operacional lo justifique, y previa aprobación de la autoridad competente, la altura de las brazolas de escotilla, exceptuadas las que dan directamente a los espacios de máquinas, podrá reducirse con respecto al valor indicado en 7.1.3.8, o incluso prescindirse de las mismas, a condición de que se instalen tapas de escotilla estancas que no sean de madera. La abertura de tales escotillas será la menor posible y las tapas irán fijadas de modo permanente con bisagras o medios equivalentes y podrán quedar cerradas y aseguradas rápidamente.

7.2 Aberturas en los espacios de máquinas

- 7.2.1 En los buques regidos por el Convenio internacional sobre líneas de carga, 1966, o el Protocolo de 1988 relativo al mismo, enmendado, las aberturas de los espacios de máquinas cumplirán con lo dispuesto en la regla 17 de dicho Convenio.
- 7.2.2 En los buques pesqueros regidos por el Protocolo de 1993 relativo al Convenio de Torremolinos, y en los buques pesqueros con cubierta nuevos de eslora comprendida entre 12 m y 24 m, se cumplirán las siguientes prescripciones de la regla II/7 de dicho Protocolo:
 - .1 las aberturas del espacio de máquinas irán armadas y protegidas por guardacalores de resistencia equivalente a la de la superestructura adyacente. Las correspondientes aberturas exteriores de acceso llevarán puertas que cumplan con lo prescrito en la regla II/4 del Protocolo o, en el caso de buques de eslora inferior a 24 m, tapas de escotilla que no sean de madera, que cumplan con lo prescrito en 7.1.3 del presente capítulo; y
 - .2 las aberturas que no sean de acceso irán provistas de tapas de resistencia equivalente a la de la estructura no perforada, fijadas a ésta de modo permanente y susceptibles de quedar cerradas de manera que sean estancas a la intemperie.
- 7.2.3 En los buques de suministro mar adentro, el acceso al espacio de máquinas se habilitará, a ser posible, en el castillo. Todo acceso al espacio de máquinas que dé a la cubierta expuesta de carga estará provisto de dos cierres estancos a la intemperie. El acceso a los espacios situados por debajo de la cubierta expuesta de carga se habilitará con preferencia desde un lugar situado dentro o por encima de la cubierta de superestructuras.

7.3 Puertas

- 7.3.1 En los buques de pasaje regidos por el Convenio internacional para la seguridad de la vida humana en el mar, 1974, las puertas cumplirán con lo dispuesto en las reglas II-1/13 y 16 de dicho Convenio.
- 7.3.2 En los buques regidos por el Convenio internacional sobre líneas de carga, 1966, o el Protocolo de 1988 relativo al mismo, enmendado, las puertas cumplirán con lo dispuesto en la regla 12 de dicho Convenio.
- 7.3.3 En los buques pesqueros regidos por el Protocolo de 1993 relativo al Convenio de Torremolinos, las puertas cumplirán con lo dispuesto en las reglas II/2 y II/4 de dicho Protocolo.

(Segunda Sección)

- 7.3.4 En los buques pesqueros con cubierta de eslora comprendida entre 12 m y 24 m:
 - .1 las puertas estancas podrán ser de bisagra y deberán poder accionarse in situ por cada lado. A ambos lados de la puerta se fijará un aviso de que la puerta debe mantenerse cerrada durante la navegación;
 - .2 todas las aberturas de acceso practicadas en los mamparos de las estructuras de cubierta cerradas por las que pueda entrar agua y poner en peligro al buque irán provistas de puertas fijadas permanentemente al mamparo, y armadas y reforzadas de modo que el conjunto de su estructura sea de resistencia equivalente a la de la estructura no perforada, y resulten estancas a la intemperie cuando estén cerradas. Habrá medios que permitan accionarlas desde ambos lados del mamparo;
 - .3 la altura sobre cubierta de las falcas de los vanos de puertas, tambuchos, construcciones de cubierta y guardacalores situados en la cubierta de trabajo y en las de superestructuras que den acceso directo a partes de la cubierta expuesta a la intemperie será como mínimo igual a la altura de las brazolas de escotilla especificada en 7.1.3.8;
 - .4 cuando la experiencia operacional lo justifique, y previa aprobación de la autoridad competente, la altura sobre cubierta de las falcas de los vanos de puertas especificados en 7.3.4.3, salvo los que den acceso directo a los espacios de máquinas, podrá reducirse a no menos de 150 mm en las cubiertas de superestructuras y a no menos de 380 mm en la cubierta de trabajo de los buques de eslora igual a 24 m, o a no menos de 150 mm en la cubierta de trabajo de buques de eslora igual a 12 m. En los buques de eslora intermedia, la altura reducida mínima aceptable de las falcas de los vanos de puertas situadas en la cubierta de trabajo se obtendrá por interpolación lineal.

7.4 Portas de carga y aberturas similares

- 7.4.1 Las portas de carga y otras aberturas similares de los buques regidos por el Convenio internacional sobre líneas de carga, 1966, o el Protocolo de 1988 relativo al mismo, enmendado, cumplirán con lo dispuesto en la regla 21 de dicho Convenio.
- 7.4.2 Las aberturas por las que pueda entrar agua en el buque y las compuertas de pesca de arrastre por la popa de los buques pesqueros regidos por el Protocolo de 1993 relativo al Convenio de Torremolinos cumplirán con lo dispuesto en la regla II/3 de dicho Protocolo.
- 7.4.3 Las portas de carga y aberturas similares de los buques de pasaje a los que se aplique el Convenio internacional para la seguridad de la vida humana en el mar, 1974 deberán cumplir lo dispuesto en las reglas II-1/15, 17 y 22 de dicho Convenio. Asimismo, en los buques de pasaje de transbordo rodado a los que se aplique ese Convenio, dichas aberturas tendrán que ajustarse a lo dispuesto en la regla II-1/17-1 del mismo.
- 7.4.4 Las portas de carga y otras aberturas similares de los buques de carga a los que se aplique el Convenio internacional para la seguridad de la vida humana en el mar, 1974 deberán cumplir lo dispuesto en la regla II-1/15-1 de dicho Convenio.

7.5 Portillos, imbornales, tomas y descargas

7.5.1 En los buques de pasaje a los que se aplique el Convenio internacional para la seguridad de la vida humana en el mar, 1974, las aberturas practicadas en el forro exterior por debajo de la cubierta de cierre se ajustarán a lo dispuesto en la regla II-1/15 de dicho Convenio.

La integridad de estanquidad por encima de la cubierta de cierre se ajustará a lo dispuesto en la regla II-1/17 de ese Convenio.

Además, en los buques de pasaje de transbordo rodado, la integridad de estanquidad por debajo de la cubierta de cierre se ajustará a lo dispuesto en la regla II-1/23 y la integridad del casco y de la superestructura se ajustará a lo dispuesto en la regla II-1/17-1 de dicho Convenio.

- 7.5.2 En los buques regidos por el Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988 en su forma enmendada, los imbornales, tomas y descargas cumplirán con lo dispuesto en la regla 22 y los portillos cumplirán con lo dispuesto en la regla 23 de dicho Convenio.
- 7.5.3 En los buques pesqueros regidos por el Protocolo de 1993 relativo al Convenio de Torremolinos, los portillos y ventanas cumplirán con lo dispuesto en la regla II/12 y las tomas y descargas cumplirán con lo dispuesto en la regla II/13 de dicho Protocolo.

- 7.5.4 En los buques pesqueros con cubierta de eslora comprendida entre 12 m y 24 m, los portillos, ventanas y demás aberturas, tomas y descargas cumplirán con lo siguiente:
 - .1 los portillos que den a espacios situados por debajo de la cubierta de trabajo y a espacios cerrados de dicha cubierta irán provistos de tapas ciegas con bisagra susceptibles de quedar cerradas de modo estanco;
 - .2 los portillos se ubicarán en un lugar tal que su borde inferior quede por encima de una línea paralela a la cubierta de trabajo en el costado, cuyo punto más bajo esté a 500 mm por encima de la máxima flotación de servicio:
 - .3 los portillos y sus correspondientes cristales y tapas ciegas se construirán de manera sólida y satisfactoria a juicio de la autoridad competente;
 - .4 las claraboyas que den a espacios situados por debajo de la cubierta de trabajo estarán construidas de manera sólida y serán susceptibles de quedar cerradas y aseguradas de modo estanco a la intemperie, y se dispondrán medios adecuados de cierre para el caso de que se dañen los refuerzos. En la medida de lo posible, se evitará instalar claraboyas que den a los espacios de máquinas;
 - .5 en todas las ventanas de la caseta de gobierno que estén expuestas a la intemperie se utilizará cristal de seguridad endurecido o un material adecuado de transparencia permanente y resistencia equivalente. Los medios para asegurar las ventanas y la anchura de las superficies de apoyo serán adecuados, habida cuenta del material empleado en la ventana. Las aberturas que comuniquen a espacios situados bajo cubierta desde una caseta de gobierno cuyas ventanas no estén provistas de la protección indicada en 7.5.4.6 llevarán un dispositivo de cierre que las haga estancas a la intemperie;
 - .6 se dispondrán tapas ciegas interiores o una cantidad suficiente de tapas ciegas exteriores cuando no haya otro método de impedir que el agua entre en el casco a través de una ventana o un portillo roto;
 - .7 la autoridad competente podrá aceptar portillos y ventanas sin tapas ciegas en los mamparos laterales o popeles de las estructuras de cubierta situadas en la cubierta de trabajo o por encima de ella si a su juicio la seguridad del buque no va a sufrir menoscabo;
 - .8 el número de aberturas practicadas en los costados del buque por debajo de la cubierta de trabajo deberá ser el mínimo compatible con las características de proyecto y la utilización correcta del buque, y tales aberturas irán provistas de medios de cierre de resistencia adecuada para asegurar la estanquidad y la integridad de la estructura circundante;
 - .9 los tubos de descarga que atraviesen el forro exterior desde espacios situados por debajo de la cubierta de trabajo o desde espacios situados dentro de las construcciones de cubierta irán provistos de medios eficaces y accesibles que impidan la entrada de agua a bordo. Normalmente, cada una de las descargas llevará una válvula automática de retención dotada de un medio seguro de cierre accionable desde un lugar fácilmente accesible. No se exigirá esta válvula si la autoridad competente estima que no hay riesgo de que la entrada de agua en el buque por la abertura de que se trate dé lugar a una inundación peligrosa y que el grosor de la tubería es suficiente. El medio de accionamiento seguro de la válvula irá provisto de un indicador que señale si la válvula está abierta o cerrada. El extremo interior abierto de todo sistema de descarga quedará por encima de la máxima flotación de servicio a un ángulo de escora que sea satisfactorio a juicio de la autoridad competente;
 - .10 las tomas de mar y descargas principales y auxiliares de los espacios de máquinas que sean esenciales para el funcionamiento de la maquinaria se controlarán in situ. Los mandos serán fácilmente accesibles e irán provistos de indicadores que señalen si las válvulas están abiertas o cerradas. Se instalarán dispositivos de aviso adecuados para indicar la entrada de agua en el espacio; y
 - .11 los accesorios fijados al forro exterior y todas las válvulas serán de acero, bronce u otro material dúctil. Todas las tuberías entre el forro y las válvulas serán de acero, salvo en los buques que sean de un material distinto del acero, en cuyo caso podrán utilizarse otros materiales adecuados.
- 7.5.5 En los buques de carga a los que se aplique el Convenio internacional para la seguridad de la vida humana en el mar, 1974, las aberturas externas se ajustarán a lo dispuesto en la regla II-1/15-1 de dicho Convenio.

(Segunda Sección)

7.6 Otras aberturas de cubierta

7.6.1 Las demás aberturas practicadas en las cubiertas de francobordo y de superestructuras de los buques regidos por el Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988 en su forma enmendada, cumplirán con lo dispuesto en la regla 18 de dicho Convenio.

7.6.2 En los buques pesqueros con cubierta de eslora igual o superior a 12 m, y cuando sea esencial para las faenas de pesca, podrán instalarse portillos a ras de cubierta de rosca, bayoneta o de un tipo equivalente y registros, a condición de que puedan cerrarse de manera estanca y estén fijados permanentemente a la estructura adyacente. Habida cuenta del tamaño y la disposición de las aberturas y la configuración de los dispositivos de cierre, podrán instalarse cierres de metal contra metal si son realmente estancos. Las aberturas que no sean escotillas, aberturas del espacio de máquinas, registros y portillos rasos en la cubierta de trabajo o de superestructuras irán protegidas por estructuras de cierre provistas de puertas estancas a la intemperie o medios equivalentes. Los tambuchos estarán situados lo más cerca posible de crujía.³¹

7.7 Ventiladores, tubos de aireación y dispositivos de sondeo

7.7.1 En los buques regidos por el Convenio internacional sobre líneas de carga, 1966, o su Protocolo de 1988 en su forma enmendada, los ventiladores cumplirán con lo dispuesto en la regla 19 y los tubos de aireación cumplirán con lo dispuesto en la regla 20 de dicho Convenio.

7.7.2 En los buques pesqueros regidos por el Protocolo de 1993 relativo al Convenio de Torremolinos, los ventiladores cumplirán con lo dispuesto en la regla II/9 y los tubos de aireación cumplirán con lo dispuesto en la regla II/10 de dicho Protocolo. Los dispositivos de sondeo cumplirán con lo dispuesto en la regla II/11 del Protocolo.

7.7.3 Los ventiladores y tubos de aireación de los buques pesqueros de eslora comprendida entre 12 m y 24 m cumplirán con lo siguiente:

- .1 los ventiladores tendrán manguerotes de construcción sólida y serán susceptibles de quedar cerrados de manera estanca a la intemperie con dispositivos fijados de modo permanente al ventilador o a la estructura adyacente. Los ventiladores se dispondrán lo más cerca posible de crujía y, si es practicable, se extenderán a través de la parte superior de cualquier construcción de cubierta o tambucho:
- .2 la altura de los manguerotes será la máxima posible. En la cubierta de trabajo, la altura sobre cubierta de los manguerotes que no sean de ventiladores del espacio de máquinas no será inferior a 760 mm, y en las cubiertas de superestructuras, no será inferior a 450 mm. Cuando tales ventiladores se encuentren a una altura que pueda entorpecer la utilización del buque, la altura de los manguerotes podrá reducirse a un valor que sea satisfactorio a juicio de la autoridad competente. La altura sobre cubierta de los ventiladores del espacio de máquinas será satisfactoria a juicio de la autoridad competente;
- .3 no será necesario instalar dispositivos de cierre en ventiladores cuyos manguerotes se eleven más de 2,5 m por encima de la cubierta de trabajo o más de 1,0 m por encima del techo de una caseta o de la cubierta de superestructuras;
- .4 si los tubos de aireación de los tanques u otros espacios situados bajo cubierta se elevan por encima de la cubierta de trabajo o de la de superestructuras, las partes expuestas de los tubos serán de construcción sólida y, en la medida de lo posible, estarán situadas cerca de crujía y protegidas contra posibles daños ocasionados por el arte de pesca o el equipo de izada. Las aberturas de tales tubos irán protegidas por medios eficaces de cierre, fijados de modo permanente al mismo tubo o a la estructura adyacente; dichos medios de cierre podrán omitirse si la autoridad competente queda satisfecha de que están protegidos contra el agua acumulada en cubierta; y
- .5 cuando los tubos de aireación estén situados cerca del costado del buque, su altura sobre cubierta hasta el punto en que el agua pueda entrar en el buque será como mínimo de 760 mm en la cubierta de trabajo y de 450 mm en la cubierta de superestructuras. La autoridad competente podrá aceptar que se reduzca la altura de un tubo de aireación para impedir que se entorpezcan las faenas de pesca.

_

Véase la regla II/8 del Protocolo de 1993 relativo al Convenio de Torremolinos.

7.7.4 En los buques de suministro mar adentro, los tubos de aireación y ventiladores cumplirán con lo siguiente:

- .1 los tubos de aireación y los ventiladores, se instalarán en lugares protegidos a fin de evitar que sufran daños durante las operaciones de carga y de reducir al mínimo la posibilidad de inundación. Los tubos de aireación situados en las cubiertas expuestas de carga y del castillo llevarán instalados dispositivos automáticos de cierre; y
- .2 se prestará la debida atención a la ubicación de los ventiladores del espacio de máquinas. Se instalarán con preferencia en un lugar por encima de la cubierta de superestructuras o por encima de un nivel equivalente si dicha cubierta no existe.

7.8 Portas de desagüe

7.8.1 Cuando las amuradas formen pozos en la parte expuesta de la cubierta de francobordo o de superestructuras, o en la cubierta de trabajo de los buques pesqueros, se dispondrán portas de desagüe a lo largo de la amurada para asegurar el desagüe de la cubierta de la manera más rápida y eficaz posible. Los bordes inferiores de las portas de desagüe deberán estar tan próximos a la cubierta como sea posible.³²

7.8.2 En los buques regidos por el Convenio internacional sobre líneas de carga, 1966, o el Protocolo de 1988 relativo al mismo, enmendado, las portas de desagüe cumplirán con la regla 24 de dicho Convenio.

7.8.3 En los buques pesqueros con cubierta de eslora igual o superior a 12 m, las portas de desagüe cumplirán con lo siguiente:³³

7.8.3.1 El área mínima de las portas de desagüe (A), en metros cuadrados, a cada banda del buque y en cada uno de los pozos de la cubierta de trabajo se determinará en función de la longitud (I) y la altura de la amurada en el pozo, según se indica a continuación:

A = K * l

donde:

K = 0,07 para buques de eslora igual o superior a 24 m;

K = 0.035 para buques de eslora igual a 12 m;

para esloras intermedias, el valor de K se obtendrá por interpolación lineal (no es necesario que I sea superior al 70% de la eslora del buque);

- .2 si la altura media de la amurada es superior a 1,2 m, el área prescrita se incrementará en 0,004 m² por metro de longitud del pozo y por cada 0,1 m de diferencia de altura; y
- .3 si la altura media de la amurada es inferior a 0,9 m, el área prescrita podrá reducirse en 0,004 m² por metro de longitud del pozo y por cada 0,1 m de diferencia de altura.

7.8.3.2 El área de las portas de desagüe calculada con arreglo a 7.8.3.1 se aumentará cuando la Administración o autoridad competente estime que el arrufo del buque no es suficiente para asegurar el desagüe rápido y eficaz de la cubierta.

7.8.3.3 A reserva de que lo apruebe la Administración o autoridad competente, el área mínima de las portas de desagüe de cada pozo de la cubierta de superestructura no será inferior a la mitad del área (A) indicada en 7.8.3.1, salvo cuando la cubierta de superestructura sea una cubierta de trabajo para faenas de pesca, en cuyo caso el área mínima a cada banda no será inferior al 75 % del área (A).

7.8.3.4 Las portas de desagüe irán dispuestas a lo largo de las amuradas de tal modo que el desagüe de la cubierta sea lo más rápido y eficaz posible. Los bordes inferiores de las portas de desagüe deberán estar tan próximos a la cubierta como sea posible.

7.8.3.5 Los tablones de encajonar el pescado en cubierta y los medios para estibar y utilizar los artes de pesca irán dispuestos de manera que no disminuyan la eficacia de las portas de desagüe ni se acumule agua en cubierta o se impida que corra libremente hacia las portas de desagüe. Los tablones estarán construidos de forma que queden asegurados en su lugar cuando se estén utilizando y no dificulten la descarga del agua embarcada en cubierta.

-

Véase la regla 24 5) del Convenio de Líneas de Carga, 1966 o del Protocolo de 1988 relativo al mismo, enmendado, y a la regla II/14
 4) del Protocolo de 1993 relativo al Convenio de Torremolinos.

Véase la regla II/14 del Protocolo de 1993 relativo al Convenio de Torremolinos.

- 7.8.3.6 Las portas de desagüe de altura superior a 0,3 m llevarán varillas espaciadas entre sí a no más de 0,23 m ni a menos de 0,15 m, o irán provistas de algún otro medio adecuado de protección. Si las portas de desagüe llevan tapas, éstas serán de construcción aprobada. Cuando se considere necesario proveer dispositivos para asegurar las tapas de las portas de desagüe durante las faenas de pesca, dichos dispositivos serán satisfactorios a juicio de la autoridad competente y podrán accionarse con sencillez desde un lugar fácilmente accesible.
- 7.8.3.7 En los buques que vayan a faenar en zonas propensas a la formación de hielo, las tapas y los dispositivos protectores de las portas de desagüe deberán poder desmontarse fácilmente a fin de limitar la acumulación de hielo. El tamaño de las aberturas y los medios provistos para desmontar dichos dispositivos protectores serán satisfactorios a juicio de la autoridad competente.
- 7.8.3.8 Además, en los buques pesqueros de eslora comprendida entre 12 m y 24 m que tengan pozos o bañeras en la cubierta de trabajo o en la de superestructura y cuyos pisos queden por encima de la máxima flotación de servicio, se instalarán medios eficaces de desagüe por la borda provistos de válvulas de retención. Cuando los pisos de tales pozos o bañeras queden por debajo de la máxima flotación de servicio, se dispondrán medios de desagüe dirigidos a las sentinas.
- 7.8.4 En los buques de suministro mar adentro, la Administración prestará especial atención al desagüe adecuado de los puestos de estiba de tuberías, habida cuenta de las características de cada buque. No obstante, el área prevista para el desagüe de los puestos de estiba de tuberías excederá del área prescrita para las portas de desagüe practicadas en la amurada de la cubierta de carga y no llevará tapas.

7.9 Cuestiones diversas

7.9.1 Los buques dedicados a operaciones de remolque llevarán medios para soltar rápidamente el cable de remolque.

CAPÍTULO 8: DETERMINACIÓN DE LOS PARÁMETROS DE DESPLAZAMIENTO EN ROSCA

8.1 Ámbito de aplicación

- 8.1.1 Todo buque de pasaje, sean cuales fueren sus dimensiones, y todo buque de carga de eslora igual o superior a 24 m, tal como se define ésta en el Convenio internacional sobre líneas de carga, 1966, o el Protocolo de 1988 relativo al mismo, enmendado, será sometido, ya terminada su construcción, a una prueba destinada a determinar los elementos de su estabilidad.³⁴
- 8.1.2 La Administración podrá autorizar que respecto de un determinado buque se prescinda de esta prueba de estabilidad prescrita en 8.1.1, siempre que se disponga de datos básicos proporcionados por la prueba de estabilidad realizada con un buque gemelo y que a juicio de la Administración sea posible, partiendo de estos datos básicos, obtener información de garantía acerca de la estabilidad del buque no sometido a prueba.

Para evitar la prueba de estabilidad, la desviación de la masa del buque en rosca no excederá de los siguientes valores:

para L^{35} < 50 m: un 2 % de la masa del buque en rosca que se toma como modelo o de la masa

para L > 160 m: un 1 % de la masa del buque en rosca que se toma como modelo o de la masa

indicada en la información sobre estabilidad:

indicada en la información sobre estabilidad;

para esloras intermedias: mediante interpolación lineal;

y la desviación de la posición longitudinal del centro de gravedad (LCG) del buque en rosca con respecto a L no deberá superar el 0,5 % del LCG del buque modelo en rosca o lo indicado en la información sobre estabilidad, con independencia de la eslora del buque.

8.1.3 La Administración podrá asimismo autorizar que respecto de un determinado buque o de una clase de buques especialmente proyectados para el transporte de líquidos o de mineral a granel se prescinda de la prueba de estabilidad, si la referencia datos existentes para buques análogos indica claramente que las proporciones y la disposición del buque harán que haya sobrada altura metacéntrica en todas las condiciones de carga probables.

Véase la regla II-1/5 del Convenio SOLAS 1974, en su forma enmendada.

A los efectos de 8.1.2 y 8.1.5, la eslora (*L*) significa la eslora de compartimentado (*L*_S) según se define ésta en la regla II-1/2.1 del Convenio SOLAS 1974, enmendado. Para los buques a los que se aplica el Convenio y otros buques, la eslora (*L*) es la eslora del buque según se define ésta en 2.12 de la parte "Finalidad y definiciones" del presente código.

- 8.1.4 Si un buque experimenta alteraciones que afecten a su estabilidad, el buque será sometido a una nueva prueba de estabilidad.
- 8.1.5 En todos los buques de pasaje, a intervalos periódicos que no excedan de cinco años, se llevará a cabo un reconocimiento para determinar el peso en rosca y comprobar si se han producido cambios en el desplazamiento en rosca o en la posición longitudinal del centro de gravedad. Si al comparar los resultados con la_información aprobada sobre estabilidad se encontrara o se previera una variación del desplazamiento en rosca que exceda del 2 % o una variación de la posición longitudinal del centro de gravedad que exceda del 1 % de *L*, se someterá el buque a una nueva prueba de estabilidad.
- 8.1.6 La prueba de estabilidad prescrita puede adaptarse a buques de eslora inferior a 24 m si se toman las debidas precauciones para garantizar la precisión del procedimiento de prueba.

8.2 Preparativos para la prueba de estabilidad

8.2.1 Notificación a la Administración

Se notificará por escrito la prueba de estabilidad a la Administración cuando ésta lo requiera o con bastante antelación a la realización de la prueba. Un representante de la Administración debe presenciar la prueba de estabilidad, cuyos resultados serán presentados a efectos de examen.

El astillero, el propietario o el ingeniero naval tienen la responsabilidad de hacer los preparativos, realizar la prueba de estabilidad y el reconocimiento del peso en rosca, registrar los datos y calcular los resultados. Si bien el cumplimiento de los procedimientos reseñados permitirá realizar la prueba de manera rápida y precisa, se reconoce que otros procedimientos pueden ser igualmente eficaces. No obstante, a fin de reducir al mínimo los retrasos, se recomienda presentar detalles de esas opciones a la Administración para que puedan examinarse antes de realizar la prueba de estabilidad.

8.2.1.1 Pormenores de la notificación

La notificación por escrito incluirá la información siguiente, según requiera la Administración:

- .1 identificación del buque con su nombre y el número del casco asignado por el astillero, si procede;
- .2 fecha, hora y lugar en que se va a realizar la prueba;
- .3 datos sobre los pesos de prueba:
 - .1 tipo;
 - .2 cantidad (número de unidades y masa de cada una);
 - .3 certificación;
 - .4 método de manipulación (es decir, rieles de deslizamiento o grúa);
 - .5 ángulo de escora máximo previsto a cada banda;
 - .4 dispositivos de medida:
 - .1 péndulos: emplazamiento aproximado y longitud;
 - .2 tubos en U: emplazamiento aproximado y distancia entre los brazos;
 - .3 inclinómetros: emplazamiento y detalles de aprobaciones y calibraciones;
- .5 asiento aproximado;
- .6 condición de los tanques;
- .7 estimación de la masa que hay que deducir, añadir y cambiar de lugar para que el buque quede verdaderamente en rosca;
- .8 descripción detallada de todo programa informático que se utilice para ayudar a realizar los cálculos durante la prueba de estabilidad; y
- .9 nombre y número de teléfono de la persona responsable de la realización de la prueba de estabilidad.

8.2.2 Condición general del buque

- 8.2.2.1 En el momento de realizar la prueba de estabilidad, la terminación del buque debe estar lo más avanzada posible. La prueba se programará tratando de reducir al mínimo los retrasos en la entrega del buque o las interrupciones en sus compromisos operacionales.
- 8.2.2.2 La cantidad y el tipo de trabajo que quede por realizar (masa que haya que añadir) repercuten en las características del buque en rosca, por lo que se impone buen juicio en las decisiones. Cuando la masa o el centro de gravedad de un elemento por añadir no puedan determinarse con confianza, será conveniente realizar la prueba de estabilidad una vez que se haya añadido tal elemento.
- 8.2.2.3 Antes de realizar la prueba de estabilidad conviene reducir al mínimo los materiales provisionales, cajas de herramientas, andamios, arena, objetos desechables, etc., que pueda haber a bordo. También se debe prescindir de los tripulantes o del personal que no vayan a participar directamente en la prueba de estabilidad.
- 8.2.2.4 Las cubiertas deben estar secas. El agua acumulada en la cubierta puede desplazarse y estancarse de manera similar a los líquidos en los tanques. Antes de realizar la prueba se debe eliminar el agua de lluvia, la nieve o el hielo que puedan haberse acumulado en el buque.
- 8.2.2.5 Al planear la prueba se debe tener en cuenta la cantidad de líquidos prevista durante su realización. Preferiblemente, todos los tanques deben estar vacíos y limpios, o bien completamente llenos. El número de tanques parcialmente llenos debe quedar reducido al mínimo absoluto. La viscosidad y profundidad del fluido y la forma del tanque deben ser tales que permitan determinar con precisión el efecto de superficie libre.
- 8.2.2.6 El buque debe estar amarrado en una zona tranquila y abrigada que no se halle expuesta a la acción de fuerzas externas, tales como los remolinos ocasionados por las hélices de embarcaciones que naveguen en las inmediaciones o las descargas inesperadas de bombas situadas en tierra. También se deben tener en cuenta el estado de la marea y el asiento del buque durante la prueba. Antes de comenzar la prueba se debe medir y registrar la profundidad en tantos puntos como sea necesario hasta asegurarse de que el buque no va a tocar el fondo, y se registrará con precisión el peso específico del agua. El buque ha de quedar amarrado de manera que pueda escorar sin restricciones. Se retirarán las rampas de acceso. Se reducirán al mínimo los cables eléctricos, mangueras, etc., conectados a tierra, manteniéndolos siempre flojos.
- 8.2.2.7 El buque debe estar lo más adrizado posible; con los pesos de prueba en su posición inicial puede aceptarse una escora de hasta medio grado. Si fuera viable, en los datos hidrostáticos deberán considerarse el asiento real y la inclinación de la quilla. Para evitar la introducción de errores excesivos debidos a variaciones considerables en el área del plano de flotación provocadas por la escora, se comprobarán previamente los datos hidrostáticos del asiento real y los máximos ángulos de escora previstos.
- 8.2.2.8 La masa total utilizada ha de ser suficiente para conseguir una inclinación a cada banda de un grado como mínimo y cuatro grados como máximo. No obstante, la Administración podrá aceptar un ángulo de inclinación inferior en el caso de grandes buques, a condición de que se cumplan las prescripciones que figuran en 8.2.2.9 relativas a la diferencia en altura del tubo en U o de deflexión del péndulo. Los pesos de prueba deben ser compactos y tener una forma que permita determinar con precisión la posición vertical de su centro de gravedad. Cada uno de los pesos irá marcado con su masa y número de identificación. Toda nueva certificación de los pesos de prueba se realizará antes de inclinar el buque. Durante la prueba de estabilidad se dispondrá de una grúa, u otros medios equivalentes, con suficiente capacidad y alcance para desplazar los pesos en la cubierta de manera rápida y segura. Podrá permitirse el trasiego de agua de lastre cuando sea imposible realizar la prueba de estabilidad utilizando pesos sólidos si la Administración lo acepta.
- 8.2.2.9 Se recomienda utilizar tres péndulos, y en todo caso dos como mínimo, para poder identificar las lecturas erróneas de uno cualquiera de ellos, así como colocarlos en un lugar protegido contra el viento. Se podrán sustituir uno o más péndulos por otros instrumentos de medida (tubos en U o inclinómetros) a discreción de la Administración. No procede utilizar otros instrumentos de medida para reducir los ángulos mínimos de inclinación recomendados en 8.2.2.8.

La posibilidad de utilizar un inclinómetro o un tubo en U se examinará para cada caso en particular. Sólo se recomienda utilizar inclinómetros u otros instrumentos de medida si se cuenta al menos con un péndulo.

8.2.2.10 Se deben facilitar medios eficaces de comunicación bidireccional entre el puesto central de control y el lugar en que se manejen los pesos, y entre dicho puesto y cada uno de los lugares donde se hallen los péndulos. Una persona, desde un puesto central de control, asumirá todas las funciones de dirección del personal que participe en la prueba.

8.3 Planos necesarios

En el momento de realizar la prueba de estabilidad, la persona encargada debe disponer de una copia de los siguientes planos:

- .1 plano de formas;
- .2 curvas hidrostáticas o datos hidrostáticos;
- .3 plano de disposición general de las cubiertas, bodegas, dobles fondos, etc.;
- .4 plano de capacidades en el que se indiquen la capacidad y las posiciones vertical y longitudinal de los centros de gravedad de los espacios de carga, tanques, etc. Cuando se utilice el peso del agua de lastre para conseguir la inclinación, se conocerán las posiciones transversal y vertical de los centros de gravedad de los tanques correspondientes para cada ángulo de inclinación;
- .5 tablas de sondas de los tanques;
- .6 emplazamiento de las escalas de calados; y
- .7 plano de varada en que se indiquen el perfil de la quilla y las correcciones de las escalas de calado (si los hubiere).

8.4 Procedimiento de prueba

- 8.4.1 Los procedimientos empleados para realizar la prueba de estabilidad y el reconocimiento del peso en rosca estarán en consonancia con las recomendaciones que figuran en el anexo 1 del presente código (Orientación detallada para realizar una prueba de estabilidad).
- 8.4.1.1 Se deben tomar lecturas del francobordo/calado para establecer la posición de la flotación, con el fin de determinar el desplazamiento del buque en el momento de realizar la prueba de estabilidad. Se recomienda tomar como mínimo cinco lecturas de francobordo en ambos costados, separadas entre sí aproximadamente por la misma distancia, o leer todas las escalas de calados (a proa, en los medios y a popa) en los dos costados del buque. Las lecturas de calado/francobordo se deben tomar inmediatamente antes o inmediatamente después de realizar la prueba de estabilidad.
- 8.4.1.2 En la prueba normalizada se ejecutan ocho movimientos de pesos. El movimiento Nº 8, que es una comprobación del punto inicial, puede omitirse si después del movimiento Nº 7 se consigue una línea recta en el gráfico. Si después de trazar la posición inicial y seis movimientos de pesos se obtiene una línea recta, la prueba de estabilidad habrá concluido y podrá omitirse la segunda comprobación de la posición inicial. En caso contrario, habrá que repetir los movimientos de pesos cuyo trazo no sea aceptable, o bien encontrar una explicación satisfactoria.
- 8.4.2 Se debe enviar a la Administración una copia de los datos relativos a la prueba, junto con los resultados obtenidos en la misma, en un modelo de informe aceptable, si se requiere.
- 8.4.3 Durante la prueba de estabilidad y en la preparación del informe correspondiente todos los cálculos podrán llevarse a cabo con la ayuda de un programa informático adecuado. Los resultados de dicho programa podrán utilizarse para presentar todos o parte de los datos y los cálculos incluidos en el informe de la prueba, siempre que tales resultados sean claros, concisos, bien documentados y coincidan en general con la forma y el contenido que la Administración prescriba.

8.5 Prueba de estabilidad para las unidades móviles de perforación mar adentro

- 8.5.1 Se exigirá realizar una prueba de estabilidad en la primera de las unidades de una serie que se ajuste al mismo proyecto, tan cerca del acabado de su construcción como resulte posible, a fin de determinar con precisión los datos relativos a la unidad en rosca (peso y posición del centro de gravedad).
- 8.5.2 Para las unidades sucesivas que se ajusten a un mismo proyecto, la Administración podrá aceptar los datos relativos a la unidad en rosca de la primera unidad de la serie en lugar de la prueba de estabilidad, siempre que la diferencia en el desplazamiento en rosca o en la posición del centro de gravedad debida a pequeñas variaciones en la maquinaria, armamento o equipo, confirmada por un reconocimiento para la determinación del peso muerto, sea inferior al 1 % de los valores del desplazamiento en rosca y de las principales dimensiones horizontales, determinados para la primera unidad de la serie. Se tendrá especial cuidado al hacer los cálculos detallados de peso muerto y la comparación con la unidad original de una serie de unidades semisumergibles estabilizadas por columnas de las que, aun cuando respondan a un mismo proyecto, se estime improbable que tengan una similitud aceptable en peso o centro de gravedad que justifique la exención de la prueba de estabilidad.

- 8.5.3 Los resultados de la prueba de estabilidad, o los del reconocimiento para la determinación del peso muerto y de la prueba de estabilidad corregidos en consideración a las diferencias de peso, se consignarán en el manual de instrucciones.
- 8.5.4 En el manual de instrucciones o el cuaderno de alteraciones de los datos relativos a la unidad en rosca se consignarán todos los cambios de maquinaria, estructura, armamento y equipo que afecten a los mencionados datos, y tales cambios se tendrán en cuenta en las operaciones diarias.
- 8.5.5 En las unidades estabilizadas por columnas se efectuará un reconocimiento para la determinación del peso muerto a intervalos que no excedan de cinco años. Cuando dicho reconocimiento indique que en el desplazamiento en rosca calculado se ha producido un cambio superior al 1 % del desplazamiento de servicio, se llevará a cabo una prueba de estabilidad.
- 8.5.6 La prueba de estabilidad o el reconocimiento del peso muerto se debería llevar a cabo en presencia de un funcionario de la Administración, de una persona con la necesaria autorización o del representante de una organización aprobada.

8.6 Prueba de estabilidad para los pontones

Normalmente no es necesario someter un pontón a la prueba de estabilidad, siempre que en los cálculos de estabilidad se tome un valor moderado de la altura del centro de gravedad (KG) en rosca. La altura KG puede suponerse al nivel de la cubierta principal, si bien se reconoce que cabe aceptar un valor inferior si éste va completamente documentado. El desplazamiento en rosca y la posición longitudinal del centro de gravedad se determinarán mediante cálculos basados en lecturas de calado y densidad.

ANEXO 1

ORIENTACIÓN DETALLADA PARA REALIZAR UNA PRUEBA DE ESTABILIDAD

1 INTRODUCCIÓN

El presente anexo complementa las normas para realizar una prueba de estabilidad que figuran en la parte B del capítulo 8 -Determinación de los parámetros de desplazamiento en rosca- del presente código. También contiene importantes procedimientos detallados para llevar a cabo una prueba de estabilidad en la que puedan obtenerse resultados válidos con un máximo de precisión y un costo mínimo para los propietarios, astilleros y la Administración. Si se quiere tener la certeza de que la prueba se realiza correctamente y que la precisión de los resultados puede verificarse conforme se va ejecutando, es indispensable conocer a fondo los procedimientos correctos para llevar a cabo una prueba de estabilidad.

2 PREPARATIVOS PARA LA PRUEBA DE ESTABILIDAD

2.1 Superficie libre y contenido de los tanques

2.1.1 Si hay líquidos a bordo durante la prueba de estabilidad, ya sea en las sentinas o en los tanques, se correrán hacia la banda más baja del buque al escorar. Ese corrimiento de líquidos tenderá a exagerar la escora del buque. A menos que puedan calcularse con precisión el peso y la distancia exactos del líquido desplazado, la altura metacéntrica (GM) calculada en la prueba será errónea. Las superficies libres deberán reducirse al mínimo vaciando los tanques completamente y asegurándose de que todas las sentinas están agotadas, o bien llenando completamente los tanques hasta que el corrimiento de líquidos sea imposible. Este último método no es el óptimo, ya que es muy difícil eliminar las bolsas de aire que quedan entre los miembros estructurales de un tanque, además de que es necesario determinar con precisión el peso y el centro de gravedad del líquido en cada tanque lleno a fin de ajustar los valores correspondientes al buque en rosca. Cuando no haya más remedio que dejar los tanques parcialmente llenos, es conveniente que los costados de los tanques sean planos verticales paralelos y que su planta tenga forma regular (es decir, rectangular, trapezoidal, etc.) para que pueda determinarse con precisión el momento de superficie libre del líquido. Por ejemplo, el momento de superficie libre del líquido en un tanque con costados verticales paralelos puede calcularse fácilmente mediante la fórmula:

$$M_{fs} = l \cdot b^3 \cdot \rho_t / 12 \; (mt)$$
 donde:
$$l = \qquad \qquad \text{longitud del tanque (m)}$$

anchura del tanque (m)

 ρ_t = gravedad especifica del líquido en el tanque (t/m^3)

$$corrección \ por \ superficie \ libre = \frac{\sum_{x} \mathit{M}_{fs} \ (1) + \mathit{M}_{fs} \ (2) + \dots + \mathit{M}_{fs} \ (x)}{\Delta} \ (m)$$

donde:

 M_{fs} = momento de superficie libre (mt)

La corrección por superficie libre es independiente de la altura y ubicación del tanque en el buque y de la dirección de la escora. El momento de superficie libre aumenta en función del cubo de la anchura del tanque. El factor predominante es pues la distancia que el líquido puede desplazarse. Esta es la razón por la que antes de comenzar la prueba de estabilidad es necesario eliminar todo el líquido, por poco que haya, de los tanques anchos o las sentinas. Las cantidades muy pequeñas de líquido en tanques o espacios vacíos en forma de V (por ejemplo, en una caja de cadenas a proa), donde el corrimiento potencial es insignificante, pueden ignorarse si la eliminación de dicho líquido presenta dificultades o puede ocasionar retrasos considerables.

Cuando se utilice el peso del agua de lastre para conseguir la inclinación, los movimientos reales transversales y verticales del líquido se calcularán teniendo en cuenta el cambio de escora del buque. La corrección por superficie libre definida en el presente párrafo no se aplicará a los tanques utilizados para la prueba.

- 2.1.2 **Superficie libre y tanques parcialmente llenos**: El número de tanques parcialmente llenos deberá limitarse normalmente a dos, uno a babor y otro a estribor, o a uno en crujía, elegidos entre los siguientes:
 - .1 tanques de agua dulce de alimentación de reserva;
 - .2 tanques de almacenamiento de fueloil/diésel;
 - .3 tanques de servicio diario de fueloil/diésel;
 - .4 tanques de aceite lubricante;
 - .5 tanques de aguas sucias; o
 - .6 tanques de agua potable.

A fin de evitar que los líquidos queden atrapados, los tanques parcialmente llenos deben tener normalmente una sección transversal regular (es decir, rectangular, trapezoidal, etc.) y contener del 20 % al 80 % de su capacidad si son tanques profundos o del 40 % al 60 % de su capacidad si son tanques de doble fondo. Con estos niveles se asegura que la velocidad de corrimiento del líquido permanezca constante durante la prueba de estabilidad en los distintos ángulos de escora. Si se altera el asiento al inclinar el buque, también habrá que tener en cuenta los líquidos que puedan quedar atrapados en dirección longitudinal. Se deben evitar los tanques parcialmente llenos de líquidos cuya viscosidad sea suficiente para impedir su libre movimiento cuando se inclina el buque (tal como el tanque de combustible a baja temperatura), ya que en ese caso el momento de superficie libre no puede calcularse con precisión. En estos tanques, no se aplicará la corrección por superficie libre a menos que se calienten para reducir la viscosidad del líquido. No se permitirá nunca que los tanques estén comunicados. Las interconexiones, incluidas las que pasan a través de colectores, deberán estar cerradas. La igualdad de los niveles de líquido en una pareja de tanques parcialmente llenos puede ser una indicación de que las interconexiones están abiertas. Para comprobar si las interconexiones están cerradas puede emplearse un plano de tuberías de sentinas, lastre y fueloil.

2.1.3 **Tanques Ilenos hasta los reboses:** "Lleno hasta los reboses" significa completamente Ileno, sin bolsas de aire ocasionadas por el asiento o por una ventilación inadecuada. No se aceptará una capacidad inferior al 100 %, ni siquiera el 98 % con que se considera Ileno un tanque a efectos operacionales. Antes de efectuar el sondeo definitivo, es conveniente balancear el buque de una banda a otra para eliminar el aire atrapado en los tanques. Se deberá tener un cuidado especial en Ilenar hasta los reboses los tanques de fueloil con objeto de evitar la contaminación accidental. En la figura A1-2.1.3 se muestra un ejemplo de tanque aparentemente "Ileno hasta los reboses", pero que en realidad contiene aire atrapado.

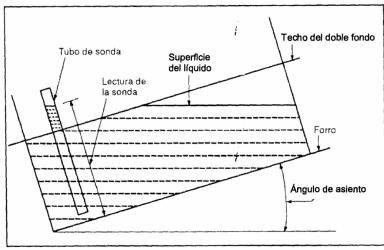


Figura A1-2.1.3

2.1.4 *Tanques vacíos*: Generalmente, no es suficiente bombear los tanques hasta que se pierda la aspiración. Después de bombearlo, hay que entrar en el tanque para determinar si es necesario agotar el líquido con bombas portátiles o a mano. Pueden excluirse los tanques muy estrechos o en los que la astilla muerta es muy pronunciada, ya que el efecto de superficie libre en estos casos es despreciable. Como hay que inspeccionar todos los tanques vacíos, todos los registros deben estar abiertos y los tanques bien ventilados, habiéndose establecido que puede entrarse en ellos sin riesgos. Se dispondrá de un dispositivo de prueba seguro para comprobar que hay suficiente oxígeno y que el nivel de gases tóxicos es mínimo. Si es necesario, se debe disponer de un certificado expedido por un químico naval acreditado en que se atestigüe que puede entrarse sin riesgos en todos los tanques de fueloil y de productos químicos.

2.2 Medios de amarre

La disposición de los medios de amarre es sumamente importante y su elección depende de muchos factores. Entre los más importantes destacan la profundidad del agua y los efectos del viento y las corrientes. Siempre que sea posible, el buque debe estar amarrado en una zona tranquila y abrigada que no se halle expuesta a la acción de fuerzas externas, tales como los remolinos ocasionados por las hélices de remolcadores que naveguen en las inmediaciones o las descargas inesperadas de bombas situadas en tierra. La profundidad del agua debe ser suficiente para asegurar que el casco queda totalmente libre del fondo. También se deben tener en cuenta el estado de la marea y el asiento del buque durante la prueba. Antes de comenzar la prueba se debe medir y registrar la profundidad en tantos puntos como sea necesario hasta asegurarse de que el buque no va a tocar el fondo. En caso de duda, la prueba se realizará durante la marea alta o se llevará el buque a aguas más profundas.

- 2.2.1 La disposición de los medios de amarre permitirá que el buque escore libremente el tiempo suficiente para obtener una lectura satisfactoria del ángulo de escora correspondiente a cada corrimiento del peso.
- 2.2.2 El buque se mantendrá en posición mediante amarras a proa y a popa, afirmadas a bitas o cornamusas en la cubierta. Si no es posible inmovilizar adecuadamente el buque utilizando los aparejos de a bordo, se fijarán cáncamos provisionales lo más cerca posible de crujía y de la línea de flotación. Cuando el buque sólo pueda amarrarse por una banda, conviene complementar los largos de proa y popa con dos esprines, a fin de mantener al buque bajo el necesario control, tal como se indica en la figura A1-2.2.2. La dirección de los esprines será tal que éstos sean lo más largos posible. Entre el buque y el muelle se instalarán flotadores de protección cilíndricos. Al tomar las lecturas, todas las amarras deben estar flojas y el buque separado del muelle y los flotadores.

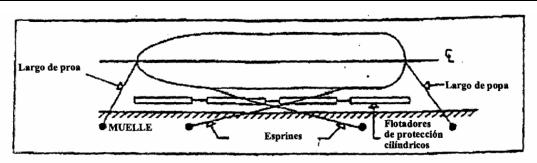


Figura A1-2.2.2

- 2.2.2.1 Si el buque queda separado del muelle por los efectos combinados del viento y la corriente, se verá sometido durante la prueba a un momento escorante superpuesto. En condiciones estables, esto no repercute en los resultados. La presencia de ráfagas de viento o de viento o corriente uniformemente variables hará que los momentos escorantes superpuestos cambien, en cuyo caso tal vez sean necesarios más puntos de prueba para que la prueba sea válida. Tal necesidad puede establecerse trazando las lecturas de los puntos de prueba conforme se van obteniendo.
- 2.2.2.2 Cuando el viento o la corriente empujen al buque contra las defensas, todas las amarras deben quedar flojas. Aunque los camellos cilíndricos permiten que el forro se deslice, también se experimentará un momento escorante superpuesto adicional debido a la presión ejercida por el buque contra los camellos. Convendría evitar esta situación si se puede, pero si no es posible, habría que tratar de separar el buque del muelle y los camellos, dejándolo a la deriva mientras se toman las lecturas.
- 2.2.2.3 Otra situación aceptable es cuando los efectos, combinados del viento y la corriente son tales que puede controlarse el buque con una sola amarra por la proa o por la popa. En este caso, el punto de sujeción de la amarra deberá estar situado en el plano de crujía o cerca de éste. Con todas las amarras menos una flojas, el buque queda en libertad de ser arrastrado por el viento o la corriente mientras se toman las lecturas. En ocasiones, esto puede acarrear problemas, ya que si el viento o la corriente son variables, el trazado de las lecturas es susceptible de distorsión.
- 2.2.3 Los medios de amarre se someterán al examen de la autoridad encargada de su aprobación antes de la prueba.
- 2.2.4 Si para maniobrar los pesos de prueba se utiliza una grúa flotante, ésta no se deberá amarrar al buque.

2.3 Pesos de prueba

- 2.3.1 Los pesos que puedan absorber una cantidad importante de humedad, como los de hormigón poroso, se deberán utilizar únicamente si se pesan inmediatamente antes de realizar la prueba o si se cuenta con certificados de pesadas recientes. Cada uno de los pesos debe ir marcado con su peso y número de identificación. En buques pequeños podrán utilizarse bidones completamente llenos de agua. Los bidones estarán normalmente llenos y cerrados a fin de controlar el peso con precisión. En tal caso, el peso de los bidones se deberá verificar en presencia del representante de la Administración con ayuda de una báscula calibrada recientemente.
- 2.3.2 Se tomarán precauciones para no sobrecargar las cubiertas durante los movimientos de pesos. Si la resistencia de la cubierta es dudosa se realizará un análisis estructural para determinar si los elementos estructurales existentes pueden soportar el peso.
- 2.3.3 En general, los pesos de prueba deben colocarse en la cubierta superior, tan cerca del costado como sea posible. Los pesos deben estar a bordo y en su lugar antes de la hora prevista para comenzar la prueba de estabilidad.
- 2.3.4 Cuando se demuestre la imposibilidad de utilizar pesos sólidos para conseguir el movimiento de inclinación, podrá permitirse el movimiento del agua de lastre como método alternativo. Este permiso sólo se concederá para una prueba determinada, y será necesario que la Administración apruebe el procedimiento de prueba. He aquí los requisitos mínimos para su aceptación:
 - .1 los tanques utilizados para la prueba serán de paredes verticales y carecerán de palmejares de gran tamaño o de otros miembros internos que puedan crear bolsas de aire. Se podrán aceptar otras formas de tanque a discreción de la Administración;
 - .2 los tanques estarán alineados transversalmente para mantener el asiento del buque;
 - .3 se medirá y registrará el peso específico del agua de lastre;

(Segunda Sección)

- 103
- .4 las tuberías que den a los tanques utilizados para la inclinación habrán de estar llenas. Si la disposición de las tuberías del buque no permite el trasiego interno, podrán utilizarse bombas y conductos o mangueras portátiles;
- .5 se obturarán los colectores utilizados para el trasiego con el fin de evitar "fugas" de líquidos durante la operación y se mantendrá un control continuo de las válvulas a lo largo de la prueba;
- .6 todos los tanques utilizados en la prueba se deben sondar a mano antes y después de cada operación de trasiego;
- .7 para cada movimiento se calcularán los centros vertical, longitudinal y transversal;
- .8 se proporcionarán tablas precisas de sondeo/altura del espacio vacío. Se debe determinar el ángulo de escora inicial del buque antes de la inclinación para obtener valores precisos en lo que respecta a los volúmenes y a las posiciones transversal y vertical del centro de gravedad de los tanques utilizados en la prueba para cada ángulo de escora. Para determinar el ángulo de escora inicial se utilizarán las marcas de calado a media eslora (a babor y estribor);
- .9 la cantidad que se ha corrido podrá verificarse mediante un indicador de caudal o un dispositivo semejante; y
- .10 se debe evaluar el tiempo necesario para conseguir la inclinación. Si el tiempo requerido para el trasiego de líquidos es excesivo, no se aceptará el uso de agua, ya que en un periodo de tiempo prolongado es posible que el viento cambie.

2.4 Péndulos

- 2.4.1 Los péndulos deben tener la longitud necesaria que permita medir una deflexión a cada lado de la vertical de 15 cm como mínimo, para lo que, generalmente, el péndulo habrá de medir por lo menos 3 m de longitud. Se recomienda utilizar péndulos con una longitud de 4 a 6 m. Normalmente, cuanto más largo sea el péndulo, mayor será la precisión de los resultados; no obstante, si en un buque auxiliar se utilizan péndulos excesivamente largos, es posible que éstos no sean lo suficientemente estables, con lo que su precisión será dudosa. En los buques de gran tamaño con un GM alto, pueden ser necesarios péndulos de longitud mayor que la recomendada anteriormente a fin de obtener la deflexión mínima. En tales casos, la cubeta, representada en la figura A1-2.4.6, se llenará con aceite de alta viscosidad. Es conveniente que los péndulos sean de longitud diferente para evitar la posibilidad de que exista colusión entre las personas que toman las lecturas en los diferentes puestos.
- 2.4.2 En buques más pequeños donde no haya suficiente altura libre para colgar péndulos largos, la deflexión recomendada de 15 cm puede obtenerse aumentando la magnitud de los pesos de prueba para que la escora sea mayor. En la mayoría de los buques la inclinación normal es de entre uno y cuatro grados.
- 2.4.3 El péndulo debe ser de alambre de piano o de otro material monofilar. La conexión superior del péndulo permitirá la rotación sin restricciones alrededor del punto de giro. Puede utilizarse, por ejemplo, una arandela suspendida de un clavo a la que se sujeta el alambre del péndulo.
- 2.4.4 Se dispondrá una cubeta llena de líquido para amortiguar las oscilaciones del péndulo después de cada movimiento de pesos. La cubeta debe tener suficiente profundidad para evitar que la pesa del péndulo toque el fondo. El empleo de una plomada con aletas al final del alambre del péndulo puede ayudar también a amortiguar las oscilaciones en el líquido.
- 2.4.5 Los listones transversales deben ser de madera clara y suave, de 1 a 2 cm de grosor, y quedar sólidamente fijados en su lugar de manera que cualquier golpe involuntario no los desplace de su sitio. Cada uno de los listones se alineará de tal modo que quede cerca del alambre del péndulo, pero sin hacer contacto con él.
- 2.4.6 En la figura A1-2.4.6 se ilustra una configuración normal satisfactoria. Los péndulos podrán colocarse en cualquier lugar del buque, tanto en sentido longitudinal como transversal, y deberán estar instalados antes de la hora prevista para realizar la prueba.
- 2.4.7 Se recomienda utilizar los inclinómetros u otros instrumentos de medida junto con un péndulo como mínimo. La Administración podrá aprobar un medio distinto cuando considere que lo anterior no es factible.

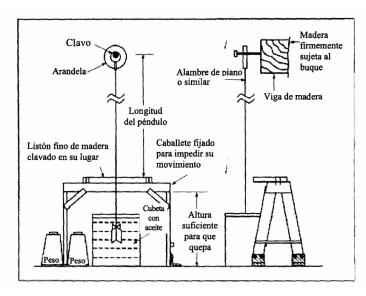


Figura A1-2.4.6

2.5 Tubos en U

- 2.5.1 Los brazos del dispositivo se colocarán y fijarán lo más afuera posible de la borda y en posición paralela al plano de crujía del buque. La distancia entre los brazos se medirá perpendicularmente al plano de crujía. En la medida de lo posible, los brazos estarán en posición vertical.
- 2.5.2 Se tomarán disposiciones para registrar todas las lecturas en ambos brazos. Con objeto de facilitar la lectura y la detección de bolsas de aire, se utilizará, en toda la longitud del dispositivo, tubo o manguera de plástico transparente. El tubo en U se someterá a una prueba de presión antes de realizar la prueba de estabilidad, a fin de comprobar que es estanco al agua.
- 2.5.3 La distancia horizontal entre los brazos del tubo será suficiente para obtener una diferencia de nivel de por lo menos 15 cm entre la posición del buque adrizado y la máxima inclinación a cada banda.
- 2.5.4 Normalmente, el líquido utilizado en el tubo será agua. También se podrán utilizar otros líquidos de baja viscosidad.
- 2.5.5 El tubo no debe contener bolsas de aire. Se tomarán disposiciones para que no haya obstrucciones que impidan la libre circulación del líquido en el tubo.
- 2.5.6 Cuando se utilice un tubo en U como dispositivo de medición, habrá que tener debidamente en cuenta las condiciones meteorológicas reinantes (véase 4.1.1.3):
 - .1 si el tubo está expuesto directamente a la luz del sol, se tomarán disposiciones para evitar diferencias de temperatura a lo largo del mismo;
 - .2 si se prevén temperaturas inferiores a 0 °C, el líquido será una mezcla de agua y de aditivo anticongelante; y
 - 3 si se prevén fuertes ráfagas de lluvia, se tomarán medidas para evitar que entre más agua en el tubo.

2.6 Inclinómetros

El uso de inclinómetros estará sujeto, como mínimo, a las siguientes recomendaciones:

- 1 la precisión será equivalente a la de un péndulo;
- .2 la sensibilidad del inclinómetro será tal que el ángulo de escora no constante del buque se pueda registrar durante toda la medición;
- .3 el periodo de registro será suficiente para medir con exactitud la inclinación. La capacidad de registro deberá ser, en general, suficiente para la totalidad de la prueba;
- 4 el instrumento podrá trazar o imprimir en papel los ángulos de inclinación registrados;
- .5 el instrumento tendrá un rendimiento lineal con respecto a la gama prevista de ángulos de inclinación;
- .6 el instrumento irá acompañado de las instrucciones del fabricante, en las que se incluirán los pormenores de la calibración, el modo de empleo, etc.; y
- .7 durante la prueba de estabilidad debe demostrarse de manera satisfactoria a juicio de la Administración el rendimiento prescrito.

3 EQUIPO NECESARIO

Además del equipo físico necesario, como son los pesos de prueba, los péndulos, un bote, etc., es preciso que la persona encargada de la prueba de estabilidad disponga de lo siguiente:

- .1 reglas graduadas de precisión para medir las deflexiones de los péndulos (las reglas deben tener la graduación necesaria para conseguir la precisión deseada);
- .2 lápices afilados para marcar la deflexión de los péndulos;
- .3 tiza para marcar las diversas posiciones de los pesos de prueba;
- .4 una cinta métrica de longitud suficiente para medir el desplazamiento de los pesos y establecer la posición de otros elementos a bordo;
- .5 una cinta de sonda de longitud suficiente para sondar los tanques y tomar las lecturas de francobordo;
- .6 uno o más hidrómetros bien mantenidos para medir el peso específico del agua en que se halla flotando el buque, que abarque los valores de 0,999 a 1,030 (en determinados lugares tal vez sea necesario utilizar un hidrómetro para medir pesos específicos inferiores a 1,000);
- .7 los hidrómetros necesarios para medir el peso específico de otros líquidos a bordo;
- .8 papel cuadriculado para trazar los momentos escorantes en función de las tangentes;
- .9 una regla para trazar en el plano de formas la flotación que se haya determinado;
- .10 un cuaderno para registrar los datos;
- .11 un dispositivo a prueba de explosivos para comprobar la presencia de suficiente oxígeno y la ausencia de gases letales en tanques y otros espacios cerrados, tales como coferdanes y espacios perdidos;
- .12 un termómetro; y
- .13 tubos estabilizadores de columna (si es necesario).

4 PROCEDIMIENTO DE PRUEBA

El orden en que se realicen la prueba de estabilidad, la lectura del francobordo/calado y el reconocimiento no afecta a los resultados. Si la persona encargada de realizar la prueba tiene confianza en que los resultados del reconocimiento van a corroborar que el buque se encuentra en un estado aceptable, y además existe la posibilidad de que el tiempo vaya a empeorar, se sugiere realizar primero la prueba de estabilidad y el reconocimiento a continuación. Si, por otra parte, esa persona no está segura de que el buque está suficientemente acabado para someterlo a la prueba, se recomienda realizar primero el reconocimiento, dado que los resultados del mismo pueden invalidar el resto de la prueba, independientemente de las condiciones meteorológicas. Es sumamente importante que todos los pesos, el número de personas a bordo, etc., permanezcan constantes durante toda la prueba.

4.1 Revista inicial y reconocimiento

La persona responsable de la realización de la prueba de estabilidad debe subir a bordo del buque con bastante antelación a la hora prevista para la prueba, a fin de asegurarse de que el buque está debidamente preparado para ello. Si el buque de que se trate es de gran tamaño, es posible que la revista inicial tenga que realizarse el día anterior al de la prueba. A fin de garantizar la seguridad del personal que realice la revista y con el fin de mejorar la documentación de los pesos y deficiencias objeto del reconocimiento, la revista inicial la llevarán a cabo dos personas como mínimo. Se debe comprobar que todos los compartimientos están abiertos, limpios y secos, que los tanques están bien ventilados y desgasificados, que los objetos movibles o suspendidos están sujetos y su posición registrada, que los péndulos están instalados en su lugar, que los pesos se hallan a bordo y en su sitio, que se cuenta con una grúa u otro medio para mover los pesos y que se dispone de los planos y el equipo necesarios. Antes de comenzar la prueba de estabilidad, la persona que la realice deberá:

- 1 tomar en consideración las condiciones meteorológicas. Los efectos adversos combinados del viento, las corrientes y las olas pueden dificultar e incluso invalidar la prueba de estabilidad por las razones siguientes:
 - .1.1 imposibilidad de registrar con precisión los valores de francobordo y calado;
 - .1.2 oscilaciones excesivas o irregulares de los péndulos;
 - .1.3 variaciones de los momentos escorantes superpuestos que sean inevitables.

En algunos casos, y a no ser que puedan mejorarse bastante las condiciones llevando el buque a un lugar más abrigado, tal vez sea necesario retrasar o aplazar la prueba. Antes de comenzarla, habrá que retirar del buque el aqua de lluvia, la nieve o el hielo que se havan acumulado en cantidades considerables. Si el mal tiempo puede detectarse con suficiente antelación y el pronóstico meteorológico no indica que vavan a meiorar las condiciones, se informará de ello al representante de la Administración antes de que salga de su oficina con el fin de fijar otra fecha más conveniente;

- .2 realizar un reconocimiento general rápido del buque asegurándose de que el acabado de su construcción está lo suficientemente avanzado como para llevar a cabo la prueba, y verificar que todo el equipo se halla en su lugar. En todo procedimiento de prueba que haya que presentar a la Administración se incluirá una estimación de los elementos que quedan por instalar en el momento de realizar la prueba. Ello permitirá al representante de la Administración notificar al astillero/ingeniero naval si, en su opinión, el buque no va a estar lo suficientemente terminado para someterlo a la prueba y, por consiguiente, hay que aplazarla. Si la condición del buque no queda exactamente reflejada en el procedimiento de prueba y en el momento de realizarla el representante de la Administración considera que el estado del buque no permite llevarla a cabo con precisión, dicho representante podrá negarse a aceptar tal prueba y exigir que se realice en fecha posterior;
- entrar en todos los tanques vacíos tras comprobar que están bien ventilados y desgasificados, asegurándose de que están secos y limpios. Verificar que los tanques que se suponen llenos hasta los reboses están efectivamente llenos y sin bolsas de aire. La cantidad prevista de líquidos durante la prueba debe ser incluida en el procedimiento que hay que presentar a la Administración:
- efectuar un reconocimiento completo del buque para determinar todos los elementos que hay que añadir, retirar o cambiar de lugar para que el buque quede en rosca. Cada elemento debe quedar claramente señalado por su peso y por las posiciones vertical y longitudinal de su centro de gravedad. Si fuese necesario, también se registrará la coordenada transversal. Los pesos de prueba, péndulos, equipo provisional y madera de estiba, así como las personas que haya a bordo durante la prueba de estabilidad, se cuentan entre los pesos que hay que retirar para obtener la condición de buque en rosca. La persona encargada de calcular las características del buque en rosca a partir de los datos obtenidos durante la prueba y el reconocimiento y/o la persona que revise la prueba de estabilidad tal vez no estén presentes durante la prueba misma y, por tanto, han de poder determinar la situación exacta de los elementos a partir de los datos registrados y de los planos del buque. Todo tanque que contenga líquido debe ser sondado con precisión y las lecturas quedarán registradas;
- se reconoce que habrá que estimar el peso de algunos elementos que haya a bordo o que vayan a ser añadidos. Si ello es necesario y para mayor seguridad, convendrá estimar dichos pesos por exceso o por defecto, según sea el caso, como se indica a continuación:
 - .5.1 al estimar los pesos que vayan a añadirse:
 - .1.1 estimar por exceso los elementos que vayan a colocarse en un lugar alto del buque; y
 - .1.2 estimar por defecto los elementos que vayan a colocarse en un lugar bajo del buque;
 - .5.2 al estimar pesos que vayan a retirarse:
 - .2.1 estimar por defecto los elementos que vayan a retirarse de un lugar alto del buque; y
 - .2.2 estimar por exceso los elementos que vayan a retirarse de un lugar bajo del buque;
 - .5.3 al estimar los pesos que vayan a cambiarse de lugar:
 - .3.1 estimar por exceso los elementos que vayan a desplazarse hacia un lugar más alto del buque; y
 - .3.2 estimar por defecto los elementos que vayan desplazarse hacia un lugar más bajo del buque.

4.2 Lecturas de francobordo/calado

4.2.1 Las lecturas de francobordo/calado se toman para establecer la posición de la flotación y determinar a su vez el desplazamiento del buque en el momento de realizar la prueba de estabilidad. Se recomienda tomar por lo menos cinco lecturas de francobordo en cada banda del buque, aproximadamente a intervalos iguales, o bien tomar la lectura de todas las marcas de calado (a proa, en los medios y a popa) en cada banda del buque. Hay que tomar las lecturas de las marcas de calado para facilitar la determinación de la flotación definida por las lecturas de francobordo o para verificar la posición vertical de las marcas de calado en los

(Segunda Sección)

buques en que no se haya confirmado la escala de calados. Conviene marcar claramente la posición en que se haya tomado cada una de las lecturas de francobordo. También se debe determinar con exactitud y registrar la posición longitudinal de esos puntos a lo largo del buque, ya que el puntal de trazado en cada uno de ellos hay que obtenerlo del plano de formas. En todas las lecturas de francobordo se adjuntará una anotación que aclare si en la medición se ha incluido la brazola, en la que conste la altura de ésta.

- 4.2.2 Las lecturas de calado y francobordo se deben tomar inmediatamente antes o inmediatamente después de realizar la prueba de estabilidad. Mientras se toman dichas lecturas, los pesos de prueba habrán de estar en su lugar a bordo, y todo el personal que vaya a permanecer a bordo durante la prueba, concretamente las personas encargadas de tomar las lecturas de los péndulos, se hallarán en el lugar designado. Esto reviste especial importancia en los buques pequeños. Si se toman las lecturas después de la prueba, se mantendrá al buque en las mismas condiciones que durante la prueba. En buques pequeños tal vez sea necesario contrarrestar los efectos de escora y asiento ocasionados por las personas encargadas de medir el francobordo. De ser posible, las lecturas se tomarán desde un bote pequeño.
- 4.2.3 Se dispondrá de un bote para tomar las lecturas de francobordo y las marcas de calados. Dicho bote tendrá un francobordo bajo que permita tomar las lecturas con precisión.
- 4.2.4 En ese momento se debe determinar el peso específico del agua en que flota el buque. Conviene tomar las muestras a suficiente profundidad para asegurarse de que son representativas del agua en que flota el buque y no simplemente del agua de la superficie, que podría estar mezclada con agua dulce procedente de descargas o de la lluvia. En la muestra de agua se colocará un hidrómetro que lea y registre el peso específico. En buques de gran tamaño se recomienda tomar muestras de agua a proa, en los medios y a popa, y calcular la media de las lecturas. Si el buque es pequeño, una sola muestra tomada en los medios es suficiente. Se tomará la temperatura del agua y, si es necesario, se corregirá el valor medido del peso específico cuando exista desviación del valor normal. No es preciso corregir el peso específico del agua si éste se determina en el lugar donde se realiza la prueba. La corrección es necesaria si el peso específico se mide cuando la temperatura de la muestra es diferente a la del agua en el momento de realizar la prueba (por ejemplo, si el peso específico se determina en la oficina).
- 4.2.5 La lectura de una determinada marca de calado puede sustituirse por una lectura de francobordo dada en la misma posición longitudinal, si se ha verificado que la altura y posición de la marca son precisas mediante un reconocimiento de la quilla estando el buque en dique seco.
- 4.2.6 A fin de mejorar la precisión de las lecturas de francobordo/calado pueden utilizarse dispositivos, tal como un tubo estabilizador de columna, que permitan amortiguar el movimiento de las olas.
- 4.2.7 Las dimensiones que figuran en el plano de formas de un buque son generalmente de trazado. En el caso del puntal, la distancia se mide desde el interior del forro del fondo hasta el interior de las chapas de cubierta. Al trazar la flotación del buque en el plano de formas habrá que convertir las lecturas de francobordo en calados de trazado. De igual modo, antes de trazar las lecturas de las marcas de calado habrá que convertir los valores tomados fuera de forros (hasta la cara inferior de la quilla) en valores de trazado (hasta la cara superior de la quilla). Habrá que resolver toda discrepancia entre las lecturas de francobordo y las de calado.
- 4.2.8 El calado medio (la media de las lecturas de babor y estribor) se calcula para cada uno de los puntos en que se toman lecturas de francobordo/calado, trazándolo seguidamente en el plano de formas o en el perfil exterior del buque para comprobar que todas las lecturas son coherentes y que con ellas puede definirse la flotación correcta. El trazo resultante habrá de dar una línea recta o bien una línea de flotación con quebranto o con arrufo. De no haber coherencia entre las lecturas obtenidas, tomarán de nuevo las medidas de francobordo/calado.

4.3 Prueba de estabilidad

- 4.3.1 Antes de proceder a mover los pesos, se deben efectuar las siguientes operaciones:
 - .1 se comprobarán los medios de amarre para cerciorarse de que el buque flota libremente. (Esta operación se realizará inmediatamente antes de tomar cada una de las lecturas de los péndulos);
 - .2 se medirán y registrarán las longitudes de los péndulos. Éstos deberán estar alineados de tal manera que cuando el buque escore, el alambre quede tan cerca como sea posible del listón transversal para poder tomar las lecturas con precisión, pero sin tocarlo. La figura A1-2.4.6 ilustra una disposición normal satisfactoria;
 - .3 la posición inicial de los pesos se marcará en la cubierta, por ejemplo, trazando su contorno;
 - .4 se comprobará que los medios de comunicación son adecuados; y
 - .5 se verificará que todo el personal está en su lugar.

4.3.2 En el transcurso de la prueba se deben ir trazando las lecturas para asegurar que se obtienen datos aceptables. Generalmente, la abscisa del gráfico es el momento escorante W(x) (peso multiplicado por distancia x) y la ordenada es la tangente del ángulo de escora (deflexión del péndulo dividida por su longitud). La línea resultante no tiene que pasar necesariamente por el origen o por ningún otro punto en particular, ya que ningún punto es más significativo que cualquier otro. Para trazar la línea recta se realiza a menudo un análisis de regresión lineal. Los movimientos de pesos que se indican en la figura A1-4.3.2-1 ofrecen una buena dispersión de puntos en el gráfico resultante.

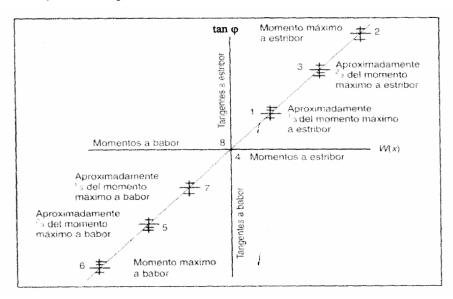
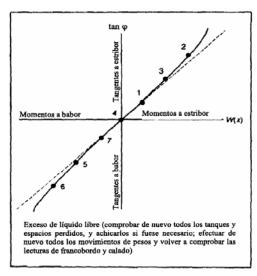



Figura A1-4.3.2-1

El trazado de todas las lecturas de cada uno de los péndulos durante la prueba de estabilidad facilita la detección de mediciones erróneas. Dado que (W)(x)/tan φ debe ser constante, la línea trazada debe ser recta. Si ése no es el caso, es muy posible que el buque esté sometido a otros momentos durante la prueba. Dichos momentos deben ser identificados y hay que corregir la causa y repetir los movimientos hasta lograr una línea recta. Las figuras A1-4.3.2-2 a A1-4.3.2-5 ilustran ejemplos de cómo detectar algunos de dichos momentos durante la prueba y ofrecen la solución recomendada en cada caso. Por sencillez, en los gráficos sólo se muestra el promedio de las lecturas.

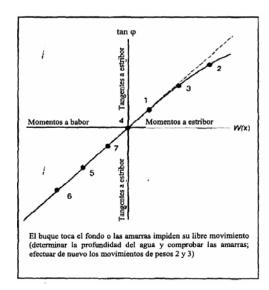
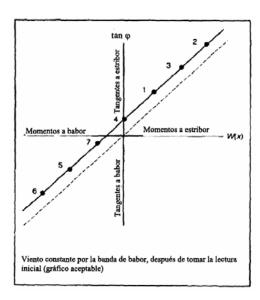



Figura A1-4.3.2-3

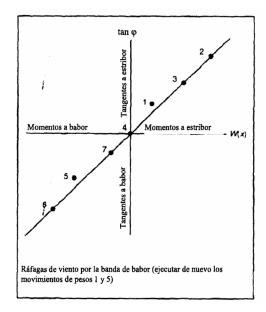


Figura A1-4.3.2-4

Figura A1-4.3.2-5

- 4.3.3 Una vez que todo el equipo y las personas estén en su lugar, se obtendrá la posición inicial y se realizará el resto de la prueba cuanto antes, manteniendo la precisión y siguiendo los procedimientos debidos, a fin de reducir al mínimo la posibilidad de que cambien las condiciones meteorológicas durante la prueba.
- 4.3.4 Antes de tomar las lecturas de los péndulos, cada una de las personas encargadas de tomarlas informará al puesto de control cuando el péndulo se haya estabilizado. Seguidamente, desde el puesto de control se dará el aviso de "preparados" y a continuación la orden de "marcar". Tras recibir esta orden, se marcará el listón de cada uno de los péndulos en el punto en que quede el alambre. Si el alambre continuara oscilando ligeramente, se marcará el punto medio de las oscilaciones. Si una de las personas encargadas de los péndulos estima que una de las lecturas no es fiable, informará de ello al puesto de control y se repetirán las lecturas en ese punto en todos los péndulos. Del mismo modo, si en el puesto de control se pone en duda la precisión de una lectura, se tomarán de nuevo las lecturas en todos los péndulos. En el listón, junto a la marca, se anotará el número que corresponda al movimiento de pesos, como por ejemplo, cero para la posición inicial y de uno a siete para el resto de los movimientos.
- 4.3.5 Cada movimiento de pesos se efectuará en la misma dirección, transversalmente por lo general, con objeto de que no cambie el asiento del buque. Después de cada movimiento de pesos se medirá la distancia que se ha desplazado el peso (de centro a centro) y se calculará el momento escorante multiplicando dicha distancia por la magnitud del peso desplazado. La tangente en cada péndulo se calcula dividiendo la deflexión por la longitud del péndulo. Las tangentes obtenidas se trazarán en el gráfico. Si concuerdan en general los valores de la tangente de φ de todos los péndulos, puede trazarse la media de las lecturas de los péndulos en lugar de trazar cada una de ellas.
- 4.3.6 En la prueba conviene utilizar hojas de datos sobre estabilidad, con objeto de no olvidar ninguno y de que se registren de manera clara, concisa y con un formato coherente. Antes de que el buque se haga a la mar, la persona que lleve a cabo la prueba y el representante de la Administración firmarán cada una de las hojas de datos para indicar que están de acuerdo con los datos registrados.

ANEXO 2

RECOMENDACIONES PARA QUE LOS PATRONES DE BUQUES PESQUEROS SE ASEGUREN DE LA RESISTENCIA DEL BUQUE EN CONDICIONES DE FORMACIÓN DE HIELO

1 Antes de hacerse a la mar

- 1.1 En primer lugar, el patrón, como en el caso de toda travesía emprendida en cualquier época del año, debe asegurarse de que el buque está generalmente en buenas condiciones de navegabilidad, prestando especial atención a las condiciones básicas siguientes:
 - .1 la carga del buque se ajusta a los límites prescritos para la temporada de que se trate (véase el párrafo 1.2.1 *infra*);
 - .2 la estanquidad a la intemperie y el buen funcionamiento de los dispositivos para cerrar las escotillas de carga y de acceso, las puertas exteriores y todas las demás aberturas de las cubiertas y superestructuras del buque, así como la estanquidad de los portillos y de las portas o aberturas similares en las partes de los costados situadas por debajo de la cubierta de francobordo:

- .3 el estado de las portas de desagüe e imbornales y el buen funcionamiento de sus dispositivos de cierre;
- .4 los dispositivos salvavidas y de emergencia y su buen funcionamiento;
- .5 el buen funcionamiento de todo el equipo de comunicaciones externas e internas; y
- .6 el estado y el buen funcionamiento de los sistemas de bombeo de lastre y de sentina.
- 1.2 Además, por lo que respecta especialmente a la posible acumulación de hielo, el patrón debe:
 - .1 tomar en consideración la condición de carga más crítica basándose en los documentos de estabilidad aprobados, teniendo debidamente en cuenta el consumo de combustible y agua, la distribución de pertrechos, carga y artes de pesca, y aplicando un margen por la posible acumulación de hielo;
 - .2 ser consciente del peligro que representa la estiba de pertrechos y artes de pesca en la cubierta de intemperie, debido a la gran superficie para la acumulación de hielo y al elevado centro de gravedad:
 - .3 cerciorarse de que a bordo del buque se dispone de un juego completo de ropa de abrigo para todos los tripulantes, así como de un juego completo de herramientas de mano y otros medios para combatir la acumulación de hielo; en la sección 4 del presente anexo figura una lista típica de herramientas para buques pequeños;
 - .4 asegurarse de que la tripulación está familiarizada con el emplazamiento de los medios para combatir la acumulación de hielo y con la utilización de los mismos, y de que se realizan ejercicios para que los miembros de la tripulación conozcan sus cometidos respectivos y tengan los conocimientos prácticos necesarios para garantizar la capacidad de resistencia del buque en condiciones de acumulación de hielo;
 - .5 familiarizarse con las condiciones meteorológicas reinantes en la región de los caladeros y en las zonas por las que haya de navegar para llegar a su destino; estudiar los mapas sinópticos de dicha región y los pronósticos meteorológicos; tomar conocimiento de las posibles corrientes cálidas en las proximidades de los caladeros, del relieve del litoral más próximo, de la existencia de bahías abrigadas y de la situación de los campos de hielo y sus bordes; y
 - .6 familiarizarse con el horario de las estaciones de radio que transmitan partes meteorológicos y avisos sobre la posibilidad de engelamiento en la zona de los caladeros de que se trate.

2 En el mar

- 2.1 Durante la travesía y cuando el buque esté en el caladero, el patrón debe mantenerse informado de todos los partes meteorológicos a corto y largo plazo y tomar medidas para que se efectúen y registren sistemáticamente las siguientes observaciones meteorológicas:
 - .1 temperatura del aire y de la superficie del mar;
 - .2 dirección y velocidad del viento;
 - .3 dirección y altura de las olas y estado de la mar;
 - .4 presión atmosférica y humedad del aire; y
 - .5 frecuencia de los golpes de mar por minuto e intensidad de la acumulación de hielo por hora en las diversas partes del buque.
- 2.2 Todos los datos observados se deben anotar en el diario de navegación del buque. El patrón comparará los partes meteorológicos y las cartas de engelamiento con las condiciones meteorológicas reales, y estimará la probabilidad de formación de hielo y su intensidad.
 - 2.3 Cuando surja el peligro de engelamiento, habrá que tomar inmediatamente las siguientes medidas:
 - .1 se tendrán listos todos los medios para combatir la formación de hielo;
 - .2 se interrumpirán todas las faenas de pesca, se cobrarán todos los artes de pesca y se estibarán en espacios bajo cubierta. Si esto no es posible, los artes se sujetarán en su lugar correspondiente para condiciones de temporal. Es particularmente peligroso dejar el arte de pesca suspendido, ya que su superficie expuesta a la formación de hielo es grande y el punto de suspensión suele ser elevado:
 - .3 los barriles y recipientes que contengan pescado, los embalajes, todos los aparejos y suministros que haya en cubierta, así como los aparatos portátiles, se colocarán en espacios cerrados que se hallen lo más bajo posible y se trincarán firmemente;
 - .4 toda la carga en bodegas y otros compartimientos se colocará lo más bajo posible y se trincará firmemente:
 - .5 se arriarán y sujetarán las plumas de carga;

- (Segunda Sección)
- .6 la maquinaria de cubierta, carreteles de estachas y botes se cubrirán con encerados;
- .7 se sujetarán los andariveles en cubierta;
- .8 las portas de desagüe que lleven cierres se pondrán en condiciones de funcionamiento y se retirarán todos los objetos que haya cerca de los imbornales y las portas de desagüe que impidan el drenaje de la cubierta;
- .9 se cerrarán firmemente todas las escotillas de carga y de tambuchos, tapas de registro, puertas exteriores estancas a la intemperie en superestructuras y casetas, así como los portillos, a fin de asegurar que el buque queda completamente estanco a la intemperie; el acceso a la cubierta de intemperie desde los compartimientos interiores se permitirá únicamente a través de la cubierta de superestructuras;
- .10 se comprobará si la cantidad de agua de lastre y su ubicación a bordo cumple con las recomendaciones de la publicación "Orientación sobre estabilidad para los patrones"; si hay suficiente francobordo, se llenarán de agua de mar todos los tanques vacíos del fondo que lleven tuberías de lastre;
- .11 se tendrá listo para uso inmediato todo el equipo de lucha contra incendios, de emergencia y de salvamento;
- .12 se comprobará la eficacia de todos los sistemas de drenaje;
- .13 se comprobarán el alumbrado de cubierta y los proyectores orientables;
- .14 se verificará que cada tripulante cuenta con ropa de abrigo; y
- .15 se establecerán radiocomunicaciones fiables en ambos sentidos con las estaciones de tierra y con otros buques; las llamadas por radio se preverán a horas fijas.
- 2.4 El patrón debe tratar de alejar su buque de la zona peligrosa, teniendo presente que los bordes de sotavento de los campos de hielo, las zonas de corrientes cálidas y las zonas costeras abrigadas constituyen un buen refugio para el buque cuando se produce la formación de hielo.
- 2.5 En los caladeros, los buques pesqueros pequeños se deberán mantener próximos entre sí y cerca de los buques más grandes.
- 2.6 Conviene recordar que la entrada de un buque en un campo de hielo entraña un cierto peligro para el casco, especialmente si hay mucha mar de fondo. Por consiguiente, el buque debe entrar en el campo de hielo perpendicularmente al borde de éste, a poca velocidad y sin inercia. Es menos peligroso entrar en un campo de hielo con la proa al viento. Si un buque ha de entrar en un campo de hielo con el viento por la popa, se debe tener en cuenta que el borde del campo es más denso a barlovento. Es importante entrar en el campo de hielo por donde los bandejones sean más pequeños.

3 Durante la formación de hielo

- 3.1 Cuando pese a todas las medidas tomadas el buque no pueda salir de la zona peligrosa, se deben emplear todos los medios disponibles para quitar el hielo mientras duren las condiciones de formación de hielo.
- 3.2 Según el tipo de buque, podrán emplearse todos o la mayoría de los medios siguientes para combatir la formación de hielo:
 - .1 quitar el hielo con agua fría a presión;
 - .2 quitar el hielo con agua caliente y vapor; y
 - .3 romper el hielo con barras, hachas, piquetas, rasquetas o mazas y tirarlo por la borda con palas.
- 3.3 Cuando empiece a formarse el hielo, el patrón debe tener en cuenta las recomendaciones que se relacionan a continuación, asegurándose de que se cumplen rigurosamente:
 - notificar inmediatamente al propietario del buque que se está formando hielo y mantener con él radiocomunicaciones continuas;
 - .2 establecer radiocomunicaciones con los buques más cercanos, asegurándose de que se mantienen;
 - .3 no permitir que se acumule hielo en el buque y tomar inmediatamente medidas para desprender de las estructuras las capas de hielo, por finas que sean, y de la cubierta superior el hielo pastoso;
 - .4 comprobar continuamente la estabilidad del buque midiendo el periodo de balance durante la formación de hielo. Si el periodo de balance aumenta sensiblemente, tomar inmediatamente todas las medidas posibles para aumentar la estabilidad del buque;
 - .5 asegurarse de que cada tripulante que se halle trabajando en la cubierta de intemperie viste ropa de abrigo y lleva un cabo de seguridad sujeto a la barandilla;

- .6 tener presente que la tripulación dedicada a quitar el hielo corre riesgo de congelación. Por este motivo es necesario disponer el relevo periódico de los miembros de la tripulación que trabajan en cubierta:
- .7 mantener libres de hielo, en primer lugar, las siguientes estructuras y equipo del buque:
 - .7.1 antenas;
 - .7.2 luces de navegación y de situación;
 - .7.3 portas de desagüe e imbornales;
 - .7.4 embarcaciones de salvamento;
 - .7.5 estays, obenques, palos y jarcia;
 - .7.6 puertas de superestructuras y casetas; y
 - .7.7 molinetes y escobenes;
- .8 desprender el hielo de las grandes superficies del buque, comenzando por las estructuras superiores (como el puente, casetas, etc.), ya que incluso una pequeña cantidad de hielo sobre las mismas ocasiona un grave empeoramiento de la estabilidad del buque;
- .9 cuando la distribución del hielo no es simétrica y el buque adopta una escora permanente, el hielo debe quitarse primero de la banda más baja. Habrá que tener en cuenta que al intentar corregir la escora del buque bombeando combustible o agua de un tanque a otro se puede reducir la estabilidad durante el proceso, al haber hueco en ambos tanques;
- .10 si se forma una cantidad considerable de hielo en la proa y se altera el asiento, es preciso quitar el hielo rápidamente. Podrá redistribuirse el agua de lastre a fin de reducir el asiento;
- .11 retirar el hielo de las portas de desagüe y los imbornales cuanto antes a fin de permitir el drenaje del agua que haya en cubierta;
- .12 comprobar con regularidad si se ha acumulado agua dentro del casco;
- .13 evitar la navegación con mar de popa ya que ello puede menoscabar gravemente la estabilidad del buque;
- .14 anotar en el diario de navegación del buque la duración, naturaleza e intensidad de la formación de hielo, la cantidad de hielo en el buque, las medidas tomadas para combatir la formación de hielo y su eficacia; y
- .15 si a pesar de todas las medidas tomadas para garantizar la resistencia del buque en condiciones de formación de hielo, la tripulación se ve obligada a abandonar el buque y subir a las embarcaciones de salvamento (botes y balsas salvavidas), habrá que hacer todo lo posible, con objeto de proteger al personal, para que toda la tripulación cuente con ropa de abrigo o sacos especiales, así como con un número suficiente de cabos de salvamento y de achicadores que permitan eliminar rápidamente el agua que entre en las embarcaciones de salvamento.

4 Lista de equipo y herramientas de mano

Lista típica de equipo y herramientas de mano necesarios para combatir la formación de hielo:

- .1 barras o palancas;
- .2 hachas de mango largo;
- .3 piquetas;
- .4 rasquetas metálicas;
- .5 palas metálicas;
- .6 mazos de madera;
- 7 andariveles tendidos de proa a popa a cada banda de la cubierta de intemperie, provistos de rascas a las que puedan sujetarse las vinateras.

Se deben proveer cinturones de seguridad con mosquetones que puedan sujetarse a las vinateras para el 50 % de la tripulación por lo menos (con un mínimo de cinco juegos).

Notas:

- 1 El número de herramientas de mano y de dispositivos salvavidas puede aumentarse a discreción del propietario del buque.
- 2 Se deben llevar a bordo mangueras fácilmente accesibles que puedan servir para eliminar el hielo.